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Abstract. Image scale carries crucial information in medical imaging,
e.g. the size and spatial frequency of local structures, lesions, tumors
and cell nuclei. With feature transfer being a common practice, scale-
invariant features implicitly learned from pretraining on ImageNet tend
to be preferred over scale-covariant features. The pruning strategy in this
paper proposes a way to maintain scale covariance in the transferred fea-
tures. Deep learning interpretability is used to analyze the layer-wise
encoding of scale information for popular architectures such as Incep-
tionV3 and ResNet50. Interestingly, the covariance of scale peaks at cen-
tral layers and decreases close to softmax. Motivated by these results, our
pruning strategy removes the layers where invariance to scale is learned.
The pruning operation leads to marked improvements in the regression
of both nuclei areas and magnification levels of histopathology images.
These are relevant applications to enlarge the existing medical datasets
with open-access images as those of PubMed Central. All experiments are
performed on publicly available data and the code is shared on GitHub.
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1 Introduction

Transfer learning has become a standard approach in tasks with a limited amount
of training data [35]. In medical imaging, it has led to significant improvements in
various applications in terms of accuracy and speed of convergence [21,26,17,25].
Scale invariance is required and learned implicitly by Convolutional Neural Net-
works (CNNs) in the object recognition task on ImageNet, as they normally
appear at different distances from the observation point. Despite the controlled
viewpoint and the considerable domain shift (i.e. reduced number of classes,
less color, texture and object variety [25]), medical imaging applications often
reuse basic features from pretraining on natural images, i.e. color, edges and
textures [17,13].
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The implicitly learned invariances could have different impacts in medical imag-
ing. Global and local rotation invariance, for instance, were shown to be rele-
vant [31,1]. The scale invariance, however, could be detrimental. The viewpoint
in medical images is controlled and the pixel (or voxel) size has a corresponding
physical dimension. The size of an object of interest within an image carries
relevant information [7,6]. Nuclei size histopathology applications is a clear ex-
ample of a discriminant factor of tumor regions [8,14]. Approaches introducing
scale analysis in the sense of either scale covariant networks [33] or multi-scale
learning [3,32,24,16] showed that analyzing tissue at various magnifications ben-
efits from the combination of fine-grained details and global tissue information.
Histopathology is not the only application that benefits from information about
scale. Nodule detection and classification in computed tomography is another ex-
ample in the medical domain [16]. From a larger perspective, other applications
can be remote sensing, defect detection, material recognition and biometrics (e.g.
iris recognition) [28]. It is thus relevant to analyze the role of information about
scale in state-of-the-art CNNs that are often used for transfer learning such as
inception-based [27] and residual-learning networks [15].

A key question is how to quantify the degree of scale invariance at each layer
in the network. Taking inspiration from previous research in concept-based in-
terpretability of CNNs [20,12], we define the layer-wise quantification of scale-
covariance as an interpretability task. Image scale is seen as a concept that
is learned during training. This is analyzed with Regression Concept Vectors
(RCVs) [12]. RCVs extend previous research on binary-expressed concept in-
terpretability (where the concept is either present or not present) [20,5] and
were already used to analyze the effects of transfer in [13]. They are particu-
larly suited for our task since they allow us to measure scale with continuous
values obtained from the bounding box annotations in the publicly available
PASCAL-VOC dataset. The degree of invariance at each layer is evaluated as
a regression task of the scale measures. Besides, the layer-wise quantification
of scale covariance is used to implement a pruning strategy that preserves the
scale-covariance of the features. Differently from the scale-covariant designs that
explicitly model the requirements of specific applications [19,23,33,10,30,4], this
pruning can be applied to state-of-the-art CNNs. In this way, ImageNet pre-
trained weights1 can be used without the need of retraining from scratch. Being
based on the interpretability analysis, the pruning has an interpretation that
promotes its algorithmic transparency. It removes, in fact, the layers that in-
troduce scale-invariance to the features. The experimental results on Estrogen
Receptor-positive Breast Cancer (ERBCA+) images show a marked benefit in
the magnification regression of open-access histopathology images [24]. This can
help predicting the magnification range of images where the physical dimen-
sion of voxels is unknown, e.g. the large open-access biomedical data repository
PubMed Central2, to extend existing medical datasets.

1 downloadable at https://keras.io/api/applications/
2 https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
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2 Methods

2.1 Notations

We consider an input image X ∈ Rw×h, where w is the image width and h is the
height. The function φ(·), defined as φ : Rh×w → Rd maps the input image to a
vector of arbitrary dimension d. For instance, it transforms X into a collection
of d scalars obtained from averaged feature maps at a given intermediate layer.
At the final fully-connected layer, φ(·) transforms X into a set of predictions.
When analyzing scale information, we are interested in covariance3, thus whether
we can find a transformation g′ : Rd → Rd that predicts the transformation
g : Rh×w → Rh×w of the input image X in the feature space obtained by φ(g(X)).
The scaling transformations are expressed as gσ(·), being parameterized by a
scale factor σ.

2.2 Representation of Scale Information

Our interest is in finding a linear transformation g′σ(·) that is a predictable
transformation of the scaling operation gσ(·). To this end, a regression vector v
can be searched in the feature space to predict the scaling factor σ as4:

σ =
∑
i

viφi(gσ(X)) = v · φ(gσ(X)). (1)

Therefore, g′σ(·) can be represented as a translation matrix (in Rd) by σ along
v, so that g′σ(φ(X)) = φ(X) + v · σ.

2.3 Bounding-Box Size vs. Image Size

This section clarifies our definition and measurement of the image scale. Indi-
cations of scale are commonly used to relate the dimensions of two objects. In
design modeling and cartography, the scale is the ratio comparing the length of
the represented segment to the one in the real world (i.e. 1 cm:1000 Km). Com-
puter vision and image processing mostly refer to the act of scaling, namely the
transformation that generates a new image with a larger or smaller number of
pixels. If the input size is changed with the scaling, however, the transformation
causes the ”train-test” resolution discrepancy in [29] during network inference.
For this reason, it is recommendable to fix the input size to the default model
input size Si = 299×299 when measuring scale information as shown in [22]. By
focusing only on ImageNet-like images that only contain a single object, image

3 Following the same terminology, the equivariance, as opposed to covariance, implies
that the function φ(·) maps an input image to a point in the same domain, i.e.
φ : Rh×w → Rh×w.

4 For simplicity, we omit the intercept. In Eq. (1), the intercept would be v0 with
φ0(gσ(X)) = 1
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scale can be pragmatically defined as the solid angle of the object in the im-
age, namely the proportion of the field of view occupied by an object [34]. More
directly, we measure the bounding-box area Sb occupied by the object in the
image. The image has area So = ho × wo, where ho and wo are respectively the
original image width and height. A small bounding box corresponds to a smaller
space in the field of view of the camera, and thus a smaller solid angle. Scale
measures are thus defined as the ratio r = Sb

So
= hb×wb

ho×wo
, where hb and wb are the

bounding box height and width. Fig. 1 shows an example of scale measures on
input images from the same class appearing at different scales.

2.4 Network Architectures and Tools

Fig. 1: Scale quantification and network pruning for better transfer in the medical
domain. The bounding boxes for the ImageNet class albatross and the segmen-
tation masks for the ERBCa+ inputs are overlaid in yellow on the images. The
bounding box ratios r are reported on top of the inputs. Images are shown at
magnifications 10X and 40X. The layer evidenced in yellow encodes the most
of information about scale. The pruned network drops the layers after this for
solving the medical task. Best seen on screen.

ImageNet-weights Initialization InceptionV3 [27] and ResNet50 [15] are used for
the analysis with pretrained ImageNet weights.

Regression of Scale The regression of the scale of multiple objects of the same
class that appear naturally at various scales is sought to approximate g′σ(·) as
in Eq. 1. This corresponds to computing the RCV representing “scale” [22].
The regression is sought at several layers in the network to compare different
depths. Aggregation is performed on the feature maps in the form of Global
Average Pooling (GAP) as in [11] to obtain the feature vector φ(X) (except
for the prediction layer which is already pooled). The determination coefficient
R2 is used to evaluate the prediction of the scale ratio r on unseen test data
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of the same class5. This evaluation is informative about the scale-covariance of
the features. The R2 is a measure between zero and one when the regression
is evaluated on the training data. The R2, however, could take negative values
when evaluated on the test data (test R2). Differently from what one may think,
this is not due to a bad choice in the evaluation technique but it rather shows
that the prediction on the test samples is far worse than predicting their mean.
To address this issue, a normalization of the test R2 is performed by evaluating
eR

2

e . In this way, the performance of the RCV on test data is kept in a [0,1]
range, with values below 1

e evidencing bad performance.

Pruning strategy Network pruning is performed by comparing the test R2 to
identify the layer where the scale covariance is the highest. This evaluation is
averaged across different object categories to remove the dependence on the class
of the inputs. The layer with the highest test R2 (the yellow layer in Fig. 1) is
where the scale covariance is the highest. Layers deeper than this one are pruned
off the architecture and a Global Average Pooling operation (GAP) is added to
obtain a vector of the aggregated features.

Transfer and network pruning Transfer is performed from both the original and
pruned architectures. To predict the average nuclei area, a single-unit dense
layer is trained with the mean squared error loss between the true areas and the
predicted ones. The nuclei area is expressed for each image as the average number
of pixels within the segmentation of the nuclei. The regression is evaluated by the
Mean Average Error (MAE). The magnification category (i.e. 5X, 8X, 10X, 15X,
20X, 30X, 40X) is also obtained from the average nuclei areas. The predicted
areas are mapped to the magnification category that has the closest mean average
value of the nuclei areas in the training set. This approach outperformed the
direct classification of the magnification in [24]. Cohen’s kappa coefficient is
used to measure the inter-rater reliability of the magnification prediction. The
networks are implemented in Keras and trained for five epochs with standard
hyperparameters (lr = 1e − 4). The full pipeline is reported in Fig. 1 and the
source code is available on github for reproducibility6.

2.5 Datasets

The experiments in this paper involve two different datasets since the scale
analysis is performed on inputs of natural images and the proposed final ar-
chitecture is evaluated on a medical imaging task. For the scale quantification
part, images with manual annotations of bounding boxes are selected from the
publicly available PASCAL-VOC dataset [9]. We restrict our analysis to three
object categories and to images containing a single bounding box, chosen among

5 We compute R2 =
∑N

i=1(r̂i−r̄)∑N
i=1 ri−r̄

, were N is the number of test data samples, r̂ is the

ratio predicted by the regression model, r̄ is the mean of the true ratios {ri}Ni=1.
6 https://bit.ly/2N6teMA
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the available annotated classes. These are albatross (ID: n02058221, 441 images),
kite (ID: n01608432, 406 images) and racing car (ID: n04037443, 365 images).

The data for the histopathology application consist of 141 whole slide images
of 2K×2K pixels taken at a maximum magnification of 40x ERBCa+ images. In
these, 12, 000 nuclei boundaries were manually annotated [18]. Patch sampling
was performed at 5, 8, 10, 15, 20, 30, and 40x magnification. A total of 69, 019
patches with nuclei segmentation masks were split into training, validation and
test partitions (approximately 60%, 20%, 20% respectively) as shown in Table 1.
The imbalance in the different magnification categories is due to the area covered
by each magnification level, with the least number of patches being extracted
at 5x and 8x. The average nuclei area is extracted for each input image by
computing the average number of pixels in the relative nuclei segmentation mask.
Example images with overlaid segmentation masks are displayed in Fig. 1.

Split/# patches 5X 8X 10X 15X 20X 30X 40X Total

Train 94 2,174 4,141 7,293 9,002 10,736 11,638 45,078
Validation 8 588 1,197 2,132 2,604 3,504 3,150 12,733

Test 36 428 900 1,728 2,198 2,802 3,166 11,208

Total 138 3,190 6,238 11,153 13,804 16,592 17,904 69,019

Table 1: Number of ERBCa+ patches extracted per magnification and partition.

3 Experiments and Results

3.1 Layer-wise Quantification of Scale invariance

The layerwise analysis of scale representation in InceptionV3 and ResNet50 is
shown in Fig. 27. The object categories racing-car, albatross and kite are used
for the analysis. For each class, 70% of the available images are used for learning
the regression and the rest for the evaluation of the R2. The evaluation was
performed for ten splits of images. To remove the dependency of the evaluation
on the image selection (by multiple split) and category (by analyzing multiple
classes) we average the 10 repetitions for all classes (a total of 30 evaluations).
The regression of scale in a randomly initialized network (orange line) is com-
pared to a pretrained model (blue line) in Fig. 2. An additional baseline (green
line) shows the performance of regressing random scale measures, i.e. the scale
ratios were shuffled to break the true image-label correspondence. Values of R2

close to one reflect the linear covariance of the intermediate layers to object scale
as defined in Section 2.1. Individual results for each class were discussed in [22],
while the generalization on different test classes is further analyzed in [2].

7 Layer names refer to the Keras implementation names.
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(a) InceptionV3 (b) ResNet50

Fig. 2: Regression of scale measures on test data (performance of the RCV) at
different layers.

3.2 Improvement of Transfer

The performance of the networks predicting average nuclei areas is compared
between the original and pruned versions in Table 2. We report the MAE of
ten repetitions8 and the relative standard deviation. In the same table, we also
report the kappa for the prediction of the magnification category.

Table 2: Mean Average Error (MAE) of the nuclei area regression (in pixels)
and Cohen’s kappa coefficient between the true and predicted magnification
categories. Results are averaged over ten repetitions, the standard deviation is
reported in brackets.

model layer MAE (std) kappa (std)

InceptionV3 mixed10 81.85 (11.08) 0.435 (0.02)
pruned InceptionV3 mixed8 54.93 (4.32) 0.571 (0.05)

ResNet50 add16 70.08 (12.49) 0.610 (0.03)
pruned ResNet50 add15 54.76 (3.10) 0.623 (0.04)

4 Discussion

The experiments were designed for analyzing the presence of scale-informative
features in state-of-the-art CNNs pretrained on ImageNet. Our results in Sec. 3.1,
particularly highlight the linear covariance of medium-deep layers, with invari-
ance being learned before the classification layer. The scale of unseen objects
(test data) is regressed with the highest determination coefficient R2 = 0.85
in InceptionV3 (blue line in Fig.2a), independently from the object class being

8 Different seeds were used to initialize the dense connections to the last dense layer.
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tested. In comparison, the RCV learned from random scale ratios cannot predict
test data. This sanity check provides a lower bound R2 = −0.58. For randomly
initialized weights (orange line in Fig. 2a), the performance is around zero in
almost all layers. This suggests that architectures with random weights do not
contain linearly covariant representations, that hence must be learned during
training. Similar observations apply to the ResNet50 models in Fig. 2b.

One important comment is about the low R2 values at early layers of both
architectures. We attribute this result to the limited size of the effective receptive
field, that being at early layers only contains information from a very small frac-
tion of the image. This affects the prediction of the scale ratios. The drop in the
layers before the class prediction, namely in mixed10 (for InceptionV3), add16
(for ResNet50) and in pre softmax (for both architectures), shows that deep net-
work features learn scale invariance to classify image categories. Invariance to
scale is thus achieved gradually in these layers preceding the last layer.

The quantification of scale invariance is applied to the image magnification
regression as described in Sec. 3.2. The pruning strategy drops the layers with
scale-invariant features. For InceptionV3, the pruned features are a result of a
GAP on top of the mixed8 features. As shown in Table 2, the MAE=54.93 of
the nuclei area regression in mixed8 is markedly lower than the MAE=81.85
in mixed10. This corresponds to a better prediction of the magnification range,
hence to a higher kappa coefficient.

5 Conclusions and Future work

This paper proposed the analysis of scale covariance in state-of-the-art CNNs
pretrained on ImageNet and a pruning strategy to mantain such covariance for
better transfer. Feature extraction and finetuning are very diffused techniques,
and the pruned features can lead to improved performances on imaging tasks
where scale carries crucial information, as for example the medical task of nuclei
area regression and scale magnification prediction shown in our application. This
work shows, in addition, that research in deep learning interpretability can be
actively used to improve model development. Other transformations could also
be analyzed, e.g. rotation, to improve the feature extraction process without the
need for explicit equivariant designs. Such analysis could be relevant not only
in other medical imaging tasks, but also in remote sensing, defect detection,
material analysis and biometrics.

A limitation of this work is that the regression only captures linear correla-
tions in the data, whereas nonlinear relationships could be necessary to model
other transformations. In future work, we will investigate non-linear regression
and manifold learning of the feature space to formally address this point.
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