Citation
American Psychological Association 7th edition (APA 7th)
🇺🇸 English, US
Badulescu, Y., Hameri, A.-P., & Cheikhrouhou, N. (2021). Evaluating demand forecasting models using multi-criteria decision-making approach. Journal of Advances in Management Research, 18(5), 661–683. https://doi.org/10.1108/jamr-05-2020-0080
Formate | |
---|---|
BibTeX | |
MARCXML | |
TextMARC | |
MARC | |
DublinCore | |
EndNote | |
NLM | |
RefWorks | |
RIS |
Résumé
Evaluating appropriate error measures to determine demand forecast accuracy is essential in model selection, however there is no approach that simultaneously evaluates different model classes and several inter-dependent error measures. Furthermore, error measures may yield conflicting results making it more difficult to select the ‘best’ forecasting model when considering several error measures simultaneously. This paper proposes a novel process of evaluation of demand forecasting models using the analytical network process combined with the technique for order of preference by similarity to ideal solution (ANP-TOPSIS) which incorporates interdependence amongst error measures. The methodology is validated through an implementation case of a plastic bag manufacturer demonstrating that the use of the ANP-TOPSIS approach, avoided the selection of an inappropriate forecasting model due to conflicting error measurements. Moreover, a sensitivity analysis finds that the interdependence between the error measures is found to impact the relative closeness to the ideal solution, even though it plays a minimal role in the final ranking of the forecasting models.