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Abstract: In return strokes, the parameters that can be measured are the channel base current and 
the return stroke speed. For this reason, many return stroke models have been developed with these 
two parameters, among others, as inputs. Here, we concentrate on the current propagation type 
engineering return stroke models where the return stroke is represented by a current pulse propa-
gating upwards along the leader channel. In the current propagation type return stroke models, in 
addition to the channel base current and the return stroke speed, the way in which the return stroke 
current attenuates along the return stroke channel is specified as an input parameter. The goal of 
this paper is to show that, within the confines of current propagation type models, once the channel 
base current and the return stroke speed are known, the measured radiation field can be used to 
evaluate how the return stroke current attenuates along the channel. After giving the mathematics 
necessary for this inverse transformation, the procedure is illustrated by extracting the current at-
tenuation curve from the typical wave shape of the return stroke current and from the distant radi-
ation field of subsequent return strokes. The derived attenuation curve is used to evaluate both the 
subsequent and first return stroke electromagnetic fields at different distances. It is shown that all 
the experimentally observed features can be reproduced by the derived attenuation curve, except 
for the subsidiary peak and long zero-crossing times. In order to obtain electromagnetic fields of 
subsequent return strokes that are in agreement with measurements, one has to incorporate the 
current dispersion into the model. In the case of first return strokes, both current dispersion and 
reduction in return stroke speed with height are needed to obtain the desired features. 

Keywords: lightning; return strokes; radiation fields; current attenuation; remote sensing; modified 
transmission line models; MTL models; MTLD model 
 

1. Introduction 
Features of electromagnetic fields from lightning return strokes are needed at differ-

ent distances in studies related to the interaction of these electromagnetic fields with both 
the Earth’s upper atmosphere and man-made electrical structures [1–3]. Moreover, these 
fields at different distances are also important in understanding the way in which they 
are attenuated and dispersed as they propagate along rough and finitely conducting 
grounds [4–6]. These studies require electromagnetic fields of return strokes at different 
distances with different time resolutions depending on the requirements of the study. 
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Since measuring electromagnetic fields from return strokes at several distances simulta-
neously is a difficult task, researchers have employed return stroke models to calculate 
these electromagnetic fields. 

Return stroke models can be divided into different categories depending on the basic 
principles used in constructing them. They can be divided into physical models, transmis-
sion line models, antenna models, electromagnetic models and engineering models [7]. 
Engineering models are the simplest, yet they are highly successful in predicting electro-
magnetic fields of return strokes at different distances from the lightning channel. Engi-
neering return stroke models specify either directly or indirectly how the return stroke 
current attenuates and disperses along the return stroke channel. These models can be 
divided into three subtypes, namely, the current propagation, current generation, and 
current dissipation models [7]. Here, we will focus on current propagation type return 
stroke models in which the upward propagation characteristics of the return stroke cur-
rent injected at the channel base are specified. The engineering return stroke models that 
belong to this category are the transmission line model (TL model) and its modifications 
[8–10]. These modifications of the transmission line model are known as the modified 
transmission line models (MTL models). Frequently used MTL models are the Modified 
Transmission Line Model with Exponential Decay (MTLE) [9,11] and the Modified Trans-
mission Line Model with Linear Decay (MTLL) models [10]. There are several other MTL 
models with different attenuation functions and they are described in [12]. Before pro-
ceeding further, let us consider the goals of an engineering return stroke model. 

According to the information available at present, during the return stroke, a current 
pulse is initiated at ground level and it propagates along the leader channel while under-
going attenuation and dispersion. The information necessary to extract how the return 
stroke current varies along the channel is embedded in the resulting electromagnetic 
fields. These models utilize various expressions for the current attenuation and dispersion 
to figure out which of these expressions would provide a best fit to the electromagnetic 
fields generated by lightning. At first glance, this may appear as a curve fitting procedure. 
However, this is the best tool available for the researchers to extract information concern-
ing how the return stroke current disperses and attenuates as it propagates along the chan-
nel. The MTL models are best suited for this purpose because the current attenuation func-
tion and the current dispersion function can be specified directly and independently in 
these models. If the selected features of the model with input parameters constrained by 
the measured return stroke current and the measured return stroke speed provide a best 
fit to the electromagnetic fields measured at several distances (distant, intermediate and 
close), one can accept with confidence the model features as a good representation of the 
way in which the return stroke current disperses and attenuates as it propagates along the 
channel. In this exercise, there is no need to restrict the number of model parameters be-
cause the way in which the current behaves as it propagates upward could be very com-
plicated and this complex change in the current waveform with height cannot be de-
scribed by only a few model parameters. However, it is important to stress that what is 
gained by engineering models is the information concerning how the return stroke current 
attenuates and disperses along the channel and not why the current is changing in that 
manner. Answering the latter is a task for the physicists who are engaged in creating phys-
ics-based return stroke models. However, once the attenuation function and the way in 
which the current dispersion are correctly identified, they will provide a complete de-
scription of the temporal and spatial variation of the return stroke current. Thus, the cre-
ators of engineering models attempt to extract, sometimes making reasonable guesses, the 
information necessary for the physicists to decipher the mechanism of the return stroke. 
Note that creating a theory by guessing is a valid procedure, according to Richard Feyn-
man [13], provided that the predictions of the theory agree with experiment. Let us now 
consider the engineering return stroke models which are pertinent to the current study. 
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In the TL model, the return stroke is simulated by an injected current at the channel 
base that travels up along the return stroke channel with constant speed and without dis-
persion or attenuation. In the MTLE model, it is assumed that the current decays expo-
nentially with height and, in the MTLL model, it is assumed that the current decays line-
arly as a function of height. Both these models assume zero dispersion of the return stroke 
current with height. The current at any given height in these models can be specified by 
the equation 

( , ) ( / ) ( ) /
( , ) 0 /

bi t z i t z v A z t z v
i t z t z v

= − ≥
= <

 (1)

In the above equation, ( )A z  is a parameter that specifies the way in which the re-
turn stroke current amplitude decreases with height z , ( )bi t  is the channel base current 
and v  is the speed of propagation of the return stroke front. Equations (2)–(4) given be-
low specify the function ( )A z  for the TL, MTLE and MTLL models, respectively. 

( ) 1.0A z =  (2)

( ) exp( / )A z z λ= −  (3)

( ) (1 / )A z z H= −  (4)

In the above expressions, λ  is the decay height constant and H  is the height of the 
return stroke channel. 

Observe that the MTL models require as inputs the channel base current and the re-
turn stroke speed in addition to the third input parameter that specifies the way in which 
the current attenuates with height. The first two parameters can be measured in practice, 
but the third parameter has to be assumed. Moreover, another parameter that can be 
measured is the distant radiation fields associated with the return strokes. Once the return 
stroke speed and the current attenuation function are specified, one can derive the channel 
base current from the measured radiation field [14]. However, existing measurement tech-
niques do not allow the direct measurement of the way in which the current attenuates 
along the channel and, for this reason, different functions are used in MTL models to de-
scribe this variation. The goal of this paper is to illustrate how to remove the arbitrary 
assumptions involved in the specification of the attenuation of the current along the return 
stroke channel in these models by extracting this information directly from the measura-
ble parameters. As we will show in the next section, all the information necessary to ex-
tract the current attenuation function is available in the distant radiation field provided 
that the return stroke speed and the channel base current, both of which are measurable 
parameters, are given. One should point out here that several attempts have been previ-
ously made to extract the return stroke current and the attenuation function from the 
measured fields. Delfino et al. [15] and Andreotti et al. [16] developed frequency domain 
numerical techniques to extract both the current and the attenuation function from the 
close electric and magnetic fields of return strokes. Willett et al. [17] and Izadi et al. [18] 
developed time domain techniques to extract the return stroke current and the attenuation 
function. Actually, these time domain techniques do not solve the inverse problem but 
compare the measured electromagnetic fields with the ones obtained using an assumed 
current and/or attenuation function and change these parameters until a good fit is found 
for the measurements. 

2. Extracting the Current Attenuation Function from the Distant Radiation Field 
Let us refer to Figure 1 for the geometry relevant to the calculations. The lightning 

channel is assumed to be straight and vertical and it is located above a perfectly conduct-
ing ground plane. The positive z-axis of the coordinate system is directed perpendicularly 



Atmosphere 2021, 12, 249 4 of 24 
 

 

out of the ground. The electric field at any given distance at ground level has only a com-
ponent directed along the z-axis and, based on the dipole technique, it is given by [19] 

( / ) 2
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0 0 / /

1 2 3sin( ) ( , )
2
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L t D c t

z
t z v R c

E t dz i z d
R

θ τ τ
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θ
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− ∂ −−
∂   with /t D c>  

(5) 

 

 
Figure 1. Geometry relevant to the calculation of the electromagnetic fields from a return stroke. In 
the diagram, ( )L t  is the return stroke front as seen by an observer at P. 

In the previous equation, c  is the speed of light in free space, ( , )i z t  is the current 
at height z  along the return stroke channel and ( )L t  is the length of the return stroke 
channel at time t  as seen by an observer located at the field point. Note the difference 
between H used in Equation (4) and ( )L t  in (5). In Equation (4), H  is the final length 
of the return stroke channel, whereas ( )L t  in Equation (5) is the extending height of the 
return stroke front as seen by the observer located at P at time t. Thus, ( )L t  is a length 
that increases with time. Note that, since L(t) is the length of the channel as seen by the 
observer, it is a nonlinear function of t and not simply the product of the constant speed 
times t. The rest of the parameters are defined in Figure 1. If the distance to the point of 
observation is large, then only the term proportional to 1/R in Equation (5), known as the 
radiation field, is dominant and the expression for the electric field reduces to 

( )zE t =
( / ) 2

2
0 0

1 sin ( , / )
2

L t D c i z t R c dz
tc R

θ
πε

− ∂ −−
∂  (6)

Further, if the distance to the point of observation is much larger than the dimension 
of the source (i.e., D L> > ), then the radiation field reduces to 

( )zE t =
( / )

2
0 0

1 ( , / )
2

L t D c i z t D c dz
tc Dπε

− ∂ −−
∂  (7)

Let us now assume that we have measurements pertinent to the channel base current 
and the return stroke speed. Then, using the MTL model, the current at any height can be 
written as 

( , ) ( / ) ( )b avi t z i t z v A z= −  (8)

z-axis 

Lightning 
Channel 

R 

P 

L(t) 

z 

  dz 
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In the above equation, avv , which is a function of z , is the average speed of the re-
turn stroke from ground level to height z . This is given by 

0

/
( )

z

av
dzv z
v z

=   (9)

with ( )v z  representing the variation of the return stroke speed with height. Substituting 
the expression given in Equation (8) for the current into Equation (7), we obtain 

( )zE t =
( / )

2
0 0

( / / )1 ( )
2

L t D c
b avi t D c z v

A z dz
tc Dπε

− ∂ − −
−

∂  (10)

Let us divide the channel into elements zΔ  in such a way that it is the length trav-
ersed by the return stroke front during each time step tΔ  as observed from the point at 
which the radiation field is measured. Since the distance to the point of observation is 
much larger than the length L , and if the speed of propagation is constant, say v , then 
z v tΔ = Δ . If the speed is changing, then zΔ  varies with time in such a way that the length 

traveled during tΔ  when the return stroke front is at height z is ( )z v z tΔ = Δ . Thus, the 

return stroke field at distanceD can be written as the summation (with 2
01/ 2K c Dπε=− ) 

1 1 2 2
( 1)

( ) ( )( / ) b b
z

n t n t

i t i t
E D c n t K A z K A z

t tΔ − Δ

∂ ∂   + Δ = Δ + Δ   ∂ ∂   
 

 

3 3
( 2 )

( ) ( )........b b
n n

n t t

i t i t
K A z K A z

t t− Δ Δ

∂ ∂   + Δ + Δ   ∂ ∂   
 (11)

This can be written as 

1 1
1

( )( / )
n

b
z n m n m

m m t

i tE D c n t K A z
t − + − +

= Δ

∂ + Δ = Δ ∂ 
  (12)

Note that the first term of this equation is the contribution to the field from the first 
element (bottom element) of the return stroke channel. From this equation, one can extract 
the function A sequentially as follows. Consider the case with n  = 1. Substituting 

1 1z v tΔ = Δ , where 1v  is the speed of propagation of the current along the first element, we 
obtain (note that 1z  = 0) 

1 1
( )( / ) b

z
t

i t
E D c t K A v t

t Δ

∂ + Δ = Δ ∂ 
 (13)

Since the channel base current and the return stroke speed as a function of height are 
known, the only unknown parameter is the value of 1A , which can be extracted from the 
above equation. Now consider the case with n  = 2. In this case 

1 1 2 2
2

( ) ( )( / 2 ) b b
z

t t

i t i t
E D c t K A v t K A v t

t tΔ Δ

∂ ∂   + Δ = Δ + Δ   ∂ ∂   
 (14)

The only unknown in the above equation is 2A  which can be extracted from it. In 
this way, the identity of the function ( )A z  can be extracted sequentially. This procedure 
is illustrated in the next section using the MTLE and MTLL models. 

3. Examples of the Extracted Current Attenuation 
In order to test the validity of the extracted current attenuation function, let us con-

sider the MTLE and MTLL models. The channel base current of both first and subsequent 
return strokes will be represented by Heidler’s functions [20]. 
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The parameters corresponding to the channel base current of subsequent return 
strokes are: 01i  = 13.618 kA, 02i  = 8.268 kA, 11τ  = 0.05 μs, 12τ  = 2.5 μs, 21τ  = 2.0 μs and 

22τ  = 100 μs. First strokes were represented only by the first term of Equation (15) with 

01i  = 30.551 kA, 11τ  = 0,09 μs and 12τ  = 95 μs. Now, we will use the radiation fields of 
subsequent return strokes calculated at 500 km using the MTLE and MTLL models to ex-
tract the attenuation function. In the MTLE model, a value of λ  = 2000 m and, in the 
MTLL model, H = 7500 m are selected as typical parameters [9–11]. The return stroke 
speed is kept constant at 81.5 10×  m/s. The extracted current attenuation functions from 
the radiation fields of the two models using the equations given in the previous section 
are shown in Figure 2 (black dashed lines) together with the actual attenuation function 
used in the calculations (red solid lines). Observe that the extracted curves are nearly iden-
tical to the actual ones. This demonstrates that the attenuation curve can be extracted from 
the measured radiation fields if the channel base current and the return stroke speed are 
given. 

  

Figure 2. Attenuation curve extracted from the calculated radiation field. (a) MTLE model. (b) 
MTLL model. The attenuation curves are extracted from the radiation fields that would be present 
at a 500 km distance over perfectly conducting and flat ground. 

It is important to point out that for an accurate estimation of the attenuation curve, 
one needs to utilize the pure radiation field. In the examples shown in Figure 2 we have 
used the radiation field that would be present at 500 km over flat ground. This large dis-
tance validates the assumption that the electric field is pure radiation. However, as the 
distance to the lightning flash becomes smaller, the contribution to the electric field from 
the static and induction terms increases and this can cause errors in the extracted attenu-
ation function. In order to study this effect, we have extracted the attenuation function 
from electric fields calculated at different distances using the expression given in Equation 
(12). The results obtained for both the MTLL and MTLE models are shown in Figure 3. 
Note that the derived attenuation function deviates from the real one (curve a) as the dis-
tance to the lightning channel becomes shorter. Since the contribution to the electric field 
by the static term increases with time, for a given distance, the error in the attenuation 
function is larger at larger heights than at the smaller heights. 
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Figure 3. Attenuation functions derived from the electric field at different distances. (i) MTLE 
model, first strokes; (ii) MTLL model, first strokes; (iii) MTLE model, subsequent strokes; (iv) 
MTLL model, subsequent strokes. (a) Pure radiation, (b) 500 km, (c) 200 km, (d) 100 km, (e) 50 km, 
(f) 25 km. 

4. Current Attenuation Function Extracted from Typical Radiation and Current Wave-
forms of Subsequent Return Strokes 

We used the following procedure to construct an example of a typical radiation field 
pertinent to subsequent return strokes in the tropics and to obtain the corresponding at-
tenuation function. First, a set of reference points outlining the general shape of the radi-
ation field with a peak amplitude of about 3.5 V/m (the peak value pertinent to the TL 
model for a 12 kA peak current and return stroke speed equal to 1.5 × 108 m/s) is con-
structed. The reference points were based on the field measurements carried out in Sri 
Lanka and Malaysia [21,22] (data from Malaysia were provided to the authors by Dr. Rid-
ual Ahmed). The initial rising part of the constructed radiation field is matched to the 
initial rising part of the radiation field (up to the initial peak) calculated using the trans-
mission line model using the average subsequent return stroke current given by Equation 
(15) and a uniform speed of 1.5 × 108 m/s. This condition is based on the assumption that 
the return stroke can be represented by a current pulse that moves upwards with constant 
speed. Since the current attenuation and change in speed can be neglected for very small 
times (or in channel elements close to the ground), the above is a reasonable and also a 
necessary assumption to be made. In the next step, the current attenuation function perti-
nent to the constructed radiation field is obtained. The resulting current attenuation func-
tion is represented by a polynomial (using a standard plotting routine) and the coefficients 
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of the polynomial are changed until a best fit (based on a least square optimization proce-
dure) to the reference points of the radiation field is obtained. It is important to point out 
that in order to obtain a smooth attenuation function, in the trial-and-error procedure we 
have used, the reference points we started with had to be changed somewhat to obtain a 
good fit. However, during this procedure, the main features of the radiation field, such as 
the risetime and zero-crossing time, were not changed. The radiation field and the atten-
uation function that resulted from this exercise are shown in Figure 4. The risetime of the 
radiation field is located at around 0.5–0.6 μs and the peak value normalized to 100 km is 
around 3.5 V/m. The mean zero-crossing time of the radiation field is 47 μs, which is a 
good fit for the measurements conducted in Sri Lanka. The amplitude of the radiation 
field decays to about 40% of its peak value in about 15 μs and the amplitude of the oppo-
site overshoot is about 0.13 of the initial peak value. Both these features agree with the 
ones in the measured waveforms. 

It is important to point out that in the experimental data pertinent to return stroke 
radiation fields, there is a shoulder or a small peak (subsidiary peak) in the decaying part 
of the waveform [23,24]. For reasons to be described later, this feature is not included 
when constructing the radiation field. 

  
(a) (b) 

Figure 4. (a) Radiation field assumed to represent the subsequent return stroke radiation fields in 
the tropics. (b) Current attenuation function pertinent to the radiation field shown in Figure 4a. 

Observe that the derived attenuation function depend on the radiation field used as 
an input, and it will change from one return stroke radiation field to another. The attenu-
ation function derived here can be used to evaluate the fields of subsequent return strokes 
at different distances in tropical regions. The main change that takes place in return 
strokes when one moves from one geographical region to another is the change in the 
length of the channel. Note that the height at which the derived attenuation function goes 
to zero is close to 10 km. However, the height to the charge centers, and hence the return 
stroke channel length, could be smaller in temperate regions. Later, we will show how the 
derived attenuation function can be modified to take into account the different channel 
lengths. 

In the next section, we will use the derived attenuation function in the MTL type 
model to calculate the electromagnetic fields at different distances. For the reasons given 
above, note that the fields to be presented present the typical features pertinent to the 
subsequent return strokes in the tropics. 

5. MTLD Model—Subsequent Return Strokes 
In this section, we will use the attenuation function derived in the previous section 

in an MTL-type model to calculate the electromagnetic fields generated by subsequent 
return strokes. Since the model differs from the other MTL models in that the attenuation 
function is derived from the radiation field, we will call this model Modified Transmission 
Line Model with Derived Attenuation Function (MTLD). 
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The electric and magnetic fields obtained from the MTLD model are compared with 
the ones obtained from the other two commonly used MTL models (i.e., MTLE and MTLL) 
in Figures 5 and 6, respectively. In this calculation, the channel base current pertinent to 
subsequent return strokes and a uniform return stroke speed equal to 81.5 10×  m/s were 
used in all the models. In the MTLE model, λ  = 2000 m and, in the MTLL model, H = 
10000 m.  

  

  

  

Figure 5. Electric fields of subsequent return strokes at different distances as predicted by the 
MTLD, MTLE and MTLL models. (a) 50 m, (b) 1 km, (c) 2 km, (d) 5 km, (e) 10 km and (f) 100 km. 
In the MTLE model, λ  = 2 km and, in the MTLL model, H  = 10 km are used as model parame-
ters. The return stroke speed is assumed to be constant and equal to 1.5 × 108 m/s. 

0 20 40 60 80 100
Time, s

-1,0x100

0,0x100

1,0x100

2,0x100

3,0x100

4,0x100

MTLD
MTLE
MTLL

(f)



Atmosphere 2021, 12, 249 10 of 24 
 

 

  

  

  

Figure 6. Magnetic fields of subsequent return strokes at different distances as predicted by the 
MTLD, MTLE and MTLL models. (a) 50 m, (b) 1 km, (c) 2 km, (d) 5 km, (e) 10 km and (f) 100 km. 
In the MTLE model, λ  = 2.0 km and, in the MTLL model, H  = 10 km are used as model param-
eters. The return stroke speed is assumed to be constant and equal to 1.5 × 108 m/s. 

Note that there are similarities and differences in the close and distant electromag-
netic fields calculated using these different models. Observe that experimental data on the 
features of electromagnetic fields from lightning within 100 m are available for the subse-
quent return strokes in triggered lightning flashes. This information shows that the close 
field saturates within a few tens of microseconds from the beginning of the return stroke. 
The close field of the subsequent return stroke obtained using the MTLD is in agreement 
with this observation. Observe also that none of the models could generate a significant 
hump in the close (i.e., 1 km to 10 km) magnetic fields which is a significant feature in the 
measured fields [24]. However, the magnetic fields of the MTLD and MTLL model display 
a slight hump in the magnetic field in the distant range of 5 km to 10 km. 

The results presented above are based on the attenuation functions derived from a 
typical radiation field constructed with temporal features and zero-crossing times perti-
nent to tropical regions. The derived attenuation function can be used in engineering stud-
ies which require electromagnetic fields at different distances in those latitudes. The way 
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to modify the current attenuation function to obtain electric fields pertinent to other geo-
graphical regions where channel lengths and hence zero-crossing times of radiation fields 
are lower is provided in Section 8. 

6. MTL Models and the Subsidiary Peak in the Radiation Fields of Subsequent Re-
turn Strokes 

As mentioned earlier, a subsidiary peak in the radiation fields and the hump in the 
close magnetic fields are characteristic features of subsequent return stroke radiation 
fields [23,24]. However, our calculations show that a subsequent return stroke radiation 
field with a subsidiary peak in combination with the standard subsequent return stroke 
current waveform of Equation (15) will give rise to an attenuation function which is phys-
ically unreasonable. We will come back to this point again later. In order to get a physi-
cally reasonable attenuation function from a radiation field with a subsidiary peak, one 
has to utilize a channel base current waveform that also has a subsidiary peak. However, 
according to the experimental data available, the measured subsequent return stroke cur-
rents only display subsidiary peaks occasionally [25,26]. The reason for this puzzling 
problem and a possible solution are described below. 

In general, the amplitude and the shape of the radiation field are determined by the 
amplitude and wave shape of the channel base current, how this current attenuates and 
disperses as it propagates along the channel, the spatial variation of the return stroke 
speed and current enhancements that may occur in the channel caused by the branch com-
ponents [23,27]. Subsequent return strokes are typically free of branches. Thus, any en-
hancement of the radiation field (i.e., subsidiary peak) is caused either by a temporal in-
crease in the return stroke speed or a change in the return stroke current along the channel. 
Some works have suggested a possible increase in the return stroke speed along the chan-
nel at the initiation of the return stroke [28–30]. Although our analysis shows that such an 
increase could generate an initial peak immediately after the return stroke, it cannot gen-
erate a broader subsidiary peak around 10–20 μs as in the measured radiation fields unless 
the return stroke speed starts to increase after the return stroke front has traveled a dis-
tance of around 1 km or so. However, we cannot find any physical reason for such a tran-
sient increase in the return stroke speed after the return stroke front has already traversed 
several hundreds of meters or so of the channel, especially when, as mentioned, the return 
stroke channel is free of branches. More experimental data are needed before a conclusion 
can be made on the role of return stroke speed, if any, on the occurrence of subsidiary 
peaks in the return stroke radiation fields. Here, we assume that the subsidiary peak of 
the subsequent radiation field is caused by the variation of return stroke current shape 
along the channel. As we will show later, the enhancement in the electric field cannot be 
caused by a change in the current attenuation because such a change will lead to physi-
cally unacceptable charge deposition along the return stroke channel. Thus, we are left 
with the current dispersion as the possible reason for the subsidiary peak in the radiation 
field. 

Cooray and Orville [31] studied the effect of various return stroke parameters on the 
return stroke radiation fields. They observed that the current dispersion along the channel 
could give rise to a radiation field with a subsidiary peak. By current dispersion, we mean 
the variation of the time domain current waveshape caused by the different speeds of 
propagation and attenuation of various frequency components as they propagate along 
the lightning channel. However, in order to produce a subsidiary peak, the dispersion of 
the current should be such that the current risetime increases initially with height but, as 
the height increases further, the risetime should reach a more or less threshold value. A 
return stroke where the current risetime increases monotonically could not generate a 
subsidiary peak. Based on this observation, we have incorporated a dispersion function 
that generates the abovementioned features in the MTLD model. The dispersion function 
is defined with respect to the propagation of a Dirac delta function along the channel. In 
the absence of any information concerning the way in which the current is dispersed along 
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the return stroke channel, we have utilized an exponential function to represent the dis-
persion. The exponential function is somewhat similar to the dispersion of an electromag-
netic field represented by a Dirac delta function over a finitely conducting ground [32]. 
According to the dispersion formula introduced into the model, a delta function at ground 
level will be distorted as it propagates along the channel according to the formula 

/ ( )

( , )
( )

rt t z

r

eR t z
t zδ

−

=  (16)

Observe that the time integral of ( , )R t zδ  is equal to unity, a criterion that is neces-
sary to make sure that there is no charge deposition along the channel due to current dis-
persion. The parameter ( )rt z  is given by 

2 2/
0( ) (1 )rz

r rt z t e λ−= −  (17)

This dispersion formula also shows that a step current pulse at ground level will 
change with height according to the expression 

/ ( )( , ) 1 rt t z
HR t z e−= −  (18)

Observe that the risetime of the step current pulse increases initially but it will be 
clamped to a fixed value as the height increases beyond about rλ . As we will show later, 
this clamping of the risetime is a necessary feature in the current dispersion in order to 
generate a subsidiary peak. Such a scenario is also physically reasonable for the following 
reason. As the current propagates upward, the removal of the high frequencies from the 
current waveform increases its risetime. This is because the propagation of a pulse in a 
lossy medium results mainly in an attenuation of its high-frequency components. As the 
risetime increases, it becomes less and less sensitive to further removal of high frequencies 
and the risetime of the current waveform reaches more or less a steady value. The actual 
dispersed current at any level can be obtained by convoluting the channel base current 
with the delta response function given by Equation (16). Alternatively, it can also be ob-
tained from the step response given in Equation (18) using Duhammel’s theorem. 

Figure 7 shows several examples of the radiation field calculated at 100 km for dif-
ferent values of 0rt  and rλ . Observe that radiation fields similar to the typical examples 
given by Weidman and Krider [23] are obtained for 0rt  in the range of 2–5 μs and rλ  
(the parameter that defines the risetime of the current in Equation (17)) in the range of 
500–1000 m. Observe also that a monotonically increasing risetime in the dispersion for-
mula could not generate a subsidiary peak. It is important to point out that we have se-
lected the parameter 2 2/ rz λ  in the exponential of Equation (18) instead of / rz λ , which 
will also give rise to a clamping of the risetime with height. However, our calculations 
show that the latter would give rise to a rather significant reduction in the initial peak of 
the radiation field due to the rapid increase in the risetime of the current close to the bot-
tom of the channel. This makes the relationship between the initial part of the channel 
base current and the radiation field differ somewhat from the transmission line model. 
However, the validity of the transmission line model for the initial part of the radiation 
field is an assumption that we have made in the construction of the MTLD model. 
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Figure 7. Radiation field at 100 km for different forms of the dispersion function. (1) 

( )2/5006( ) 2.5 10 [1 ]z
rt z e−−= × − , (2) ( )2/10006( ) 5.0 10 [1 ]z

rt z e−−= × − , (3) 6( ) 5.0 10 /1000.0rt z z−= × . In 
these equations, z is the height along the return stroke channel. 

The electromagnetic fields calculated at different distances incorporating the current 
dispersion into the MTLD model are shown in Figures 8 and 9. In this calculation, we have 
selected 0rt  = 2.5 μs and rλ  = 500 m. Observe that the calculated fields display all the 
features of the measured subsequent return stroke fields. For example, the electric field at 
50 m saturates within a few microseconds, the tail of the electric field around 1 to 5 km 
shows a ramp-like increase and the corresponding magnetic fields display a prominent 
hump. Moreover, the radiation fields cross the zero line and display the characteristic sub-
sidiary peak. These features show that even though the introduction of current dispersion 
makes the model slightly more complex, it compensates for this by generating electro-
magnetic fields with features in good agreement with experimental observations. Further-
more, the current dispersion is a feature that is always present in actual return strokes, as 
demonstrated by Jordan and Uman [33] and Mack and Rust [34] using optical radiation, 
and incorporating this into the return stroke current is a necessity in modeling the return 
strokes. It is important to point out that inferences concerning both the return stroke speed 
and the current attenuation are based on the properties of the optical radiation produced 
by the lightning return stroke. This in turn assumes that at any given height, the return 
stroke current waveform faithfully follows the waveform of the optical radiation gener-
ated at that height at least during the first few microseconds from the onset of the optical 
radiation. Some evidence that this could be the case is provided from both laboratory and 
field experiments [35,36]. 
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Figure 8. Electric field of subsequent return strokes at different distances as predicted by the 
MTLD model that incorporates current dispersion. (a) 50 m, (b) 1 km, (c) 2 km, (d) 5 km, (e) 10 km 
and (f) 100 km. The return stroke speed is assumed to be constant and equal to 1.5 × 108 m/s. 

  

 
 

El
ec

tri
c 

fie
ld

, V
/m

El
ec

tri
c 

fie
ld

, V
/m



Atmosphere 2021, 12, 249 15 of 24 
 

 

  

Figure 9. Magnetic field of subsequent return strokes at different distances as predicted by the 
MTLD model that incorporates current dispersion. (a) 50 m, (b) 1 km, (c) 2 km, (d) 5 km, (e) 10 km 
and (f) 100 km. The return stroke speed is assumed to be constant and equal to 1.5 × 108 m/s. 

At the beginning of this section, we mentioned that a radiation field exhibiting a sub-
sidiary peak is not compatible with a pure MTL-type model. Let us now expand on this 
statement. First, observe that in calculating the radiation field shown by curve 1 in Figure 7, 
we used the current attenuation function shown in Figure 4b while incorporating current 
dispersion into the model. Let us now use this radiation field to extract the apparent at-
tenuation function using Equation (12) but without taking into account the presence of 
dispersion. The resulting attenuation function is shown in Figure 10. Observe that this 
attenuation function contains a subsidiary peak. According to this attenuation function, 
there will be a gradual enhancement of the return stroke current at higher levels along the 
return stroke channel. However, since the return stroke current is transporting positive 
charge upwards, such a current enhancement can only be possible if the corona sheath 
supplies a positive charge to the core of the return stroke. This in turn requires the depo-
sition of negative charge along the channel where the current enhancement is taking place. 
We believe that this scenario is physically unreasonable. The second point is that had we 
used the current attenuation curve shown in Figure 10 in an MTL-type model without 
dispersion, the resulting electromagnetic fields at different distances would not have dis-
played the characteristic features pertinent to the measured fields. For these reasons, we 
conclude that for uniform or monotonically decreasing return stroke speeds, subsequent 
return stroke radiation fields with subsidiary peaks are not compatible with MTL-type 
models that do not incorporate current dispersion. Of course, one can make them compat-
ible with MTL models without current dispersion by selecting a channel base current 
waveform with a subsidiary peak, but, as mentioned earlier, in general, the measured 
channel base currents in general do not display such subsidiary peaks. 

 
Figure 10. Attenuation function derived from the radiation field depicted by curve 1 in Figure 7 
using Equation (12), assuming that the channel base current propagates upwards without disper-
sion. 
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Now, the reader might wonder whether the inversion formula we have derived ear-
lier, i.e., Equation (12), is compatible with the MTLD model which incorporates current 
dispersion. Actually, one can use this equation to extract the current attenuation curve in 
the presence of dispersion. The only change needed is to replace the derivative of the cur-
rent at any height in Equation (12) by the derivative of the dispersed current at that height. 
The current waveform at any height with dispersion can be easily obtained from the con-
volution integral as we have explained earlier. 

7. MTLD Model—First Return Strokes 
The current attenuation function extracted for the subsequent return strokes is also 

used to evaluate the electromagnetic fields of first return strokes. We believe that this at-
tenuation function is also valid for first return strokes if one neglects the effects of 
branches. In this exercise, the channel base current was replaced by the one corresponding 
to the first return strokes and the uniform return stroke speed was reduced from 1.5 × 108 
m/s to 1.0 × 108 m/s. Our calculations show that the zero-crossing time of the resulting 
radiation field is about 60–70 μs, whereas the measured zero-crossing time of the radiation 
fields in the tropics is about 94 μs. We believe that the reason for this discrepancy in the 
zero-crossing time is the assumed uniformity of the return stroke speed. As discussed 
earlier, in general, the return stroke speed decreases with height and this decrease is more 
significant in the case of first return strokes. For example, according to Schonland [27], the 
first return stroke speed close to the channel base is typically near 108 m/s and the speed 
at the top of the channel is typically around 0.5 × 108 m/s. For this reason, we have incor-
porated a return stroke speed profile that decreases exponentially with height (denoted 
by the decay height constant vλ ) into our calculation. Observe that a decreasing return 
stroke speed with height will give rise to a longer zero-crossing time compared to the 
value pertinent to a uniform speed. Since we are applying the model to reproduce fields 
in tropical regions, we changed the value of vλ  until the zero-crossing time of the radia-
tion field reached around 90 μs. 

The electric and magnetic fields calculated at different distances for first return 
strokes using the attenuation function and the exponentially decreasing velocity profile 
are shown in Figures 11 and 12, respectively. Since the current dispersion is a feature that 
is present both in subsequent and first return strokes [33,34], we have included the same 
dispersion function used for subsequent return strokes in the calculations. For comparison 
purposes, the waveforms predicted by the MTLE and MTLL models for the first return 
stroke are also given in the same diagrams. 

Note that the calculated fields are similar to the typical first return stroke fields re-
ported by Lin et al. [24]. The electric fields around 1 km to 10 km display a ramp-like 
increase and the distant radiation field crosses the zero line. The close magnetic fields 
display the characteristic hump. As in the case of subsequent return strokes, the electric 
field in the vicinity of the channel almost saturates within a few tens of microseconds. 
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Figure 11. Electric field of first return strokes at different distances as predicted by the MTLD 
(with dispersion and decreasing velocity profile with vλ  = 10 km), MTLE and MTLL models. (a) 
50 m, (b) 1 km, (c) 2 km, (d) 5 km, (e) 10 km and (f) 100 km. In the MTLE model, λ  = 2.0 km and, 
in the MTLL model, H  = 10 km are used as model parameters. In the MTLE and MTLL models, 
the return stroke speed remains constant at 1.0 × 108 m/s. 
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Figure 12. Magnetic field of first return strokes at different distances as predicted by the MTLD 
(with dispersion and decreasing velocity profile with vλ  = 10 km), MTLE and MTLL models. (a) 
50 m, (b) 1 km, (c) 2 km, (d) 5 km, (e) 10 km and (f) 100 km. In the MTLE model, λ  = 2.0 km and, 
in the MTLL model, H  = 10 km are used as model parameters. In the MTLE and MTLL models, 
the return stroke speed remains constant at 1.0 × 108 m/s. 

8. Input Parameters of the MTLD Model 
As mentioned earlier, the derived attenuation function depends on the shape and the 

zero-crossing time of the radiation field. In particular, the height at which the current at-
tenuation function goes to zero depends mainly on the zero-crossing time of the radiation 
field. As we have seen earlier, the derived attenuation function, which is based on radia-
tion fields from the tropics, goes to zero at channel heights around 10 km. 

The derived attenuation function can be approximated as a function of height z along 
the channel by the following polynomial expressions (polynomial fits to the derived at-
tenuation function were obtained using a standard plotting program): 

9
1

1

n
n

n
A A z −

=

=    10000z ≤  (19)

The coefficients of the polynomials are the following: A1 = 1.00014, A2 = −6.447 × 10−5, 
A3 = −1.1292 × 10−7, A4 = 8.6666 × 10−11, A5 = −3.3247 × 10−14, A6 = 7.1764 × 10−18, A7 = −8.7659 × 
10−22, A8 = 5.6148 × 10−26, A9 = −1.4580 × 10−30. 

Our analysis shows that this attenuation function can also be represented by the fol-
lowing equation. 
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Assuming that the spatial variation of the charge distributions at the channel end 
does not change significantly when the channel height is changed, the above equation can 
be generalized to any channel height, H , by the following equation 
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In the above expression, a = 0.05, 1λ  = 1km, 2λ  = 500 m, 3λ  = 3.2km, s  = 0.58H  
and H  is the height of the channel. This represents the attenuation function 
corresponding to the MTLD model. It is pleasing to see that, except for the differences at 
the upper end of the channel, the attenuation function has features similar to those of the 
the MTLE and MTLL model. For example, it will reduce to the MTLE model when a = 1 
and to the MTLL model when a = 0 and 2λ  = 0. As the parameters of Equations (22) and 
(23) vary, the model will give rise to a variety of shapes for the electromagnetic fields and 
we expect that the above expressions would be able to match the attenuation function 
corresponding to a variety of electromagnetic fields. Recall again that the attenuation 
function will change as the waveshape of the radiation field is modified. 

In the MTL type models, the charge deposited along the leader channel by the return 
stroke depends on the attenuation function. The charge deposited along the leader channel 
for the attenuation function given by Equations (20) and (21) is depicted in Figure 13 
together with the charge distributions pertinent to the MTLL and MTLE models. Observe 
the differences in the charge distributions predicted by the three models. It is of interest 
to point out that the shape of the distribution of the charge deposited along the channel 
by the return stroke can be directly connected to the various parameters of Equations (22) 
and (23). The value of 2λ  decides the risetime of the charge distribution and the value of 
the initial peak of the charge distribution is controlled by 1λ . As 2λ  increases, the peak 
of the charge distribution is pushed upwards and this will control how fast the close 
electric field saturates (Figure 11a). It also controls how fast the steady value of the charge 
is reached. The steady value of the charge distribution is controlled by H . As H  
increases, the steady value decreases. The peak at the tail of the charge distribution and 
how the charge will go to zero at the channel end is decided by 3λ . Together with H , it 
controls the zero-crossing time of the distant field (Figures 11f and 12f) for a given return 
stroke speed. 

 
Figure 13. Charge deposited by the return stroke along the leader channel by the MTLD, MTLE 
and MTLL models. In the MTLE model, 2λ =  km and, in the MTLL model, H  = 10 km. 

These expressions for the attenuation functions, together with the current dispersion 
defined by Equations (17) and (18) with 0t  = 2.5 μs and rλ  = 500 m, represent the model 
parameters necessary to define the attenuation and dispersion of the return stroke current 
and the resulting electromagnetic fields from first and subsequent strokes in different ge-
ographical regions. Typical fields are obtained when the speed of the subsequent return 
stroke is kept around 1.5 × 108 m/s and when the corresponding speed of first return 
strokes is defined by /

0
vzv v e λ−=  with 0v  = 108 m/s and vλ  = 10 km. Unfortunately, the 
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introduction of current dispersion into the MTLD model will increase the complexity of 
the model, which could be a drawback if the goal is to obtain the electromagnetic fields at 
different distances for engineering studies. We have investigated whether there is a way 
to obtain fields similar to those of the MTLD model that include current dispersion, 
namely, featuring a subsidiary peak, with a simple MTL-type model where the input pa-
rameters are the channel base current, return stroke speed and the current attenuation. 
This could be realized if we change the channel base current waveforms slightly to include 
a subsidiary peak in them. For example, the first and subsequent return stroke current 
waveforms shown in Figure 14 together with the current attenuation functions given pre-
viously will be able to generate electromagnetic fields similar to those obtained experi-
mentally, even without the current dispersion. These current waveforms can be described 
analytically by the expression given by Equation (15) with the following parameters: 01i  
= 14.255 kA, 02i  = 9.36 kA, 11τ  = 0.055 μs, 12τ  = 1.92 μs, 21τ  = 3.6 μs and 22τ  = 100 μs for 
subsequent return strokes and 01i  = 34.085 kA, 02i  = 34.8 kA, 11τ  = 0.1 μs, 12τ  = 5.0 μs, 

21τ  = 5.0 μs and 22τ  = 90 μs for first return strokes. 

  
(a) (b) 

Figure 14. Alternative current waveforms (curves marked (i)) (a) for first return strokes and (b) for 
subsequent return strokes that could be used with the MTLD model without current dispersion to 
generate electromagnetic fields similar to those observed in practice. The curves marked (ii) are 
the standard current waveforms used in the calculations. 

Observe that both the first and the subsequent return stroke currents contain a sub-
sidiary peak. As mentioned earlier, subsidiary peaks such as the one shown in Figure 14b 
are occasionally observed in triggered lightning but whether this is a more frequent fea-
ture in the natural subsequent return stroke currents is a question that needs further in-
vestigation [25,26]. On the other hand, return stroke currents observed in tower measure-
ments show a subsidiary peak similar to the first return stroke current shown in Figure 14a 
(see [37,38] for first strokes in downward negative flashes and [39] for subsequent strokes 
in upward negative flashes). The reason why some of the current waveforms display a 
subsidiary peak while others do not have this feature is not known at present. As we have 
pointed out earlier, for a given radiation field, the features of the derived attenuation func-
tion depend on the temporal variation of the channel base current. This calls for further 
investigations on the connection between the features of the channel base current, attenu-
ation function and the distant radiation fields. More experimental data on the channel 
base currents and distant radiation fields of return strokes could help us in answering 
some of these questions. 

9. Discussion 
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The main goal of this paper is to illustrate how the current attenuation function per-
tinent to MTL-type models could be extracted from the radiation field given the channel 
base current and the return stroke speed. The extracted current attenuation function de-
pends on the spatial variation of the return stroke speed and the temporal features of the 
radiation field and the channel base current. Even though we have presented a typical set 
of parameters for the MTLD model that could be used in engineering applications, it is 
important to point out that MTLD model is a dynamic model with model parameters 
changing with the features of the radiation field and the channel base current. The model 
could easily be tested if the channel base current and the electric fields at two distances, 
one close to the strike point and the other at a distance where the radiation field domi-
nates, are measured. Even in the case where the channel base current is not known, the 
model could still be validated by using the two field measurements in combination with 
a typical channel base current and return stroke speed. The procedure should work with-
out difficulties in the case of subsequent return strokes where the return stroke channel is 
free from branches. In this case, the changes in the radiation field are either caused by the 
changes in the return stroke speed, current attenuation or current dispersion, the features 
of which are already included in the model. However, in the case of first return strokes, 
the changes in the return stroke current caused by channel branches could modify the 
radiation field and these modifications could not be accommodated within the MTLD 
model, which assumes the return stroke channel to be straight and free from branches. 
Thus, in the case of first return stroke fields, one has to utilize waveshapes that represent 
the average temporal behavior of the radiation field that averages out the peaks and dips 
in the radiation field. 

The risetime of the first and subsequent return stroke current waveforms used in the 
current study are smaller than the risetime of the current waveforms used in reference 
[19] where Equation (16) for the standard current waveforms is defined. The reason for 
this difference is the following. The experimental data show that the time of the radiation 
field range normalized to 100 km is about 30–50 V/m/μs for both first and subsequent 
return strokes [40,41]. The standard current waveforms, as defined in [20], generate radi-
ation field derivatives that are significantly lower than these experimentally observed val-
ues. The changes in the risetime of the current waveforms were made to generate electric 
field derivatives that are within the ballpark of the experimental observations. Of course, 
we are aware that the risetimes of the measured current waveforms, especially the ones 
pertinent to first return strokes, are longer than the ones associated with the current wave-
forms used in this study. However, it is possible that, due to the physical scenario associ-
ated with the lightning attachment process, the channel base current does not show the 
true risetime of the return stroke current waveform that led to the high electric field de-
rivatives. For example, the risetime of the current waveform at the point of initiation of 
the return stroke where the upward connecting leader is met with the downward stepped 
leader could be much smaller than the current waveform at the channel base, which is 
somewhat distorted by the presence of the connecting leader [42]. Since the MTLD model 
is based on the features of the radiation field, it is important at this stage to have these 
features be as accurate as possible even though this may require a slight modification of 
the current waveform that is frequently used as a standard in the calculation of electro-
magnetic fields. However, more experimental studies are required to understand how the 
fast derivatives and the subsidiary peaks in the radiation fields are generated and what is 
the contribution of the channel base current to these features. As our understanding of the 
initial stages of the return stroke grows with such studies, we will be able to redefine the 
parameters of the engineering models. 

In this paper, we have used the simplest form of current propagation type models, 
namely, the modified transmission line model (MTL model), to extract the current atten-
uation function given the distant radiation field. In the MTL-type models, the attenuation 
function at any height is time independent since the currents are only scaled by a constant 
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factor when the return stroke propagates from one height to another. Because of this fea-
ture, the total deposited charge at any height depends only on the height and not time [43] 
and the time dependence of the charge deposition (i.e., corona current) does not depend 
on the height. Moreover, the charge deposition at any given height takes place over the 
whole duration of the return stroke current. That is, the duration of the corona current 
neutralizing the leader corona sheath is equal to the duration of the return stroke current. 
However, the duration of the corona current could be shorter than the duration of the 
return stroke current. If this is the case, it will lead to a current attenuation function that 
depends on time. That is, at any given height, the current is attenuated by different 
amounts at different times. One way to incorporate this feature into the MTL-type models 
is to allow the current dispersion process to deposit charge along the return stroke channel 
and describe the current attenuation purely based on a current dispersion process. This 
point is under investigation at present. On the other hand, a time-dependent current at-
tenuation is a feature that is present in the current generation-type return stroke models. 
Indeed, the inverse procedure that we have described in this paper can be done with the 
simplest form of current generation-type model, where the third input parameter is the 
variation of the corona current with height [7]. This point too is under investigation at 
present. 

10. Conclusions 
In this paper, we have shown that within the assumption of MTL-type models, i.e., 

models in which the return stroke current pulse injected at the channel base propagates 
up along the channel with attenuation but without distortion, one can extract the current 
attenuation function from the measured radiation fields. In this inverse process, it is as-
sumed that both the channel base current and the return stroke velocity are measured and 
could be used as inputs. It was shown using the MTLE and MTLL models that the inverse 
procedure works correctly once the above inputs are available. Using the radiation fields 
with features similar to those of subsequent return strokes, the current attenuation func-
tion pertinent to return strokes was estimated. The extracted attenuation function in turn 
was used in an MTL-type model, named the MTLD model, to calculate the electromag-
netic fields at different distances. The results were compared with calculations based on 
the MTLL and MTLE models. It was shown that in order to generate electromagnetic fields 
similar to those observed experimentally, it is necessary to include current dispersion and, 
in the case of first return strokes, a reduction of return stroke speed with height. The fea-
tures of the electromagnetic fields thus obtained using the MTLD model are in general 
agreement with measurements at all distances. 
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