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Abstract: Mobile applications are becoming very complex since business applications increasingly move to the 
mobile. Hence the same problem of code maintenance and comprehension of poorly documented apps, as in 
the desktop world, happen to the mobile today. One technique to help with code comprehension is to reverse 
engineer the application. Specifically, we are interested in the functional structure of the app i.e. how the 
classes that implement the use cases interact. Then we adapted, to the iPhone, the code analysis technique 
we developed for the desktop applications. In this paper we present the reverse engineering process and tool 
we used to reverse engineer the code of an iPhone app and show, in a case study, how these tools are used. 

1 INTRODUCTION 

According to several surveys, mobile business 
applications are the trend of the day, although not all 
surveys agree on the strength of the trend 
(Appcelerator/IDC, 2013) (IDC, 2013) (Zend, 2013) 
(Wasserman, 2011). With the growing interest in 
B2B and B2E mobile apps (IDC, 2013) mobile 
development becomes mainstream (IBM, 2014) 
(Hammond, 2013). Then the very same problems of 
application maintenance and understanding arise as 
in desktop applications. There are no reasons to 
believe that mobile apps will be any easier to 
maintain than desktop ones. In particular the lack of 
documentation could even be higher, on average, 
than on traditional desktop platform since these 
applications are notoriously developed using agile 
approaches such as Scrum which leaves a lot of 
freedom to the developer as to what documentation 
to produce. Then we decided to develop a mobile 
version of our methodology for the reverse 
engineering of applications. This is a complete set of 
techniques and tools to analyze the functional 
structure of an application (Dugerdil & Niculescu, 
2014) to improve its understanding hence its 
maintenance. Indeed it is known for a long time that 
to “understand” a large software system, the 
structural aspects of the system are more important 
than any single algorithmic component (Tilley, 
Santanu & Smith, 1996). Since there are several 
views of software architecture (Clements, Kazman 

& Klein, 2002), each targeting a particular purpose, 
we developed a new one specifically targeted at 
software understanding. The latter is what we call 
the functional structure of the system (Dugerdil & 
Niculescu, 2014) i.e. the structure of the components 
of the system that implement the high level business 
function of the software, together with their 
relationships. Our approach rests on dynamic 
analysis techniques i.e. the analysis of the execution 
trace of the program corresponding to some scenario 
(use-case) relevant to the business. One key problem 
in dynamic analysis is to cope with the amount of 
data to process. In fact, the execution trace file can 
contain several hundreds of thousands of events. To 
cope with this data volume, we developed a trace 
segmentation technique (Dugerdil, 2007) that has 
showed to be very efficient at analyzing the 
interactions between the components of the system. 
In this paper we first present our reverse engineering 
framework for software system (Section 2). Then we 
show the tools we developed specifically to adapt 
our framework to the reverse engineering of 
Objective-C applications on the iPhone (Section 3). 
Next, in Section 4, we present a case study. Section 
5 presents the related work and Section 6 concludes 
the paper. 

gwenola.dossanto
Texte tapé à la machine
Published in Proceedings of the 10th International Conference on Software Engineering and Applications (ICSOFT-EA-2015), 2015, p. 261-268, which should be cited to refer to this work

gwenola.dossanto
Texte tapé à la machine

gwenola.dossanto
Texte tapé à la machine



 

2 RE

The goa
recover 
((Dugerd
classes 
function 
the recov
are not r
the app 
the users
the user
scenario 
with the
applicati
user. Bu
cases fo
Starting 
on scena
the sourc
the exec
calls in
instrume
in the 
methods
the meth
run acco
executio
analysis 
recover t
many vie
of the re
tasks. 
 
 
 
 

This pro
tools tha
the sourc
 dev

lang
 lev

“in
Dependi
consider
For Obj
develope
detailed 
instrume
iPhone. 
cases and

EVERSE E

al of our reve
the function

dil & Nicules
or compone
of the applic

very of the u
readily availab
(which is gen

s interacting w
r to go throu
and we take 

e app. (In 
ions we even 
ut this is not r
or mobile app

from the use 
arios of busin
ce code of the
cution traces 
n a given 
entation consis
source code 
 are executed

hod is entered 
ording to the u
n trace is r
of the exec

the functional
ews. Figure 1

everse enginee

Figure 1: Reve

ocess has bee
at are present
ce code, many
veloping an in
guage of the s
eraging an A
strumentation
ng on th

red, the secon
jective-C it 
ed our own c
in the next se

ented it is co
Then the app
d the executio

ENGINEE

erse engineer
nal structure 
scu, 2014) i.e
ents support 
cation. The pr
se-cases of th
ble from the 
nerally the ca

with the system
ugh all the 
note of all th
the case of 
video-record 
required here 
ps are usually
cases allows 

ness value. Ne
e program to b

(i.e. the sequ
run of the 
sts of inserting

to record e
d. An event is

and exited. N
use-cases and t
recorded. Fin
cution trace 
l structure of 
 illustrates a s

ering process 

erse Engineerin

en implemente
ted in Figure 
y variants exis
nstrumentor fo
system;  

AOP environm
n aspects” into
he program
d option may
is indeed th

code instrume
ection. Once t
ompiled and 
p is run acco
on trace is rec

ERING  

ing process i
of the prog

. to analyze w
the high l

rocess starts w
he system, if 
documentatio
ase), by watch
m. We simply
business-rele

he actions he d
f legacy desk
the actions of
because the 

y much simp
us to concent

ext we instrum
be able to gene
uence of met

system). C
g extra statem
events when 
s generated w

Next the syste
the correspond

nally, an off-
is performed
the system u

simplified ver
with only the 

g process. 

ed using a se
2. To instrum

st among whic
or the program

ment to inject
o the code. 

mming langu
y not be availa
he case and 
entor that wil
the code has b
shipped onto
rding to the 

corded in a fil

is to 
gram 
what 
level 
with 
they 

on of 
hing 

y ask 
evant 
does 
ktop 
f the 
use-

pler). 
trate 
ment 
erate 
thod 

Code 
ments 

the 
when 
em is 
ding 

f-line 
d to 
using 
rsion 
e key 

et of 
ment 
ch: 
ming 

t the 

uage 
able. 

we 
ll be 
been 

o the 
use-

le on 

the 
dev
trac
Fin
tool
from
C 
iden
The
in t
and
two
grap

The
 
[SCI

Or
‘EN

Wit
[SC

[DC

[TN
[Sig
[Ty

[TS
[Pa

 
The
and
indi
num
to th

device. Next
vice and uplo
ce loader whic
ally, the trace
ls. The latter 
m the trace us
does not h

ntification of 
ere are two fo
the execution 
d the second f
o kinds of ev
ph with the ca

Fig

e syntax of the

I] [DCI] ’[‘ [TN] 

D’ [SCI] [DCI] ’

th : 
CI] : Static 

the exe
CI] : Dynam

instanc
N] : Thread
gn] : Metho
ype] : Type 

metho
S] : Time s
ram]: List o

the p
metho
replac

e first event r
d the second,
icates the ex

mber allows u
he same threa

t, the file is 
aded into a t
ch performs a
 is analyzed u
is able to pr

sing several v
ave any pa
the events use

ormats for the
trace. The fir

for method ex
vents, we can
all hierarchy. 

gure 2: Tools w

e events is the

’]’ [Sign] ’AS’ [T

[‘ [TN] ’]’ [Sign]

class identifie
ecuted method

mic class iden
ce that execut
d number. 
od signature. 

of the elem
d. 
stamp of the e

of the comma
rimitive-typed
d. Non prim
ed by ‘_’. 

represents the
, headed by 
xit from the 
s to gather all

ad for further a

downloaded 
trace database
a few integrity
using our trace
resent the inf

views. Since O
ackage constr
es only the cla
e events to be 
rst is for meth
xit. By record
n reconstruct

workflow. 

e following: 

[Type] ‘[‘ [TS] ‘]

] ’AS’ [Type] ‘[‘ 

er : the class 
d is implemen

ntifier : the cla
ted the method

ment returned

event  
a-separated v
d parameters

mitive-typed v

e entry into a
the keyword
method. Th

l the events th
analysis. 

from the 
e using a 
y checks. 
e analysis 
formation 

Objective-
ruct, the 
ass name. 
recorded 

hod entry 
ding these 
t the call 

 

’ [Param] 

[TS] ‘]’ 

in which 
nted. 
ass of the 
d. 

d by the 

values for 
s of the 
alues are 

a method 
d ‘END’, 
he thread 
hat belong 



 

3 APP INSTRUMENTATION 

Dynamic analysis as opposed to static analysis aims 
at observing the application’s behavior while it is 
running. Although many techniques can be used 
(Hamou-Lhadj &  Lethbridge, 2004) we decided to 
use code instrumentation because, on the mobile 
device, there are not many alternatives. Indeed one 
cannot install any profiling or debugging 
environment without deeply impacting the behavior 
of the code. The least intrusive technique is simply 
to add lightweight tracing statements in the 
application source code to write the events in a flat 
file.  Each of the recorded events must contain the 
signature of the method called. As for the class 
identifier we record the name of the class and, in 
case of the languages using module or package 
declarations, the package or module in which the 
class is defined.  Once the trace file is generated 
(that could contain millions of events), it is loaded 
into a database for further processing. Many of the 
existing dynamic techniques focus on the monitoring 
of the low level instructions of the program, in 
particular when the purpose is to analyze an app for 
which only the compiled code is available. Since we 
wish to reverse engineer the functional structure of 
the app, access to the source code is a must.  
The first step to build our own instrumentor for 
Objective-C is to be able to parse the source code. 
To build such a parser, several possibilities exist. 
Tools like JavaCC (JavaCC, 2014) YaCC (YaCC, 
2014) or ANTLR (ANTLR, 2014) are capable of 
generating a parser given the syntax definition of the 
programming language in the EBNF format. Such 
parser is completed by adding some extra parsing 
instructions in the target language. The main 
difference between these tools is the language in 
which the parser is generated. Our choice was 
JavaCC which generates a parser in Java. This is 
because JavaCC -encoded grammars are available 
for several programming languages, including 
Objective-C, and also because we had some 
previous successful experience with it. However we 
do not only need to parse the code, we also need to 
build an abstract syntax tree (AST) of the code in 
memory so that we could add the extra trace event 
generation code to some of the nodes in the AST. 
We used the Java Tree Builder (JTB, 2014) to 
produce the AST. Some Visitor (Gamma et al., 
1995) classes are generated by the same tool to visit 
each node of the AST. We use the “Visitor” classes 
to add the instrumentation instructions at the proper 
locations in the code: as the first statement of each 
method and right before each of the methods’ exit 

statements. The output of the parser generation 
process is represented by two packages named 
syntaxtree and visitor which respectively 
contain the AST elements and their associated 
“visitors”. Because every single abstract syntax tree 
element comes with its own “Visitor” class, we 
focused on the ones responsible for the handling of 
methods. The added instructions in the source code 
must satisfy two conditions: 
1 Do not produce any changes to the application 

semantics; 
2 Limit as much as possible the impact on the 

application processing time. 

The first constraint is self-evident. The second 
condition aims at avoiding any impact on the 
scheduling of multi-threaded applications. To be 
able to record the events during the execution of the 
app, we need to build a little runtime program, called 
HEGTrace, to write the events to a flat file. Then the 
instructions we insert into the source code of the 
methods are simple calls to the function of 
HEGTrace. The latter contains: 
 A class with two methods to write an event at 

the entry and at the exit of the instrumented 
method. 

 A class responsible for converting the 
primitive-typed values of the parameters into 
NSString, to write these values in the trace 
event (see the [Param] element of the trace 
event grammar). 

Every iOS application has its own set of directories 
in which it can read and write files. An application’s 
private file system is called a Sandbox (Apple iOS, 
2014) and it is specific to the application. Inside a 
sandbox, there are three predefined directories: 
Documents, Library and tmp. To store a trace 
file, the HEGTrace program can write in either the 
Library or Documents directory. But we should 
avoid tmp, since its content may be cleared away by 
the system when the application stops running. 
Because these folders generally contain user-
generated content and other resources used by the 
application’s logic, we need to make sure the trace 
files we write will not interfere with the existing 
files. To do so, we create the trace files in a custom 
folder inside the Library folder: 

 <Application_Home>/Library/HEG_TRACE/trace_[timestamp].  

This will not only ensure that our tool does not 
hamper the application’s behavior but also allows 
the running of our use-cases in sequence to get 
several trace files all at once. Next, to upload the 
trace file into the desktop machine for further 
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provides a rich set of view through which the 
maintenance engineer can study the running of the 
code. In our simple case study, we observed that the 
“time series” technique can visually present the 
mutual behavior of the classes in a convenient 
format. It provides some useful clues as to how 
classes interact when running the use-cases. The 
dynamic UML class diagram of the functional 
structure of the use-case conveniently summarizes 
all the programming elements involved in the 
execution of the use-cases.  
The drawback of our reverse-engineering technique 
is that we are unsure to go through the all the 
alternative paths in each of the scenarios since the 
latter are recovered from the observation of the 
users. For example, in the case of legacy desktop 
applications, we investigated a semi-automated 
technique to recover the use case from the legacy 
code (Dugerdil, Sennhauser, 2013) with moderate 
success however, due to the complexity of the task. 
Indeed, use-case recovery from source code is still 
an open problem. As future work we will integrate 
our tool with IBM’s RSA to be able to generate the 
dynamic UML class diagram automatically. We also 
intend to develop new views to represent the 
dynamic business-level application semantics. 
Indeed we are building domain concept ontologies 
whose concepts will be dynamically identified in the 
executed code. This technique will help to close the 
semantic gap between the high level business 
domain concepts and the code level. 
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