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Abstract—In this paper, a novel approach is proposed for 
genetically engineering bacteriophages. It is formed of two main 
modules: a predictor and a genome sequence generator. 
Convolutional Neural Networks are used to build the predictor 
while the generator is constructed based on Deep Generative 
Models. This paper concentrates in the architecture and the 
results for the predictor module. The evaluation results suggest 
that the proposed model has the potential to be further used to 
guide genetic edition of phages so as to improve phage therapy 
against bacterial infections. 

Keywords—Phage Therapy, Deep Learning, Convolutional 
Neural Networks (CNN), Deep Generative Models (DGM) 

I. INTRODUCTION

Antimicrobial resistance can lead to difficulties or even the 
impossibility to treat some infections. This serious situation 
among other things has motivated a renewed interest in Phage 
Therapy (PT). In PT, bacteriophages (viruses) are used to 
attack infection-causing bacteria as an alternative or 
complementary approach to antibiotics for treating bacterial 
infections. 

Basically, as PT uses natural phages against bacterial 
infections, it may exhibit limitations such as narrow host range 
or inability of a single phage to treat infections caused by 
several bacteria [1-2]. The available phages are not always 
sufficient to find a treatment, especially in the absence of 
adequate lytic phages. One forward-thinking modernization of 
PT is to use genetically engineered phages which could 
provide substantial advantages in terms of host range, immune 
system recognition, and environmental stability [3]. To 
achieve this goal, we propose PERPHECT (Deep Generative 
Models for Phage Genetic Edition), a novel approach for 
genetically engineering bacteriophages so as to improve their 
therapeutical value. This approach relies on two machine-

learning-driven phases: A) predicting interactions between 
bacteria and phages and B) generating novel phage genome 
sequences. This paper concentrates on phase A, presenting a 
novel model to predict interactions between bacteria and 
phages. 

II. MODEL ARCHITECTURE

The proposed PERPHECT architecture is formed of two 
fundamental components: The Phage-Bacterium Interaction 
Predictor and the Phage Genome Sequence Generator as 
illustrated by Figure 1. 

A. Phage-Bacterium Interaction Predictor
The close evolutionary relationship between phages and

bacteria hosts entails that their genetic information can be used 
to predict their interaction. This fundamental component is 
used to predict the potential interaction between a bacterium 
and a bacteriophage based solely on their genome sequences. 
To address this classification problem, a Deep Learning (DL) 
model composed of a stack of 1-D Convolutional Neural 
Networks (1-D CNN) is used to build a predictor, as shown in 
Figure 2.  

The proposed predictor architecture has a non-linear 
network topology. The two inputs (bacteria genome sequences 
and phages genome sequences) are processed separately by 
two parallel convolutional branches whose outputs are then 
merged together and passed through two subsequential dense 
layers. A dropout layer is also used to reduce overfitting and 
to improve the generalization of the proposed deep neural 
network. This multi-input and non-sequential architecture is 
implemented using Keras functional API [4].  The sigmoid is 
used as the last-layer activation and binary cross-entropy is 
used as the loss function when optimizing this binary 
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classifier. In the next section, we evaluate the performance of 
the proposed predictor. 

B. Phage Genome Sequence Generator 
This component generates phage genome sequences that 

maximize the interaction with a target bacterium while 
minimizing potentially perturbing length-associated effects 
such as noise and repeats. It is built based on Deep Generative 
Models, able to generate new samples (phage genome 
sequences in this case) from the learning domain [4]. 

III. DATA SETS & DATA PREPARATION 
Two different data sets are used to train, validate and 

evaluate the predictor model: A public data set and a private 
data set. The public data set was created from public databases 
such as PhageDB [5] and GenBank [6] and it is described in 
[7]. After data preparation, i.e., removing missing values and 
dealing with duplicated values, the public data set is composed 
of 94 bacteria and 3121 phages for a total of 4202 reported 
phage-bacterium interactions, while the private data set 
includes 133 bacteria, 87 phages, and 3518 interactions. 

Then, based on results from Exploratory Data Analysis in 
terms of distribution of sequence lengths for both bacteria and 
phages available in our data sets, fixed sequence lengths are 
defined and set to 7M bases for bacteria and 200K bases for 
phages. Some few longer genome sequences are cut from the 
end while shorter sequences are padded with zeros at the end 
of genome sequence (zero padding). The fixed-length 
sequences are then transformed to binary representation based 
on nucleic acid notations, as shown in Table I. 

TABLE I.  BINARY REPRESENTATION OF NUCLEOTIDES 

symbol Binary Representation 
A 1 0 0 0 
C 0 1 0 0 
G 0 0 1 0 
T 0 0 0 1 
W 1 0 0 1 
S 0 1 1 0 
M 1 1 0 0 
K 0 0 1 1 
R 1 0 1 0 
Y 0 1 0 1 
B 0 1 1 1 
D 1 0 1 1 
N 1 1 1 1 

 

Next, these two data sets are mixed and divided into a train 
set (70%) used for building models, a validation set (15%) 
used to tune algorithm’s hyper-parameters, and a test set 

(15%) unused during training and used for final evaluation as 
described in the following section. 

IV. EVALUATION RESULTS 
This section presents evaluation results for the predictor 

model only. To evaluate the performance of the proposed 
classifier accuracy, recall, precision, specificity and f1-score 
are used as evaluation metrics.  

Figure 3 shows the confusion matrix of the classification 
results obtained by the predictor on the test set. It can be 

noticed that most cases are correctly classified and among the 
misclassifications, it exhibits a higher amount (and 
proportion) of false positives than false negatives. In 
summary, these figures correspond to 85% accuracy, 85% 
recall, 72% precision, 84% specificity and 78% f1-score on 
the test set. 

Table II presents the classification performance obtained 
by our predictor on both validation and test sets. It attains 
almost the same results in terms of the different evaluation 
metrics in both validation and test sets, suggesting a very good 
generalization. In general, these performances confirm the 
potential of the deep learning predictor to be further used for 
guiding genetic edition of phages so as to improve their 
therapeutical power against bacterial infections. 

TABLE II.  EVALUATION RESULTS ON VALIDATION SET VS. TEST SET 

Metric Validation Results Test Results 
Accuracy 86% 85% 

Recall 86% 85% 
Precision 74% 72% 

Specificity 85% 84% 
F1-score 79% 78% 

Figure 2. Predictor Model Architecture 

 
Figure 3. Confusion Matrix on the Test Set 
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