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Abstract: Herbivorous arthropods, such as spider mites, are one of the major causes of annual crop
losses. They are usually hard to spot before a severe infestation takes place. When feeding, these
insects cause external perturbation that triggers changes in the underlying physiological process of a
plant, which are expressed by a generation of distinct variations of electrical potential. Therefore,
plant electrophysiology data portray information of the plant state. Analyses involving machine
learning techniques applied to plant electrical response triggered by spider mite infestation have
not been previously reported. This study investigates plant electrophysiological signals recorded
from 12 commercial tomatoes plants contaminated with spider mites and proposes a workflow based
on Gradient Boosted Tree algorithm for an automated differentiation of the plant’s normal state
from the stressed state caused by infestation. The classification model built using the signal samples
recorded during daylight and employing a reduced feature subset performs with an accuracy of
80% in identifying the plant’s stressed state. Furthermore, the Hjorth complexity encloses the most
relevant information for discrimination of the plant status. The obtained findings open novel access
towards automated detection of insect infestation in greenhouse crops and, consequently, more
optimal prevention and treatment approaches.

Keywords: plant electrophysiology; crop monitoring; classifier modeling; machine learning; spider
mite infestation

1. Introduction

Each year, approximately one-fourth of the agricultural production is damaged by
herbivorous arthropods, such as spider mites [1,2]. Spider mites represent the most im-
portant family of mites with the ability to feed on many host plants [3,4], but they are
very hard to detect before severe contamination occurs. Early and automated detection of
spider mites attacks would prevent crop losses and result in more effective crop protection.
Additionally, it would allow optimal use of pesticides leading to lower environmental
impacts from agriculture [5].

As living organisms, plants possess a defense mechanism that helps them react to both
biotic and abiotic environmental stresses, at either molecular, physiological or morpho-
logical level [6-8]. A single perturbation triggers changes in the underlying physiological
process of a plant, which are expressed by distinct variations in the electrical potential [9].
Hence, the emitted bioelectrical signal portrays the changes in a plant’s state and, therefore,
exhibits strong potential for quick detection of the cause of the state change.

Although sparse, current literature asserts automated recognition of signal pattern
changes in the plant electrophysiological response induced by different stressors. Either by
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inspecting local features or by analyzing the shape of the entire recorded waveform, the
proposed approaches, which employ binary classification algorithms, provide accurate
identification of the plant stressed state caused by the applied stimuli [10-15].

The major parts of the analyzed stimuli are abiotic stressors, such as the environmental
stressors of light, cold and osmotic stress [10]; the pollution stressors sodium chloride,
sulphuric acid and ozone [11,12]; drought [15]; as well as salt tolerance [13], applied either
on soybeans, tomato, cucumber, cabbage or wheat. However, the analyses for identifying
electrophysiological alteration caused by a biotic stress at whole-plant level emerged only
with a very recent study investigating the electrical signaling response of tomato plants to
a pathogenic fungus [14]. Otherwise, most of the studies on crop focused on wounding
caused by herbivory inducing long electrical signaling [16-18].

With the exception of [15], all of the proposed approaches explored data acquired
within controlled laboratory settings and inside a Faraday cage, which limits their appli-
cation in the typical production environment. Moreover, to the best of our knowledge,
the plant electrophysiology response has not yet been analyzed for potential detection of
eventual changes in the signal patterns caused by the presence of infestation with spider
mites.

The findings presented in [15] demonstrate continuous and stable long-term record-
ings of plant electrophysiology signals in regular greenhouse conditions (i.e., outside
of a Faraday cage) with the newly developed sensor PhytISigns (Vivent SA, Crans-pres-
Celigny, Switzerland). Such findings allow access to direct crop monitoring and potentially
automated real-time assessment of a plant’s state in standard growing environments. Fur-
thermore, it was also shown that electrical potential variations follow nycthemeral rhythm
(i.e., basal level during the night with higher values during the daylight), which is poten-
tially related to photosynthesis. Hence, considering their metabolism, the plants could
react differently to an infestation in different periods of the day.

The aim of this study is to explore electrophysiology signals acquired with PhytlSigns
from commercial tomato plants growing in a typical production environment during
a spider mite infestation. More precisely, it employs signal processing and supervised
machine learning techniques to assess the possibility to automatically distinguish eventual
pattern changes in the electrical plant response related to the plant stress induced by the
presence of spider mites. Additionally, to assess eventual differences in the plant response,
data analysis was also performed on separated datasets, including (i) signals recorded
during daylight and (ii) signals recorded during the night. Moreover, to address the lack of
reported findings in this domain, this study also explores a relatively broad range of signal
features to discern those with more discriminative power for identifying plant stress.

2. Materials and Methods
2.1. Study Design

Tetranychus urticae were reared on tomato plants (Solanum lycopersicum L. cv. Ad-
miro), in cages made of a fine nylon mesh (mesh diameter = 250 pm). All cages were kept
in a climate chamber at 70 + 10% r.h., 24 &2 °C/22 4+ 2 °C, and 16 h light/8 h dark photo
period. The rearing was carried out at Hepia Lullier (Switzerland). The colonies of T. urticae
were initiated more than 3 months before the beginning of the experiment [19].

The experiment was conducted from late August until mid-September at the field
station of Agroscope Conthey (Switzerland) in a 90 m? glasshouse equipped with lateral
and roof ventilations, fogging and shading for climate regulation. The greenhouse was
divided into 16 experimental cages (L x W x H=1.75 x 1.75 x 2.5 m) in a Latin square
split-plot design with four cages x four treatments: control, T. urticae + treatment 1, T.
urticae + treatment 2, T. urticae + treatment 3. To prevent potential sources of arthropod
escape, each cage was enclosed in a fine nylon mesh (diameter = 250 pm) on all sides.
Access to the plants was possible through a small zipped opening with additional Velcro®
closings on two edges. Cages were separated by a distance of approximately 0.40 m. In each
cage, three 50-day-old tomato plants, crop variety Admiro, were placed about 0.70 m from
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each other. Plants were grown in 10 L pots in a substrate of 1/3 black peat and 2/3 Ricoter®
mix made of 65% blond peat, 15% sand, 20% perlite (Aarberg, Switzerland). A standard
fertilizing solution for tomato plants was automatically provided by drip irrigation. A data
logger (DGT-Volmatic sensor RTF-5D, Senmatic A/S, Denmark) in one cage recorded
temperature and relative humidity throughout the experiments.

Except for the control set, each tomato plant was inoculated with 30 mobile stages
(protonymphs and deutonymphs) of T. urticae, on “Day 0”. Mites were collected from the
rearing units, counted under a magnifying lens and transferred with a thin paintbrush
to a cotton pad as positioning support. The cotton was then attached to tomato leaves to
allow the spider mites to colonize their host plant (panel a. in Figure 1). Fifteen days after
infestation (“Day 15”), a phytosanitary treatment was applied to halt the plants’ infestation.

Figure 1. Plant infestation with spider mites. Panel (a) illustrates the process of infestation where
each plant was inoculated with 30 mobile stage of spider mites put on a cotton pad that was attached
on the leaves. Panels (b,c) show the appearance of infested tomato leaves when the plants presented
strong stress related to the infestation.

Throughout the experiment’s entire duration, recordings of electrophysiological sig-
nals of 32 plants (8 control and 24 infested plants) were done at 500 Hz sampling rate using
four multi-channel PhytlSigns devices. This measuring device, which is designed with a
very high input impedance, of the order of many M(), includes eight pairs of custom-built
electrodes, each of them made of a 0.5 mm diameter silver-coated copper wire covered
with a 2.79 mm diameter coaxial cable with impedance of 50 () [15]. The importance of
impedance matching in plant electrophysiology measurements has been highlighted [20].
The pair of electrodes comprises one active and one ground (i.e., reference) electrode.
The active electrodes were placed above the plant’s first floral bud, whereas the reference
electrodes were placed below the first leaf. Figure 2 gives a schematic representation of the
recordings’ setup.

Inserted
electrode

Recorded plant
electrophysiology signal

PhytlSign §
(multi-channel)

Figure 2. Acquisition of the plant electrophysiology signal. The left panel shows a schematic representation of the setup

used for measuring the electrical potential from each plant, whereas the right panel gives a closer look at the used recording

device and the electrodes inserted on the plant.
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To assure stability in the recorded signal, the electrodes need to be inserted in the
conducting bundles of the plant [21]. Hence, the signal stability was monitored within
the initial 72 h of the experiment during which the electrodes were repositioned when an
unstable recording was observed.

The severity of the infestation was assessed by counting the number of spider mites
remaining on each plant on the 3rd, 6th, 9th, 11th, and the 14th day after the contamination.
Out of the 24 contaminated plants, 12 were assessed as strongly infested with spider mites;
therefore, only the recorded data coming from these 12 plants were considered in the
presented analysis. The visual appearance of the infested leaves is shown in Figure 1.

2.2. Data

The study aims to build a model that distinguishes the normal from the stressed plant
state caused by a spider mite infestation. Therefore, we chose to work with fragments
of the signal of 2 days recorded before the contamination (“Day -2” and “Day -1”) and
with another fragment of the same length taken before applying the phytosanitary treat-
ment (“Day 10” and “Day 11”), from each of the 12 selected, infested plants, respectively.
More precisely, the final dataset included, in total, 48 days of recordings acquired from the
12 plants, where half represented the electrophysiological signal in a normal plant state,
and the other half were in a stressed state. The signals recorded from three plants that were
enclosed in the taken dataset are shown in Figure 3.
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Figure 3. Recorded signal from three plants included in the analyzed dataset (after a band-filtering
at 50 Hz and 100 Hz). “Day -2” and “Day -1” represent the two days before the contamination of
the plants, whereas “Day 10” and “Day 11” are the tenth and eleventh days after the contamination.
The light yellow indicates the periods of the day where there was prominent daylight, whereas the
grey indicates the dark periods.

2.3. Signal Preprocessing

The raw signal from the chosen dataset underwent several preprocessing steps.

Notch filtering. The signal was first filtered with band-stop filters at 50 Hz and 100 Hz,
to eliminate the noise from local electrical power sources and its first harmonic, which
is the only known source for eventual perturbation of the recordings. Having as aim to
explore the full range of frequencies contained in the recorded signal, no other additional
filtering was applied.

Windowing. Following normal signal processing practice, instead of exploring the
entire signal waveform at once, the filtered electrical signal was initially partitioned into
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fragments of relatively short durations. More precisely, in a step of 5 min, seven different
windows of fixed length, namely the last 15 s, 30 s, 1 min, 2 min, 5 min, 10 min and 30 min,
were extracted from the signal (refer to Figure 4). As this is a relatively new domain of
research, there is a lack of knowledge of the temporal extent at which the signal information
characterizing the stressed plant state could be discriminated. Therefore, to explore the
temporal extent in this context, rather than taking only one signal window at each sampling
step, we choose to work with seven different window sizes. All of these seven windows
will represent a single sample for a given plant. Hence, using this approach for the taken
96 h of recordings, we ended up with a set of 1152 samples for each plant (288 samples per
single day).

Time

t .t+5min

15s 1 min 5 min

30s s 2 min === 10min = 30 min

Figure 4. Schematic representation of the windowing procedure. At time point t (panel (a)) seven
intervals of different lengths are taken from the signal, namely the last 15 s, 30 s, 1 min, 2 min, 5
min, 10 min and 30 min. Once the features are calculated for all of these seven windows, we move
forward in a step of 5 min (panel (b)), where we take seven new intervals of the recorded signal with
the same lengths as in the previous step. This procedure is repeated to cover the entire duration of
the signal recording.

Labelling. Each of the samples was labelled either as normal (‘0’) or as infested /stressed
(1) conforming to the meta-data information, i.e., considering the information if the sample
in question was recorded before or after the contamination.

2.4. Feature Extraction

To characterize the delimited signal, for each of the chosen windows, 34 signal features
were calculated using Matlab® (version R2019b):

Time domain. Along with the main descriptive statistical features, such as mean, min-
imum, maximum, variance, skewness, kurtosis and interquartile range, the following
other statistical features were extracted: Hjorth Mobility [22] (characterizing the mean
signal slope), Hjorth Complexity [22] (signal curvature), Generalized Hurst exponent [23]
(long-term memory/dependency of the signal), the logarithmic and the Shannon wavelet
packet entropy, all of them previously used for the analysis of the electrical plant signals
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and biological signals in general [11]. To broaden the analytical tools used in plant elec-
trophysiology, features used in other signal analysis domains were also computed. These
include the root mean square of the window signal and the corresponding crest, shape,
impulse and margin factor extracted as time-domain features [22,24].

Frequency domain. Aiming at identifying and characterizing the eventual spectral
changes in the signal due to induced plant stress, several statistical frequency-domain
features were also calculated, namely frequency center, root variance frequency (considered
as the first- and second-order moment of the Fourier spectrum respectively) and the root-
mean-square frequency [22].

Color Noise. As reported in recent literature [10,25,26], along with the eventual tem-
poral dynamics, different external stimuli can change the type of color noise present in
the plant electrical signal. To explore this further, we first generated the five color noises
using the Matlab dsp.ColoredNoise function and calculated the corresponding fast Fourier
transform (FFT). Then, we denoised the windowed signal applying the Matlab wden func-
tion (using Daubechies wavelet of order 4 and hard thresholding employing the principle
of Stein’s Unbiased Risk rule and rescaled on a single estimation of noise level based
on first-level coefficients). The difference between the original windowed signal and the
obtained denoised signal was considered as the signal’s noise. Finally, we calculated the
dot product between the normalized half-length FFT applied on the estimated noise and
the normalized half-length color-noise FFT for each color noise, respectively.

Time-frequency domain. The wavelet decomposition, representing a time-frequency
domain characterization of a signal, is a recommended practice for analyzing non-stationary
signals enabling more accurate tracking of both changes in signal amplitude and frequency.
Consequently, for each window signal, we performed wavelet decompositions of order
8 using the Matlab modwtmra function for multiresolution analysis based on maximum
overlap discrete wavelet transform (output of the Matlab modwt function), which allows
a higher level of information in the wavelet decomposition by avoiding the process of
subsampling [27]. We selected the decomposed signal at levels 1, 4 and 8, and we calculated
their respective minimum, maximum and mean values.

Table 1 lists the 34 calculated features for each of the seven windows. In total, 238 fea-
tures per sample were extracted. The concatenation of all the 238 features from the 12 plants
led to a total of 13,824 samples to analyze, with exactly half labelled as “normal” and half
labelled as “stressed”.

Table 1. Features calculated within each window for each sampling step.

Extracted Features

1. Minimum 18. Minimum of the wavelet
decomposition of order 1 (WD1)

2. Maximum 19. Maximum of the WD1

3. Mean 20. Mean of the WD1

4. Variance 21. Minimum of the WD4

5. Skewness 22. Maximum of the WD4

6. Kurtosis 23. Mean of the WD4

7. Interquartile Range (IQR) 24. Minimum of the WD8

8. Hjorth Mobility 25. Maximum of the WD8

9. Hjorth Complexity 26. Mean of the WD8

10. General Hurst Exponent (GHE) 27. Frequency Center

11. Logarithmic wavelet packet entropy 28. RMS Frequency

(Logarithmic Wentropy)

12. Shannon wavelet packet entropy 29. Root Variance Frequency

(Shannon Wentropy)

13. Root Mean Square (RMS) 30. White Noise

14. Crest Factor 31. Pink Noise

15. Shape Factor 32. Brown Noise

16. Impulse Factor 33. Blue Noise

17. Margin Factor 34. Purple Noise
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2.5. Features Subsets

The relatively high number of extracted features could potentially lead to overfitting
by the model. Moreover, as for every window length, the 34 features represent the same
measures calculated at a different scale, a strong correlation between them could also occur.

To further assess the impact of the feature space dimension on the classification
accuracy, two feature subsets were considered in the analysis:

1. The original set enclosing all the 238 features;

2. The set of mutually uncorrelated features (correlation < 95%, significance level = 5%)
where each one of them is correlated with the label vector (correlation > 1%). Among
them, we excluded as well those which are nearly constant over time (the number of
occurrences of its most frequent value is bigger than 90% of the number of samples).

Additionally, since it is a relatively new field of research, we aimed to assess the most
important features for the classification.

2.6. Samples Subsets

Observation of the recordings suggested that there may be differences in the electro-
physiological response during hours of daylight (photosynthesizing) and hours of darkness
(respiring). To test if reactions to the infestation were different during these periods, two
different sample subsets were considered: one containing only samples recorded during
prominent daylight and the other one formed from samples recorded in the absence of
sunlight (refer to Figure 3). The dawn and the dusk samples were not included in either of
these two subsets.

The acquisitions were made in an alpine region, and the actual sunrise and sunset
are impacted by geography; therefore, the dawn and the dusk last longer. We used the
greenhouse’s climatic monitoring device DGT-Senmatic (Senmatic, Industrivej 8, 5471
Sendersg, Denmark) to measure the light intensity to determine the actual daylight period.
At this time of the year, the daylight period is between 9 a.m. and 4 p.m., during which the
sun irradiation is over 100 W/m?, and night is between 7:30 p.m. and 6 a.m. (with 0 W/m?).

For all four chosen days of recordings, 336 samples were obtained from each plant
during daylight, or 4032 samples in total. To avoid introducing a bias regarding the size
of the two subsets, 4032 samples in total were also chosen to form the night subset. More
precisely, for each plant we took 168 samples from the dark period nearest the end of the
recording in normal state and the 168 samples from the dark period nearest the end of the
recording in the stressed state.

Additionally, as in the case when enclosing all of the extracted 13,824 samples, both the
daylight and the night subsets contained an equal number of samples from the pre-infested
(normal) and the stressed state.

2.7. Features Normalization

To compensate for inter-plant variability, each feature vector was normalized using
the min—max normalization method based on the recorded values of the respective plant,
which brought all the feature values to the interval [0, 1].

2.8. Classification Model Development

A preliminary investigation showed that a Gradient Boosted Tree (GBT) algorithm [28],
a machine learning technique that uses an ensemble of decision trees to address a regression
or a classification problem, provides better classification performance than other tested
algorithms such as Logistic Regression, Decision Trees, Deep Learning and Random For-
est [15]. Hence, for this study, the GBT algorithm was chosen to build the classification
model. For this task, we used the software platform RapidMiner Studio, version 9.6.

Throughout the modeling process, the data were first divided into subsets for training
the model and for validating the model. The training subset included 75% of the total
samples, whereas the remaining 25% represented the test set. The latter was used to
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evaluate the performance of the classifier learnt during the training phase or, more precisely,
to estimate the classifier accuracy, specificity, recall and precision values.

- Accuracy: the ratio between the number of correctly predicted samples and the total
number of samples;

- Precision: the proportion of correctly predicted samples of a chosen class among all
the samples predicted as samples of that class;

- Recall (or Sensitivity): the proportion of correctly predicted samples of a chosen class
among all the samples from that class;

- Specificity: the rate of correctly rejected samples for predicting a chosen class in binary
classification.

The test set was first divided into seven randomly chosen subsets with approximately
equal size, and the model was applied on each one of them. The obtained results allowed
the identification and then the exclusion of the two subsets, among the seven, on which the
model performed with the highest and the lowest accuracy, respectively. The final results
represent the average performance of the model applied to the remaining five subsets.

Given that there could be an important correlation between samples from the same
plant, to avoid bias in evaluating the model’s performance, the training set was built on
samples from 9 of the 12 plants, whereas the test set was built from the remaining 3 plants.
The plants in each subset were randomly chosen, but it was assured that the test set was
composed of plants recorded with different acquisition devices.

During the training phase, the main GBT parameters—number of trees, maximum
depth, and learning rate—were tuned within a grid search. The tested values for number
of trees were [100, 200, 300], the maximal depth [4, 7, 9], and the learning rate [0.05, 0.1 and
0.3]. Hence, 27 possible combinations of these parameters’ values were evaluated.

The procedure of learning the optimal combination of parameters involved a nine-fold
customized cross-validation process, nine being the number of plants whose samples were
enclosed in the training set. More precisely, for a given combination of the three parameters,
the original training set was subdivided into two subsets: (1) a set for learning the model
containing only the samples of eight out the nine plants and (2) a test set for evaluating
the learnt model enclosing the samples of the remaining ninth plant. Keeping the same
parameter values, this procedure was repeated nine times in a way that the samples of each
plant will represent the test set once only. At the end, the parameters’ values are chosen
by the combination giving the highest classification accuracy in average for all nine folds.
The presented workflow could be generalized for an n-fold cross-validation approach,
where n represents the number of plants in the training set.

3. Results

Observations of the recorded signals led us to investigate whether insect activity and
plant responses were the same during daylight and night time. Models for distinguishing
the normal from the stressed state of the plant, all based on a GBT algorithm, showed
distinctive performance for three different samples subsets: (i) all data, (ii) samples from
daylight period and (iii) samples from the night time. In general, for all of the sample
subsets, decreasing the number of features showed a low impact on the accuracy of the
models.

3.1. Original Set of Samples

The models built from the original set enclosing all of the samples with equal distribu-
tion of the two classes, normal and stressed state, showed fair discriminative efficiency.

Original set of features. By using all of the 238 extracted features, the optimal combi-
nation of GBT parameters included 100 as the number of trees, 7 as the maximal depth
and 0.05 as the learning rate. The model applied on the test data set of samples showed an
accuracy of 69.8% =+ 0.6%. Figure S1 in the Supplementary Material shows the obtained
prediction for each sample forming the respective test set. The first five features appearing
as most discriminative for the classification with the GBT algorithm were IQR calculated
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within a window of 2 min (relative importance weight: 19.4%), modelization of purple
noise at 30 min (6.4%), GHE at 30 min (6.3%) and the Hjorth complexity at 2 (4.2%) and 10
min (3.3%). A summary of the obtained most discriminative features is given in Table 2.
On the other hand, the feature that contributed least was the mean of the wavelet decom-
position of order 8 calculated for windows of different sizes (Table 51 in the Supplementary
Material).

Table 2. List of the five most dominant features used by the built GBT-based models to identify plant
status for each of the studied scenarios.

All Samples

Original Set of Features Reduced Set of Features

Feature Weight Feature Weight
IQR 2 min 19.4% IOR 2 min 15.5%
Purple noise 30 min 6.4% GHE 30 min 8.2%
GHE 30 min 6.3% Purple noise 30 min 7.5%
Hjorth Corpplexﬁy 2 429 Hjorth cor.nplex1ty 2 5.6%
min min
Hjorth complexity 10 3.3% Hjorth mobility 5 min 4.6%
min
Daylight Samples
Original Set of Features Reduced Set of Features
Feature Weight Feature Weight
Hjorth complexrcy 5 35.29 Hjorth Cor.nplex1ty 5 33.4%
min min
GHE 30 min 8.9% GHE 30 min 10.9%
Hjorth m9b111ty 10 6.3% Hjorth m9b111ty 10 6.6%
min min
Purple noise 30 min 5.7% Margin factor 15 s 5.8%
Blue noise 30 min 4.1% White noise 30 min 4.6%
Night Samples
Original Set of Features Reduced Set of Features
Feature Weight Feature Weight
Logarithmic 36.1% Logarithmic 3729
wentropy 15 s wentropy 15 s
Impulse factor 15 s 8.0% Crest factor 15 s 11.0%
Mean of WD4 15 s 6.5% Frequency center 15 s 5.2%
Frequency center 15 s 2.9% Minimum 15 s 4.6%
Shape factor 30 min 2.7% Hjorth complexity 30 4.3%

S

Reduced set of features. The set of mutually uncorrelated features that were, at the same
time, correlated to the label-vector and varied over time contained 118 elements. The model
for classification was built with 100 trees, maximum depth of 4 and 0.05 as the learning rate.
The accuracy reached 70.8% =+ 0.5% (Figure S2 in the Supplementary Material), and IQR
at 2 min appeared as the most discriminative feature with a relative importance weight
of 15.5%. It was followed by GHE at 30 min (8.2%), purple noise at 30 min (7.5%), Hjorth
complexity at 2 min (5.6%) and Hjorth mobility at 5 min (4.6%). The smallest contribution
comes from the minimum of the wavelet decomposition of order 4 at 30 s, GHE at 1 min,
shape factor at 2 min, crest factor at 5 min and kurtosis at 10 min (Table S1).
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3.2. Daylight Samples Subset

The GBT-based classifiers modeled on the set enclosing only the samples acquired
during daylight showed increased efficiency of about 10%, for distinguishing the stressed-
from the normal-state samples.

Original set of features. The model was built with 100 trees, 4 as maximal depth and
0.05 as the learning rate. The classification accuracy reached 80.0% =+ 2.2%. The obtained
prediction of each sample forming the corresponding test set is illustrated in Figure 5.
The most dominant feature for the discrimination, with a relative importance weight of
35.2%, was Hjorth complexity calculated using 5 min windows. The importance of the
following four features was considerably lower: GHE at 30 min (8.9%), Hjorth mobility
at 10 min (6.3%), and purple (5.7%) and white noise (4.1%), both calculated at 30 min.
The least dominant features were the mean of the wavelet decomposition of order 8 at
30 min and 10 min, the kurtosis at 30 min, the brown noise at 10 min and the maximum of
the wavelet decomposition of order 8 at 10 min (Table S1).

Daylight samples, reduced set of features
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Figure 5. Predicted class of each sample forming the test set used to evaluate the model obtained
when analyzing the daylight samples subset with the reduced set of features. The color of the samples
indicates the class that has been attributed to them by the classification model—blue represents the
normal, whereas red is the stressed state. For each plant, the plotted samples overlay the normalized
feature mean value of the signal calculated for a window of 5 min.

Reduced set of features. The reduced set included 122 features in total. Moreover,
the optimal GBT parameters remained unchanged from those obtained with the original
set of features. The model showed an accuracy of 79.9% =+ 1.3% (Figure S3) and relied
again principally on the Hjorth complexity at 5 min for the discrimination (relative weight
of importance: 33.4%). GHE calculated for windows of 30 min remained the second
important feature with approximately three times smaller weight of importance (10.9%).
It was followed by the Hjorth mobility at 10 min (6.6%), margin factor at 15 s (5.8%) and
the white noise at 30 min (4.6%). On the opposite side the kurtosis at 30 min, the brown
noise at 2 and 5 min, the RMS frequency at 5 min and the shape factor at 5 min were the
features with the smallest contribution for the discrimination (Table S1).

3.3. Night Samples Subset

The models built on a set of samples recorded only during the night showed inferior
results compared to the previous two scenarios.



Appl. Sci. 2021, 11, 1414

11 of 16

Original set of features. The GBT model was built with 200 trees of maximum depth
of 4 and 0.05 as learning rate. It classified the samples with an accuracy of 65.8% =+ 0.6%
(Figure S4) relying mainly on features calculated within windows of 15 s. The most
discriminative appeared to be logarithmic wentropy at 15 s (36.1%), followed by impulse
factor (8.0%), mean of the wavelet decomposition of order 4 (6.5%) and the frequency center
(2.9%). The fifth in order was the shape factor (2.7%) calculated at 30 min. The mean of
the wavelet decomposition of order 8 at 5, 10 and 30 min, together with the blue noise at
10 min and the brown noise at 5 min, were last in the order of contribution (Table S1).

Reduced set of features. Regarding this sample subset, 111 features in total formed
the reduced subset of features. The GBT model built employing these features used
100 numbers of trees with a maximum depth of 4 and 0.1 as learning rate and performed
with an accuracy of 65.4% £ 1.3% (Figure S5). The logarithmic wentropy calculated at
15 s appeared again as the most discriminative feature with relative importance weight of
37.2%. The following four were also from small window sizes: crest factor at 15 s (11.0%),
frequency center at 15 s (5.2%), minimum at 15 s (4.6%) and the Hjorth complexity at 30 s
(4.3%). The brown noise at 10 min, together with the white noise at 30 s and 1 min, the
kurtosis at 1 min and the minimum of the wavelet decomposition of order 1 at 1 min, were
the features with the smallest contribution (Table S1).

The results describing the performance of each classifier are summarized in Table 3.
The models based on signals acquired during daylight presented the highest accuracy as
well as high values for the remaining performance measures regarding the prediction of the
stressed states: precision, recall and specificity. On the other hand, even though the night
samples models performed with high precision and specificity, its recall value, representing
the sensitivity of the model, was about 36-38%,; therefore, these models were very limited
in predicting the stressed state (refer to Figures 54 and S5 in the Supplementary Material).

Table 3. Summary of the performance of each classification model.

T r o %
Sample Set Feature Set  Accuracy (%) Pre(;i/s;on Recall * (%) Spec({?;lty
All Original 69.8 £ 0.6 68.4+0.8 73.8 1.6 659+ 1.7
Reduced 70.8 £0.8 71.8 £0.9 68.5 £ 1.5 73.0£15
Dav samples Original 80.0 £ 2.2 80.8 3.6 789 £3.0 81.1+45
y P Reduced 799 +1.3 83.8 £2.2 742 +25 85.6 2.5
Night Original 65.8 £0.9 899 +£37 35.8£3.6 95.8 £2.0
samples Reduced 654+1.3 84.8 4.7 37.8 £2.7 93.1+238

* positive class: stressed.

Overall, from the summary given in Table 2, one could observe that the Hjorth
complexity at 5 min, IQR at 2 min and GHE at 30 min appeared as the most discriminative
features. The logarithmic wentropy at 15 s appeared as an important feature for the
discrimination of the plant status only when the night samples were used. Figure 6 shows
the distributions without outliers of these four features for each sample subset and each
window length. Hjorth complexity presented differences in distribution between the
normal and the stressed state for all three sample sets and all window lengths. However,
the distinction between these distributions was most notable for daylight samples, mainly
for window lengths between 1 and 30 min. In the case of night samples, the Hjorth
complexity distributions were notably closer. Similar findings as the Hjorth complexity
feature could also be observed from the distributions of IQR. Considering GHE, distribution
dissimilarities were mainly observed for the samples acquired during daylight, with most
notable distinction for windows of 30 min. In line with the obtained modeling results,
the logarithmic wentropy portrayed notable differences in distribution mainly for the set
of night samples. For the daylight samples, these differences were very small.
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Figure 6. Distribution of the four features observed as the most discriminative for the GBT classification. Each of them is
represented without outliers for all the three explored sets of samples and all window lengths.

Table S2 in the Supplementary Material provides a detailed list of all the features
forming the reduced subsets used in these analyses. The Hjorth complexity, GHE and IQR
appeared as uncorrelated features for all window lengths and all sample sets. Differently
from that, the logarithmic wentropy appeared as an uncorrelated feature at 15 s and 30 min

only.

4. Discussion

By employing machine learning techniques for data analysis, the presented exploratory
study demonstrates the presence of changes in the electrophysiology signal acquired from
commercial tomato plants growing in a typical production environment, caused by infesta-
tion with spider mites. It presents a methodology based on local signal features and a GBT
algorithm, for modeling a classifier that is able to distinguish, with an accuracy of around
80%, the normal from the stressed plant state where the stress is induced by the infestation.

Furthermore, the study shows that models built on samples recorded during the day
outperform the classifiers developed using samples, including whole 24 h cycles and, even
more significantly, those based only on dark period recordings. The simultaneous high
recall, precision and specificity values demonstrate the high potential of the daylight-based
classifiers to distinguish between the normal and the stressed state of an infested tomato
plant. In contrast, models built on the night sample sets show high precision and specificity
but, at the same time, low sensitivity and therefore are more prone to predict only the
normal state correctly.

It is insightful that signals collected during daylight provided a more accurate classifi-
cation of plant states than either combined or nighttime-only samples. Such findings are
potentially related to plant metabolism being higher during the day with water/nutrient



Appl. Sci. 2021, 11, 1414

13 of 16

sorption, enhanced sap flow and photosynthesis, and in consequence that plant reactions
to the infestation are more pronounced during the day. Consistent with this finding, lower
model performance based on samples acquired during the dark period suggests that during
the night, the plant’s behavior when infested with spider mites is more similar to normal
or uninfested behavior. Additionally, the improved model performance using daylight
samples could also be related to increased activity of the insects during the day. Further
investigation is needed to understand these differences better.

To address the lack of a priori knowledge in the domain, a relatively big specter
of different signal features extracted locally was initially considered at several window
lengths. With the assessment of their mutual dependency as well as their impact in
the classification process, the most relevant features for the stressed state discrimination
were revealed. The overall results showed that the Hjorth complexity, characterizing the
considered signal’s curvature, contributes the most for the identification of the plant state
within a frame of spider mites infestation.

Aside from the Hjorth complexity, the interquartile range and the General Hurst
Exponent also appear as valuable features for the plant state’s discrimination. Each of
these three features provides particular independent information at all the seven studied
signal window lengths for the three sets of samples. Additionally, they are all portraying a
temporal characterization of the signal. Hjorth complexity and IQR have previously been
reported as a dominant feature for environmental stimuli discrimination when using the
electrical plant response [11].

Frequency-related features, such as the color noises, also contribute to the classification
of the plant state. Even though their impact is less dominant, the discriminative information
they present could, however, be related to the expectations that an external stimulus is
triggering a different color noise in the plant electrical response [10,25,26].

Different window lengths could also affect the discrimination power of a feature in
a non-uniform manner. Additionally, the features found as the most important for the
classification represent different window extents. Nevertheless, these findings suggest
that to predict the plant state correctly when attacked by spider mites, signal samples of
several minutes up to half an hour are most effective. The spider mites have needle-shaped
mouthparts that allow them to feed by penetrating the plant tissue, which causes plant
damage that is perceived locally. However, depending on the severity of the damage,
the presence of spider mites induce long-distance electrical signaling through the entire
plant [29-31].

The reduction in the features space only slightly affected the classification performance.
However, with the decrease in the number of features, both the model’s complexity and
its tendency to overfit also decreased. Another advantage of using fewer features is the
reduction in the computational time required to build the model and to apply it on newly
acquired data from other plants, conforming with the needs of the crop producers.

The isolation between the plants used for the training from those used in the testing
increases the objectivity of the performance assessment and strengthens the evaluation
of each model. Therefore, the built classifiers are expected to perform similarly for new
recordings coming from other tomato plants.

Further studies should include an extended cohort of tomato plants to confirm the
presented findings, and their reproducibility should be investigated for other growth
seasons and other crops as well. Another improvement would include modeling of several
stages of stress, for example, initial, middle and strong stress, which would allow greater
precision in detecting plant status and, potentially, a detection of a spider mite infestation
before the appearance of visual symptoms.

Another valuable contribution would be to understand more profoundly the changes
in the plant occurring at cellular level. Among early signaling events that occur in response
to biotic stress, electrical variations can be highlighted; it is crucial for induction of ap-
propriate physiological modifications such as genetic regulation, metabolism adaptation,
hormone synthesis or defense mechanisms [31,32]. Moreover, ion fluxes, apoplastic pH
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modification, ROS generation and calcium variations are responsible for electrical signal-
ing [33,34]. Hence, investigations on how transporters contribute to slow and long-term
bioelectrical potential variations would help in modeling. For instance, as in the studies
of the current literature based on ancestral alga Chara demonstrating the presence of a
characteristic red noise triggered by a salinity stress and mediated through H*/OH~
channels [26,35,36], such investigation would allow to discern the transporters causing
alterations in the tomato electrophysiological signal in the presence of spider mites. By ex-
pending the knowledge of plant electrical responses in that context, the choice of signal
features to use for an automated detection of changes in plant state could be further refined,
which would also potentially lead to an accurate classification even for an early stage of
infestation.

Overall, the presented findings in this study represent a starting point of building new
possibilities for more optimal preventive and curative crop protection practices.

5. Patents

Patent application with reference UK1903652.4 and entitled “Electrophysiological assess-
ment of plant status using supervised machine learning” is under review. Filed in 2019.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-3
417/11/4/1414/s1. Table S1. List of the five least dominant features used by the built GBT-based
models to discriminate the status of the plant. Table S2. List of features forming the reduced subset
when analyzing the entire set of samples, the samples acquired during daylight and those during
night. Figure S1. Predicted class of each sample forming the test set used to evaluate the model
obtained when analyzing the whole dataset with all 238 features. The color of samples indicates the
class that has been attributed to them by the classification model-blue represents the normal, whereas
red the stressed state. For each plant, the plotted samples overlay the normalized feature mean value
of the signal calculated for a window of 5 min. Figure S2. Predicted class of each sample forming the
test set used to evaluate the model obtained when analyzing the whole dataset with the reduced set of
features. The color of samples indicates the class that has been attributed to them by the classification
model-blue represents the normal, whereas red the stressed state. For each plant, the plotted samples
overlay the normalized feature mean value of the signal calculated for a window of 5 min. Figure
S3. Predicted class of each sample forming the test set used to evaluate the model obtained when
analyzing the daylight samples subset with all 238 features. The color of samples indicates the class
that has been attributed to them by the classification model-blue represents the normal, whereas
red the stressed state. For each plant, the plotted samples overlay the normalized feature mean value
of the signal calculated for a window of 5 min. Figure S4. Predicted class of each sample forming
the test set used to evaluate the model obtained when analyzing the night samples subset with all
238 features. The color of samples indicates the class that has been attributed to them by the classifi-
cation model-blue represents the normal, whereas red the stressed state. For each plant, the plotted
samples overlay the normalized feature mean value of the signal calculated for a window of 5 min.
Figure S5. Predicted class of each sample forming the test set used to evaluate the model obtained
when analyzing the night samples subset with the reduced set of features. The color of samples
indicates the class that has been attributed to them by the classification model-blue represents the
normal, whereas red the stressed state. For each plant, the plotted samples overlay the normalized
feature mean value of the signal calculated for a window of 5 min.
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