
giotto-tda: A Topological Data Analysis Toolkit
for Machine Learning and Data Exploration

Guillaume Tauzin1, 2

gtauzin@protonmail.com
Umberto Lupo3,4

umberto.lupo@epfl.ch
Lewis Tunstall4

lewis.c.tunstall@gmail.com

Julian Burella Pérez5
julian.burellaperez@heig-vd.ch

Matteo Caorsi4
m.caorsi@l2f.ch

Wojciech Reise6
reisewojciech@gmail.com

Anibal M. Medina-Mardones2
anibal.medinamardones@epfl.ch

Alberto Dassatti5
alberto.dassatti@heig-vd.ch

Kathryn Hess2
kathryn.hess@epfl.ch

1INAIT SA
2Laboratory for Topology and Neuroscience, EPFL

3Laboratory of Computational Biology and Theoretical Biophysics, EPFL
4L2F SA

5School of Management and Engineering Vaud, HES-SO,
University of Applied Sciences Western Switzerland

6 DataShape, Inria Saclay – Île-de-France

Abstract

We introduce giotto-tda, a Python library that integrates high-performance topo-
logical data analysis with machine learning via a scikit-learn–compatible API
and state-of-the-art C++ implementations. The library’s ability to handle vari-
ous types of data is rooted in a wide range of preprocessing techniques, and its
strong focus on data exploration and interpretability is aided by an intuitive plot-
ting API. Source code, binaries, examples, and documentation can be found at
https://github.com/giotto-ai/giotto-tda.

1 Introduction

Topological Data Analysis (TDA) uses tools from algebraic and combinatorial topology to extract
features that capture the shape of data [1]. In recent years, algorithms based on topology have proven
very useful in the study of a wide range of problems. In particular, persistent homology has had
significant impact on data intensive challenges including the classification of porous materials [2],
the study of structures in the weight space of CNNs [3], and the discovery of links between structure
and function in the brain [4]. The Mapper algorithm has also received considerable attention after its
use in the identification of a highly treatable subgroup of breast cancers [5].

Despite its power and versatility, TDA has remained outside the toolbox of most Machine Learning
(ML) practitioners, largely because current implementations are developed for research purposes
and not in high-level languages. The aim of giotto-tda is to fill this gap by making TDA accessible
to the Python data science community, while supporting research. To this end, giotto-tda inherits
the flexibility of scikit-learn, the most popular all-purpose ML framework [6], and extends it with

Topological Data Analysis and Beyond Workshop at the 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/giotto-ai/giotto-tda


TDA capabilities including a wide range of persistent homology and Mapper-type algorithms. It
enables TDA to be applied to univariate and multivariate time series, images, graphs, and their higher
dimensional analogues, simplicial complexes. This makes giotto-tda the most comprehensive Python
library for topological machine learning and data exploration to date.

2 Architecture

To use topological features in machine learning effectively, techniques such as hyperparameter search
and feature selection need to be applied at a large scale. Facilitating these processes is one of the
reasons why giotto-tda maintains and extends compatibility with the scikit-learn API. giotto-tda
provides users with full flexibility in the design of TDA pipelines via modular estimators, and the
highly visual nature of topological signatures is harnessed via a plotting API based on plotly. This
exposes a set of external functions and class methods to plot and interact with intermediate results
represented as standard NumPy arrays [7].

To combine TDA methods with the many time-delay embedding techniques used frequently in time se-
ries prediction [8; 9], one must allow transformers extra flexibility not present in the basic architec-
ture of scikit-learn. To support this task, giotto-tda provides a novel TransformerResamplerMixin
class, as well as an extended version of scikit-learn’s Pipeline. 1

Through scikit-learn–based wrapper libraries for PyTorch [10] such as skorch [11] and the scikit-learn
interface offered in TensorFlow [12], it is also possible to use deep learning models as final estimators
in a giotto-tda Pipeline.

3 Persistent homology

Persistent homology is one of the main tools in TDA. It extracts and summarises, in so-called
persistence diagrams, multi-scale relational information in a manner similar to hierarchical clustering,
but also considering higher-order connectivity. It is a very powerful and versatile technique. To
fully take advantage of it in ML and data exploration tasks, giotto-tda offers scikit-learn–compatible
components that enable the user to a) transform a wide variety of data input types into forms suitable
for computing persistent homology, b) compute persistence diagrams according to a large selection of
algorithms, and c) extract a rich set of features from persistence diagrams. The result is a framework
for constructing end-to-end Pipeline objects to generate carefully crafted topological features from
each sample in an input raw data collection. At a more technical level, features are often extracted
from persistence diagrams by first representing them as curves or images, or by defining kernels.
Each method for doing so typically comes with a set of hyperparameters that must be tuned to the
problem at hand. giotto-tda exposes a large selection of such algorithms and, by tightly integrating
with the scikit-learn API for hyperparameter search, cross-validation and feature selection, allows for
simple data-driven tuning of the many hyperparameters involved.

In Figure 1, we present some of the many possible feature-generation workflows that are made
available by giotto-tda, starting with a sample in the input raw data collection.

A comparison between giotto-tda and other Python persistent homology libraries is shown in Table 1.
A highlight of this comparison is the presence of directed persistent homology [4; 13], a viewpoint
that emphasises the non-symmetric nature of many real-world interactions. giotto-tda provides
preprocessing transformers to make use of it for a wide range of input data types.

Our library matches the code and documentation standards set by scikit-learn, and relies on state-
of-the-art external C++ libraries [24; 25; 26; 13] using new performance-oriented bindings based on
pybind11 [27]. In the case of ripser [25], bindings from ripser.py [28] were adapted. In the
case of flagser [13], no Python API was available prior to giotto-tda’s sibling project pyflagser.4
As concerns the computation of Vietoris–Rips barcodes, giotto-tda improves on the state-of-the-art
runtimes achieved in [15] (and now part of GUDHI’s C++ codebase) by combining their edge collapse
algorithm with ripser. Furthermore, the joblib package is used throughout to parallelize computations

1The interested reader is referred to https://giotto-ai.github.io/gtda-docs/0.3.1/notebooks/time_series_
forecasting.html for a tutorial on these concepts and features.

4Source code available at https://github.com/giotto-ai/pyflagser.

2

https://giotto-ai.github.io/gtda-docs/0.3.1/notebooks/time_series_forecasting.html
https://giotto-ai.github.io/gtda-docs/0.3.1/notebooks/time_series_forecasting.html
https://github.com/giotto-ai/pyflagser


giotto-tda v0.3.1 GUDHI v3.3.0 scikit-tda Dionysus 2

time series
sliding window Yes - - -
Takens’ embedding Yes Yes - -
Pearson dissimilarity Yes - - -

point clouds & metric spaces

consistent rescaling [14] Yes - - -
k-nearest neighbors Yes Yes - -
subsampling - Yes - -
density - Yes - -
Gromov–Hausdorff distance - - Yes -
distance to measure - Yes - -

images
binarizer Yes - - -
image to point cloud Yes - - -
height filtration Yes - - -

graphs transition graph Yes - - -
geodesic distance Yes - - -
flag filtrations Yes (flagser) - - -

undirected simplicial persistent homology

Vietoris–Rips Yes Yes Yes Yes
sparse Rips Yes Yes - -
weighted Rips - Yes - -
edge collapse [15] Yes C++ only - -
Čech Yes C++ only Yes -
alpha Yes (weak [16]) Yes Yes -
witness - Yes - -
tangential - Yes - -
extended - Yes Yes -
zigzag - - - Yes
lower star - Yes Yes Yes

other persistent homology directed simplicial Yes - - -
cubical Yes Yes - -

diagram representations

persistence landscape Yes Yes - -
Betti curves Yes Yes - -
silhouette Yes Yes - -
heat representation [17] Yes - - -
persistent image Yes Yes Yes -

diagram distances and kernels

bottleneck distance Yes Yes Yes Yes
Wasserstein distance Yes Yes - Yes
persistent Fisher [18] - Yes - -
heat [17] Yes Yes Yes -
persistent weighted Gaussian [19] - Yes - -
sliced Wasserstein [20] - Yes Yes -
Lp distance between representations Yes - - -

diagram features

prominent points - Yes - -
ATOL [21] - Yes - -
persistence entropy Yes Yes Yes -
number of points Yes - - -
complex polynomial [22] Yes Yes - -
topological vector [23] - Yes - -
amplitude Yes - - -
curve features Yes - - -

plotting

time series Yes - - -
point cloud Yes - - -
image Yes - - -
graph Yes - - -
diagram Yes Yes Yes Yes
diagram density - Yes - Yes
representation Yes - - -

Table 1: Snapshot of the feature support present on the main Python open source libraries with
persistent homology capabilities. 3

across batches of data. Whenever possible, we contributed with enhancements and bug fixes to some
of giotto-tda’s C++ and Python dependencies.

4 Mapper

Mapper is a representation technique of high-dimensional data that, combining the application of filter
functions and partial clustering, creates a simple and topologically meaningful description of the input
as an unweighted graph (or, more generally, as a simplicial complex). It is primarily used as a data
visualization tool to explore substructures of interest in data. In giotto-tda, this algorithm is realised
as a sequence of steps in a scikit-learn Pipeline, where the clustering step can be parallelized. The
resulting graph is visualized through an interactive plotting API. This design choice provides a great

4GUDHI [24], scikit-tda [29], Dionysus 2 [30].

3



scikit-learn Estimator

Fe
at

ur
e

[32.56, 567.42, . . . , 906.08, 23.09]

V
ec

to
r

Im
ag

e

C
ur

ve

C
ur

ve

R
ep

re
se

nt
at

io
n

D
ia

gr
am

D
ia

gr
am

Pe
rs

.d
ia

gr
am

D
is

ta
nc

e
m

at
ri

x

W
ei

gh
te

d
ad

ja
ce

nc
y

m
at

ri
x

Im
ag

ePr
ep

r.
da

ta

Im
ag

e

G
ra

ph

Po
in

tc
lo

ud

Ti
m

e
se

ri
es

R
aw

da
ta

Figure 1: Non-exhaustive depiction of giotto-tda capabilities. Arrows represent operations available
as transformers and paths potential pipelines.

deal of interoperability and computational efficiency, allowing users to a) realize relevant steps of
the Mapper algorithm through any scikit-learn Estimator, b) integrate Mapper pipelines as part of
a larger ML workflow, and c) make use of memory caching to avoid unnecessary re-computations.
Memory caching is especially useful for interactive plotting, where giotto-tda allows users to tune
Mapper’s hyperparameters and observe how the resulting graph changes in real time. An example of
a mapper skeletonization adapted from [31] is shown in Fig. 2.

To the best of our knowledge, KeplerMapper [32] is the only alternative open-source implementation
of Mapper in Python that provides general-purpose functionality. Although KeplerMapper also
provides the flexibility to use scikit-learn estimators to generate Mapper graphs, it does not
implement all steps of the algorithm in a single class and is only partially compatible with scikit-learn
pipelines. Moreover, it does not implement memory caching or provide real-time hyperparameter
interactivity in the visualization.

5 Project management

Easy installation: Binary packages are available for all major operating systems on the PyPI package
repository and can be installed easily by running python -m pip install -U giotto-tda.

4



Figure 2: Mapper graph generated by giotto-tda based on the height of a 3D model.

Code quality: The code is unit-tested throughout using pytest and hypothesis and, as of v0.3.1, test
coverage is at 98%. The code follows PEP8 standards and adheres to the Python coding guideline
and NumPy-style documentation. CI/CD best practices are in place via Azure Pipelines.
Community-based development: We base giotto-tda’s development on collaborative tools such as
Git, GitHub, and Slack. Contributions are encouraged, and we actively make use of GitHub’s issue
tracker to provide support and discuss ideas. The library is distributed under the GNU AGPLv3
license.
Documentation and learning resources: A detailed API reference is provided using sphinx.5 To
lower the entry barrier, we provide a theory glossary and a wide range of tutorials and examples that
help new users explore how TDA-based ML pipelines can be applied to datasets of various sorts.
Project relevance: At the time of writing, the GitHub repository has attracted over 300 stars and
between 500 and 1000 visits per week. The PyPI package is downloaded 350 times per month. The
library appears in scikit-learn’s curated list of related projects.

6 Concluding remarks

The very active research field of TDA provides algorithms that can be used at any step of a ML
pipeline. giotto-tda aims to make these algorithms available in a form that is useful to both the
research and data science communities, thus allowing them to use TDA as a part of large-scale
ML tasks. We have written giotto-tda under the code and documentation standards of scikit-learn
and, alongside further performance optimization of the existing C++ code, future developments will
include the first implementation of novel TDA algorithms such as persistence Steenrod diagrams [33].

Acknowledgements

We thank Roman Yurchak, Philippe Nguyen, and Philipp Weiler for their numerous ideas and
contributions. Support from Innosuisse (grant number 32875.1 lP-ICT) is gratefully acknowledged.

References
[1] Gunnar Carlsson. Topology and data. Bull. Amer. Math. Soc. (N.S.), 46(2):255–308, 2009.

[2] Yongjin Lee, Senja D Barthel, Paweł Dłotko, et al. High-Throughput Screening Approach
for Nanoporous Materials Genome Using Topological Data Analysis: Application to Zeolites.
Journal of chemical theory and computation, 14(8):4427–4437, August 2018.

[3] Rickard Brüel Gabrielsson and Gunnar Carlsson. Exposition and interpretation of the topology
of neural networks. In 2019 18th IEEE International Conference On Machine Learning And
Applications (ICMLA), pages 1069–1076. IEEE, 2019.

5Currently hosted at https://giotto-ai.github.io/gtda-docs/latest/modules/index.html.

5

https://giotto-ai.github.io/gtda-docs/latest/modules/index.html


[4] Michael W. Reimann, Max Nolte, Martina Scolamiero, et al. Cliques of neurons bound into
cavities provide a missing link between structure and function. Frontiers in Computational
Neuroscience, 11:48, 2017.

[5] Monica Nicolau, Arnold J. Levine, and Gunnar Carlsson. Topology based data analysis identifies
a subgroup of breast cancers with a unique mutational profile and excellent survival. Proceedings
of the National Academy of Sciences, 108(17):7265–7270, 2011.

[6] F. Pedregosa, G. Varoquaux, A. Gramfort, et al. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[7] Charles R. Harris, K. Jarrod Millman, Stéfan J van der Walt, et al. Array programming with
NumPy. Nature, 585:357–362, 2020.

[8] Jose A. Perea. Topological times series analysis. Notices Amer. Math. Soc., 66(5):686–694,
2019.

[9] Audun Myers, Elizabeth Munch, and Firas A. Khasawneh. Persistent homology of complex
networks for dynamic state detection. Phys. Rev. E, 100:022314, Aug 2019.

[10] Adam Paszke, Sam Gross, Francisco Massa, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in Neural Information Processing Systems 32,
pages 8024–8035, 2019.

[11] Marian Tietz, Thomas J. Fan, Daniel Nouri, Benjamin Bossan, and skorch Developers. skorch:
A scikit-learn compatible neural network library that wraps PyTorch, 2017.

[12] Martín Abadi, Ashish Agarwal, et al. TensorFlow: Large-scale machine learning on heteroge-
neous systems, 2015.

[13] Daniel Lütgehetmann, Dejan Govc, Jason P. Smith, et al. Computing persistent homology of
directed flag complexes. Algorithms, 13(1):19, 2020.

[14] Tyrus Berry and Timothy Sauer. Consistent manifold representation for topological data analysis.
Foundations of Data Science, 1(1):1, 2019.

[15] Jean-Daniel Boissonnat and Siddharth Pritam. Edge Collapse and Persistence of Flag Complexes.
In 36th International Symposium on Computational Geometry (SoCG 2020), volume 164, pages
19:1–19:15, 2020.

[16] Rickard Brüel Gabrielsson, Bradley J Nelson, Anjan Dwaraknath, and Primoz Skraba. A
topology layer for machine learning. In International Conference on Artificial Intelligence and
Statistics, pages 1553–1563, 2020.

[17] J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt. A stable multi-scale kernel for topological
machine learning. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4741–4748, 2015.

[18] Tam Le and Makoto Yamada. Persistence Fisher kernel: A Riemannian manifold kernel for
persistence diagrams. In Advances in Neural Information Processing Systems, volume 31, pages
10007–10018, 2018.

[19] Genki Kusano, Yasuaki Hiraoka, and Kenji Fukumizu. Persistence weighted Gaussian kernel
for topological data analysis. In Proceedings of The 33rd International Conference on Machine
Learning, volume 48, pages 2004–2013, 2016.

[20] Mathieu Carrière, Marco Cuturi, and Steve Oudot. Sliced Wasserstein kernel for persistence
diagrams. In Proceedings of the 34th International Conference on Machine Learning, volume 70,
pages 664–673, 2017.

[21] Martin Royer, Frédéric Chazal, Clément Levrard, Umeda Yuhei, and Ike Yuichi. ATOL: Measure
vectorization for automatic topologically-oriented learning. arXiv:1909.13472, 2020.

[22] Barbara Di Fabio and Massimo Ferri. Comparing persistence diagrams through complex vectors.
In International Conference on Image Analysis and Processing, pages 294–305. Springer, 2015.

6



[23] Mathieu Carrière, Steve Y. Oudot, and Maks Ovsjanikov. Stable topological signatures for
points on 3d shapes. Computer Graphics Forum, 2015.

[24] The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 3.3.0
edition, 2020.

[25] Ulrich Bauer. Ripser: efficient computation of vietoris-rips persistence barcodes. arXiv preprint
arXiv:1908.02518, 2019.

[26] Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov. Geometry helps to compare persistence
diagrams. Journal of Experimental Algorithmics, 22:1–20, 09 2017.

[27] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 – seamless operability
between C++11 and Python, 2017.

[28] Christopher Tralie, Nathaniel Saul, and Rann Bar-On. Ripser.py: A lean persistent homology
library for Python. Journal of Open Source Software, 3(29):925, 2018.

[29] Nathaniel Saul and Chris Tralie. Scikit-TDA: Topological data analysis for Python, 2019.

[30] Dmitriy Morozov. Dionysus 2 – library for computing persistent homology, 2018.

[31] Jeff Murugan and Duncan Robertson. An introduction to topological data analysis for physicists:
From LGM to FRBs. arXiv preprint arXiv:1904.11044, 2019.

[32] Hendrik van Veen, Nathaniel Saul, David Eargle, et al. Kepler Mapper: A flexible Python
implementation of the Mapper algorithm. Journal of Open Source Software, 4(42):1315, 2019.

[33] Anibal M. Medina-Mardones. Persistence Steenrod modules. arXiv:1812.05031, 2018.

7


	Introduction
	Architecture
	Persistent homology
	Mapper
	Project management
	Concluding remarks

