
Reverse Engineering an iPhone Applications Using Dynamic Analysis

Philippe Dugerdil, Roland Sako
Geneva School of Business Adminsitration, Univ. of Applied Sciences Westen Switzerland (HESSO) ,

7 route de Drize, CH-1227 Geneva, Switzerland
philippe.dugerdil@hesge.ch, roland.sako@gmail.com

Keywords: Reverse engineering, mobile application, dynamic analysis.

Abstract: Mobile applications are becoming very complex since business applications increasingly move to the
mobile. Hence the same problem of code maintenance and comprehension of poorly documented apps, as in
the desktop world, happen to the mobile today. One technique to help with code comprehension is to reverse
engineer the application. Specifically, we are interested in the functional structure of the app i.e. how the
classes that implement the use cases interact. Then we adapted, to the iPhone, the code analysis technique
we developed for the desktop applications. In this paper we present the reverse engineering process and tool
we used to reverse engineer the code of an iPhone app and show, in a case study, how these tools are used.

1 INTRODUCTION

According to several surveys, mobile business
applications are the trend of the day, although not all
surveys agree on the strength of the trend
(Appcelerator/IDC, 2013) (IDC, 2013) (Zend, 2013)
(Wasserman, 2011). With the growing interest in
B2B and B2E mobile apps (IDC, 2013) mobile
development becomes mainstream (IBM, 2014)
(Hammond, 2013). Then the very same problems of
application maintenance and understanding arise as
in desktop applications. There are no reasons to
believe that mobile apps will be any easier to
maintain than desktop ones. In particular the lack of
documentation could even be higher, on average,
than on traditional desktop platform since these
applications are notoriously developed using agile
approaches such as Scrum which leaves a lot of
freedom to the developer as to what documentation
to produce. Then we decided to develop a mobile
version of our methodology for the reverse
engineering of applications. This is a complete set of
techniques and tools to analyze the functional
structure of an application (Dugerdil & Niculescu,
2014) to improve its understanding hence its
maintenance. Indeed it is known for a long time that
to “understand” a large software system, the
structural aspects of the system are more important
than any single algorithmic component (Tilley,
Santanu & Smith, 1996). Since there are several
views of software architecture (Clements, Kazman

& Klein, 2002), each targeting a particular purpose,
we developed a new one specifically targeted at
software understanding. The latter is what we call
the functional structure of the system (Dugerdil &
Niculescu, 2014) i.e. the structure of the components
of the system that implement the high level business
function of the software, together with their
relationships. Our approach rests on dynamic
analysis techniques i.e. the analysis of the execution
trace of the program corresponding to some scenario
(use-case) relevant to the business. One key problem
in dynamic analysis is to cope with the amount of
data to process. In fact, the execution trace file can
contain several hundreds of thousands of events. To
cope with this data volume, we developed a trace
segmentation technique (Dugerdil, 2007) that has
showed to be very efficient at analyzing the
interactions between the components of the system.
In this paper we first present our reverse engineering
framework for software system (Section 2). Then we
show the tools we developed specifically to adapt
our framework to the reverse engineering of
Objective-C applications on the iPhone (Section 3).
Next, in Section 4, we present a case study. Section
5 presents the related work and Section 6 concludes
the paper.

gwenola.dossanto
Texte tapé à la machine
Published in Proceedings of the 10th International Conference on Software Engineering and Applications (ICSOFT-EA-2015), 2015, p. 261-268, which should be cited to refer to this work

gwenola.dossanto
Texte tapé à la machine

gwenola.dossanto
Texte tapé à la machine

2 RE

The goa
recover
((Dugerd
classes
function
the recov
are not r
the app
the users
the user
scenario
with the
applicati
user. Bu
cases fo
Starting
on scena
the sourc
the exec
calls in
instrume
in the
methods
the meth
run acco
executio
analysis
recover t
many vie
of the re
tasks.

This pro
tools tha
the sourc
 dev

lang
 lev

“in
Dependi
consider
For Obj
develope
detailed
instrume
iPhone.
cases and

EVERSE E

al of our reve
the function

dil & Nicules
or compone
of the applic

very of the u
readily availab
(which is gen

s interacting w
r to go throu
and we take

e app. (In
ions we even
ut this is not r
or mobile app

from the use
arios of busin
ce code of the
cution traces
n a given
entation consis
source code
 are executed

hod is entered
ording to the u
n trace is r
of the exec

the functional
ews. Figure 1

everse enginee

Figure 1: Reve

ocess has bee
at are present
ce code, many
veloping an in
guage of the s
eraging an A
strumentation
ng on th

red, the secon
jective-C it
ed our own c
in the next se

ented it is co
Then the app
d the executio

ENGINEE

erse engineer
nal structure
scu, 2014) i.e
ents support
cation. The pr
se-cases of th
ble from the
nerally the ca

with the system
ugh all the
note of all th
the case of
video-record
required here
ps are usually
cases allows

ness value. Ne
e program to b

(i.e. the sequ
run of the
sts of inserting

to record e
d. An event is

and exited. N
use-cases and t
recorded. Fin
cution trace
l structure of
 illustrates a s

ering process

erse Engineerin

en implemente
ted in Figure
y variants exis
nstrumentor fo
system;

AOP environm
n aspects” into
he program
d option may
is indeed th

code instrume
ection. Once t
ompiled and
p is run acco
on trace is rec

ERING

ing process i
of the prog

. to analyze w
the high l

rocess starts w
he system, if
documentatio
ase), by watch
m. We simply
business-rele

he actions he d
f legacy desk
the actions of
because the

y much simp
us to concent

ext we instrum
be able to gene
uence of met

system). C
g extra statem
events when
s generated w

Next the syste
the correspond

nally, an off-
is performed
the system u

simplified ver
with only the

g process.

ed using a se
2. To instrum

st among whic
or the program

ment to inject
o the code.

mming langu
y not be availa
he case and
entor that wil
the code has b
shipped onto
rding to the

corded in a fil

is to
gram
what
level
with
they

on of
hing

y ask
evant
does
ktop
f the
use-

pler).
trate
ment
erate
thod

Code
ments

the
when
em is
ding

f-line
d to
using
rsion
e key

et of
ment
ch:
ming

t the

uage
able.

we
ll be
been

o the
use-

le on

the
dev
trac
Fin
tool
from
C
iden
The
in t
and
two
grap

The

[SCI

Or
‘EN

Wit
[SC

[DC

[TN
[Sig
[Ty

[TS
[Pa

The
and
indi
num
to th

device. Next
vice and uplo
ce loader whic
ally, the trace
ls. The latter
m the trace us
does not h

ntification of
ere are two fo
the execution
d the second f
o kinds of ev
ph with the ca

Fig

e syntax of the

I] [DCI] ’[‘ [TN]

D’ [SCI] [DCI] ’

th :
CI] : Static

the exe
CI] : Dynam

instanc
N] : Thread
gn] : Metho
ype] : Type

metho
S] : Time s
ram]: List o

the p
metho
replac

e first event r
d the second,
icates the ex

mber allows u
he same threa

t, the file is
aded into a t
ch performs a
 is analyzed u
is able to pr

sing several v
ave any pa
the events use

ormats for the
trace. The fir

for method ex
vents, we can
all hierarchy.

gure 2: Tools w

e events is the

’]’ [Sign] ’AS’ [T

[‘ [TN] ’]’ [Sign]

class identifie
ecuted method

mic class iden
ce that execut
d number.
od signature.

of the elem
d.
stamp of the e

of the comma
rimitive-typed
d. Non prim
ed by ‘_’.

represents the
, headed by
xit from the
s to gather all

ad for further a

downloaded
trace database
a few integrity
using our trace
resent the inf

views. Since O
ackage constr
es only the cla
e events to be
rst is for meth
xit. By record
n reconstruct

workflow.

e following:

[Type] ‘[‘ [TS] ‘]

] ’AS’ [Type] ‘[‘

er : the class
d is implemen

ntifier : the cla
ted the method

ment returned

event
a-separated v
d parameters

mitive-typed v

e entry into a
the keyword
method. Th

l the events th
analysis.

from the
e using a
y checks.
e analysis
formation

Objective-
ruct, the
ass name.
recorded

hod entry
ding these
t the call

’ [Param]

[TS] ‘]’

in which
nted.
ass of the
d.

d by the

values for
s of the
alues are

a method
d ‘END’,
he thread
hat belong

3 APP INSTRUMENTATION

Dynamic analysis as opposed to static analysis aims
at observing the application’s behavior while it is
running. Although many techniques can be used
(Hamou-Lhadj & Lethbridge, 2004) we decided to
use code instrumentation because, on the mobile
device, there are not many alternatives. Indeed one
cannot install any profiling or debugging
environment without deeply impacting the behavior
of the code. The least intrusive technique is simply
to add lightweight tracing statements in the
application source code to write the events in a flat
file. Each of the recorded events must contain the
signature of the method called. As for the class
identifier we record the name of the class and, in
case of the languages using module or package
declarations, the package or module in which the
class is defined. Once the trace file is generated
(that could contain millions of events), it is loaded
into a database for further processing. Many of the
existing dynamic techniques focus on the monitoring
of the low level instructions of the program, in
particular when the purpose is to analyze an app for
which only the compiled code is available. Since we
wish to reverse engineer the functional structure of
the app, access to the source code is a must.
The first step to build our own instrumentor for
Objective-C is to be able to parse the source code.
To build such a parser, several possibilities exist.
Tools like JavaCC (JavaCC, 2014) YaCC (YaCC,
2014) or ANTLR (ANTLR, 2014) are capable of
generating a parser given the syntax definition of the
programming language in the EBNF format. Such
parser is completed by adding some extra parsing
instructions in the target language. The main
difference between these tools is the language in
which the parser is generated. Our choice was
JavaCC which generates a parser in Java. This is
because JavaCC -encoded grammars are available
for several programming languages, including
Objective-C, and also because we had some
previous successful experience with it. However we
do not only need to parse the code, we also need to
build an abstract syntax tree (AST) of the code in
memory so that we could add the extra trace event
generation code to some of the nodes in the AST.
We used the Java Tree Builder (JTB, 2014) to
produce the AST. Some Visitor (Gamma et al.,
1995) classes are generated by the same tool to visit
each node of the AST. We use the “Visitor” classes
to add the instrumentation instructions at the proper
locations in the code: as the first statement of each
method and right before each of the methods’ exit

statements. The output of the parser generation
process is represented by two packages named
syntaxtree and visitor which respectively
contain the AST elements and their associated
“visitors”. Because every single abstract syntax tree
element comes with its own “Visitor” class, we
focused on the ones responsible for the handling of
methods. The added instructions in the source code
must satisfy two conditions:
1 Do not produce any changes to the application

semantics;
2 Limit as much as possible the impact on the

application processing time.

The first constraint is self-evident. The second
condition aims at avoiding any impact on the
scheduling of multi-threaded applications. To be
able to record the events during the execution of the
app, we need to build a little runtime program, called
HEGTrace, to write the events to a flat file. Then the
instructions we insert into the source code of the
methods are simple calls to the function of
HEGTrace. The latter contains:
 A class with two methods to write an event at

the entry and at the exit of the instrumented
method.

 A class responsible for converting the
primitive-typed values of the parameters into
NSString, to write these values in the trace
event (see the [Param] element of the trace
event grammar).

Every iOS application has its own set of directories
in which it can read and write files. An application’s
private file system is called a Sandbox (Apple iOS,
2014) and it is specific to the application. Inside a
sandbox, there are three predefined directories:
Documents, Library and tmp. To store a trace
file, the HEGTrace program can write in either the
Library or Documents directory. But we should
avoid tmp, since its content may be cleared away by
the system when the application stops running.
Because these folders generally contain user-
generated content and other resources used by the
application’s logic, we need to make sure the trace
files we write will not interfere with the existing
files. To do so, we create the trace files in a custom
folder inside the Library folder:

 <Application_Home>/Library/HEG_TRACE/trace_[timestamp].

This will not only ensure that our tool does not
hamper the application’s behavior but also allows
the running of our use-cases in sequence to get
several trace files all at once. Next, to upload the
trace file into the desktop machine for further

analysis
(iExplore
the devi
reside. A
trace fil
commun
to “pipe
socket. H
connecti
second c
processin
techniqu
monitor
embarke
(GDB, 2
Objectiv
syntax to
a statem
meaning
“selector
This syn
objc

by the
debugge
objc_m
iOS dev
right reg
executio
the prog
then wo
applicati
constrain
using ou
to be a
provided
available
paper ca
(Parada
the progr

4 CA

We chos
search an
Law rec
engineer
classes
functiona
relations
the analy
“Read a
Figure 3
involved

we pull it out
er, 2014) whi
ice’s file sy

A technique t
le could hav

nication modu
e” all the dat
However this
on to server a
constraint to h
ng time as

ue to trace fil
the applic

ed version of
2014). Unlike
ve-C (Objecti
o do message
ment like [

g that objec
r” is foo: an

ntax is convert
_msgSend(
Objective-C

r, we wou
msgSend to
vices use the
gisters could g
n context. Bu
ram execution

ould exaggera
ion, therefore
nt. The chos
ur own instrum
applicable to
d that a LA
e. Hence the
an be extend
& de Brisola
ramming lang

ASE STUD

se to reverse e
nd display the
corded in th
ring technique
are involved
ality and wha

ships for the u
ysis of the cl

judgment of
 the trace ana

d in the use-ca

t of the iPhon
ich gives acc

ystem where
to shortcut th
ve been to
ule in our HE
ta in real tim
s would requ
and this woul
have as little
possible. An

le writing cou
cation execu
f a debugge

e C++ or Jav
ve C, 2014)
sending. A m
[object1
ct1 is sent a
nd whose argu
ted to
object1,f

C runtime. T
uld set a b

monitor the e
ARM proces

give access to
ut this techni
n at each mes
atedly slow
e not respec
sen instrumen
mentor has th

any progra
ALR-analyzab

e technique p
ded to the A

ara, 2012) sinc
guage.

DY

engineer an a
e acts and arti
he device. W
e we can quic
 in the deliv

at are the dyn
use-case. As an

asses involve
f the Swiss F
alyzer tool dis
ase and speci

ne using iExpl
ess to the par
the applicat

he creation of
embed a so

EGTrace prog
me to a listen
uire a perma
ld not respect
an impact on

nother alterna
uld have bee
ution using
r such as G
a, the runtim
 uses a spec

message sendin
foo:@”arg

a message wh
ument is “ar

foo(“arg”)
Then, using
break on ev
execution. As
ssor, fetching
o all the meth
ique would d
ssage sending
down the w

cting the sec
ntation techn
e extra advan
mming langu
ble grammar
presented in
Android platf
ce it uses Jav

pp that is use
icles of the Sw

With our rev
ckly identify w
very of a g
amic caller-ca
n example, he
ed in the use-
ederal Court”
splays the cla
fically what c

lorer
rt of
tions
f the
ocket
gram
ning

anent
t our
n the
ative
en to

an
GDB

me of
cific
ng is
g”]
hose
rg”.

)
the

very
s the
g the
hods’
delay
 and

whole
cond

nique
ntage
uage
r is
this

form
va as

ed to
wiss

verse
what

given
allee

ere is
-case
”. In
asses
class

call
the
othe

Fig
clas
cou
of
inve
Art
Pre
by
(Gr
whe
invo
a “t
trac
The
trac
the
pro
seg
we
The
give
is u

ls what other
class RootV

er classes:
 CPCApp
 homeVi
 RootVi

Fi

ure 4 displays
sses. In this fig
upled bi-direct

program qu
estigate furthe
ticleViewC
eferences
our tool usin

raphviz, 2015
en, in the cou
olved. Then o
time series” g
ce. But the pro
en the display
ce would lead

problem we
cessing: we
ments of a pre
count the num

erefore the siz
en by the num

user-defined.

class. As we
ViewContro

pDelegate
iewControl
iewControl

igure 3: Trace a

s the call grap
gure we can s
tionally which
uality, could
er. But this is
Controller
classes. The c
g the Graphv
). Now we a

urse of the exe
our trace analy
graph of the cl
oblem is that t
y of each and
to a very dens
introduce a
segment the

edefined size
mber of times
ze of the hori
mber of segme

can see in the
oller is cal

 1
ller o
ller 1

analyzer.

ph with all the
see that four c
h, on the poin
d be some
neither the ca
r nor
call graph is g

viz open sourc
are interested
ecution, the cl
ysis tool coul

classes’ presen
the trace is qu
d every meth

nse graph. To o
little bit of

e trace in co
and, for each
a given class

rizontal displa
ents in the tra

e display,
lled by 3

2 times
only once

70 times.

 involved
lasses are

nt of view
thing to
ase of the

the
generated
ce library
to know

lasses are
ld display
nce in the
uite huge.
od in the
overcome
statistical
ontiguous
segment,
is called.

ay is now
ace which

Figure 5
Prefer

As we c
the proc
displays
Prefer
calls are
the appl
behavior

Figure 4:

5 presents suc
rence class.

Figure 5: Pref

an see, the cl
cessing and

the metho
rences class
e made in this
lication’s pre
r, showed by

caller-callee gr

ch a time ser

ference class tim

lass is used at
close to the
ds that are
s. We observ
s class. Indeed
eferences par
y Figure 5 a

raph.

ries graph for

me series.

t the beginnin
e end. Figur
e called in
ve that very
d this class h

rameters. All
and 6, rightf

r the

ng of
re 6

the
few

holds
the

fully

repr
hold
com

Fig
Roo

Inte
seem
Art
Roo
A f
hun
law
all a
thre
fini
UIT

resents what w
ds preferenc

mpare the time

Figure 6: M

ure 7 shows
otViewCont

Figure 7:

erestingly, the
ms opposite.
ticle class
otViewCont
further source
ndreds of Art

w) to be loaded
at once. Becau
ead, it bloc
ished.The Ro
TableView

we could expe
es informatio
e series of two

Methods called in

the joint time
troller and

 Joint time serie

e involvement
In the few
is much le

troller cla
code investig
ticle objec
d in memory
use this proce
cks everythin
otViewCon
and implem

ect from a cla
on. Next, w

o classes.

in Preference cl

e series for th
d Article.

ies for 2 classes

nt of these tw
w segment w
ess involved
ass is heavily
gation reveale
cts (i.e. articl
from a file a

ess is not in a
ng else unt
ntroller co
ments its dele

ass which
we could

lass.

he classes

s.

wo classes
where the

then the
involved.
d that the
es of the

are loaded
dedicated
til it is
ontains a
egate and

datasour
Because
hierarchi
reclusive
subcateg
relevant
inserted
RootVi
sudden
RootVi
Articl
now rec
correspo
This dia
of the fun
the use-
dynamic
the use-
“projecti

Figur

Today, t
from the
integrate
environm
Architec
automati

5 RE

Dynamic
subject o
has been
its sourc
black-bo
source c

rce protocols
the structure

ical, a R
ely created ev
gory of the la
Article ob
into the UI

iewControl
“bursts”

iewControl
le objects. W
construct the
onding to the
gram represen
nctional struc
case. It conta

c associations
-case. In so
ion” of the use

re 8: Class diagr

this UML cl
e output of th
e our tool w
ment we use
ct) so that this
ically.

ELATED W

c analysis of
of interest for
n used to chec
ce code is una
ox penetration
code of the

(Apple UITa
 of the law a
RootViewCo
very time the
aw acts and a
bjects are acc
ITableView
ller is quit.

of activ
ller followin
With this info

dynamic UM
executed use

nts the implem
cture of the sys
ains the class

involved in
ome sense th
e-case to the w

ram of the func

ass diagram
he tool. We in
with the so
e (IBM’s R
class diagram

WORK

f iOS applica
r a few years
ck the security
available and
n testing. Ho

app is avai

ableView, 20
cts and article
ontroller
e user brows
articles. Then
essed in mem
w cells and
This explains

vity of
ng the activity
ormation we

ML class diag
e case (Figure
mentation cla
stem in relatio
ses, methods
the execution

his represent
whole system.

tional structure

is built by h
ntend howeve
ftware mode

Rational Softw
m could be cre

ations has bee
s. For exampl
y of the app w
specifically to
wever, when
ilable, the te

014).
es is

is
es a

n the
mory,

the
s the

the
y on
can

gram
e 8).
asses
on to

and
n of
ts a
.

e.

hand
er to
eling
ware
eated

en a
le, it
when
o do

n the
ester

gen
test
sno
app
file
(Int
mod
sele
corr
will
How
app
rela
and
al,
auto
hoo
all
stat
dyn
inst
is n
deb
jailb
run
Sim
mon
LLD
sim
pro
wri
file
stat
deb
the
invo
cam
Sim

6

The
eng
reve
tech
core
inst
app
we
asso
sinc
Jav
app

nerally turns t
ting. Giancha
oop-it (Snoop
plication’s pro

system ac
trospy, 2014)
dule and an
ected the AP
responding ca
l produce a
wever the to

plication class
ated, but not li
d networking.

2011) prop
omatic dynam
oking to the a
of the UI con
te model of th
namic analysis
tructions. Hen
needed. But A
bugger on the
break the iP
ning the appl

mulator, 2014
nitoring its pr
DB (LLDB, 2

mulated applic
vide as much
ting the trace
off-line. Inde

tistical analys
bugger. Moreo

technique do
olve sensors

mera as they
mulator.

CONCL

e contribution
gineering pro
erse-engineer
hnique is not
e of the techn
trumenting the
plicable to wh

can build a
ociated progr
ce we alread
a, we are

plication. Th

o static code
andani (Gianc
-it, 2014) to

ocess and to
ctivities. He
) which is c
n analyzer m
I to trace, th

alls to a databa
human reada
ol does not
es but focuse
imited to cryp
Szydlowski M

posed a tec
mic analysis o
pplication’s d

ntrols on every
he application.
s methods op
nce, hooking t
Apple does no
device and ins

Phone. An a
lication on th
4) that come
rocess using

2014). But the
cation using
h information
e events to a
eed the latter
is which is d

over, working
oes not allow
such as accel
cannot be re

LUSION

of this paper
cess and the
iPhone applic

t limited to i
nique is to ge
e source code
hatever enviro

source code
ramming lan

dy developed
ready to a

e trace ana

review and w
chandani, 20

o hook into
monitor netw
also uses

composed of
module. Afte
he tracer wil
ase. Next, the

able report in
target all the

es on the spec
ptography, dat
M. et al (Szyd
chnique to
of iOS applic
delegate and t
y view. The r
. However, m

perate on the
to the running
ot include an

nstalling one re
alternative co
he iOS Simula
es with XCo
GDB (GDB,

e dynamic ana
a debugger

n as is availab
file and analy
method let us

difficult when
on a simulate

w analyzing
lerometer, co
eproduced in

is to present a
e associated
cations. Of co
iPhone apps
enerate a trac
e of the app. T
onment, prov

e instrumento
nguage. In p
d an instrum
analyze any
alyzer we d

white box
014) uses
a chosen
work and

Introspy
a tracer

r having
l log the

e analyzer
n HTML.
e custom
cific ones
ta storage

dlowski et
performs
ations by
triggering
result is a
ost of the
low level
g process

ny default
equires to

onsists of
ator (iOS
ode then
2014) or

alysis of a
does not
ble when
yzing the
s perform
n using a
ed device,
apps that

ompass or
the iOS

a reverse-
tools to

ourse, the
since the

ce file by
Then it is

vided that
r for the

particular,
entor for

Android
developed

provides a rich set of view through which the
maintenance engineer can study the running of the
code. In our simple case study, we observed that the
“time series” technique can visually present the
mutual behavior of the classes in a convenient
format. It provides some useful clues as to how
classes interact when running the use-cases. The
dynamic UML class diagram of the functional
structure of the use-case conveniently summarizes
all the programming elements involved in the
execution of the use-cases.
The drawback of our reverse-engineering technique
is that we are unsure to go through the all the
alternative paths in each of the scenarios since the
latter are recovered from the observation of the
users. For example, in the case of legacy desktop
applications, we investigated a semi-automated
technique to recover the use case from the legacy
code (Dugerdil, Sennhauser, 2013) with moderate
success however, due to the complexity of the task.
Indeed, use-case recovery from source code is still
an open problem. As future work we will integrate
our tool with IBM’s RSA to be able to generate the
dynamic UML class diagram automatically. We also
intend to develop new views to represent the
dynamic business-level application semantics.
Indeed we are building domain concept ontologies
whose concepts will be dynamically identified in the
executed code. This technique will help to close the
semantic gap between the high level business
domain concepts and the code level.

7 REFERENCES

ANTLR 2014. ANother Tool for Language Recognition.
http://www.antlr.org/ Accessed on Oct 12, 2014.

Apple iOS 2014. File System Programming Guide
https://developer.apple.com/library/mac/documentatio
n/FileManagement/Conceptual/FileSystemProgrammi
ngGuide/FileSystemOverview/
FileSystemOverview.html. [Accessed on Oct 12,
2014].

Appcelerator/IDC 2013. Mobile Developer report.
www.appcelerator.com.s3.amazonaws.com/pdf/develo
per-survey-Q2-2013.pdf. [Accessed on March 5,
2015].

Apple UITableView 2014. UITableView Class Reference,
https://developer.apple.com/library/ios/documentation/
UIKit/Reference/UITableView_Class/. [Accessed on
Oct 12, 2014].

Clements P., Kazman R., Klein M. 2002. Evaluating
Software Architecture. Addison-Wesley.

Dugerdil Ph. 2007 - Using trace sampling techniques to
identify dynamic clusters of classes. IBM CAS

Software and Systems Engineering Symposium
(CASCON) October 2007.

Dugerdil Ph., Sennhauser D. 2013. Dynamic Decision
Tree for Legacy Use-Case Recovery. 28th ACM
Symposium On Applied Computing (SAC 2013)
Coimbra, Portugal, March 18-22, 2013

Dugerdil Ph., Niculescu M. 2014. Visualizing Software
Structure Understandability. 23rd Australasian
Software Engineering Conference (ASWEC) 2014.
Sydney, 2014. IEEE Digital Library.

Gamma E., Helm R., Johnson R., Vlissides J. 1995 Design
Patterns. Elements of Reusable Object Oriented
Software. Addison-Wesley.

Gianchandani P. 2014. Damn Vulnerable iOS Application
(DVIA). http://damnvulnerableiosapp.com/#learn
[Accessed on Oct 12, 2014].

GDB. 2014. GNU Debugger http://www.gnu.org/software
/gdb/ [Accessed on Oct 12, 2014].

Graphviz 2015. http://www.graphviz.org/Home.php.
[Accessed on April 17, 2015].

Hammond J.S. 2013. Development Landscape: 2013,
Forrester Research.

Hamou-Lhadj A., Lethbridge T.C. 2004. A Survey of
Trace Exploration Tools and Techniques. Proc. of the
IBM Conference of the Centre for Advanced Studies
on Collaborative Research.

IBM 2014. IBM Mobile First initiative.
www.03.ibm.com/press/us/en/presskit/39172.wss.
[Accessed on Oct 12, 2014].

IDC 2013. IDC Predictions 2013 Competing on the 3rd
Platform. www.idc.com/getdoc.jsp?containerId=
WC20121129 [Accessed on March 5, 2015].

iExplorer 2014. http://www.macroplant.com/iexplorer/
[Accessed on Oct 12, 2014].

Introspy-iOS 2014. https://github.com/iSECPartners/
Introspy-iOS. [Accessed on Oct 12, 2014].

iOS Simulator, 2014. https://developer.apple.com/library/
ios/documentation/IDEs/Conceptual/iOS_Simulator_
Guide/GettingStartedwithiOSStimulator/GettingStarte
dwithiOSStimulator.html. [Accessed on Oct 12, 2014].

JavaCC 2014. Java Compiler Compiler – The Java Parser
Generator. https://javacc.java.net/ [Accessed on Oct
12, 2014].

JTB 2014. Java TreeBuilder.http://compilers.cs.ucla.edu/
jtb/ [Accessed on Oct 12, 2014].

LLDB 2014. LLDB Debugger, http://lldb.llvm.org/.
[Accessed on Oct 12, 2014].

Objective C 2014. Runtime Reference.
https://developer.apple.com/library/mac/documentatio
n/Cocoa/Reference/ObjCRuntimeRef/Reference/refere
nce.html. [Accessed on Oct 12, 2014].

Parada A.G., de Brisolara L.B. 2012. A model driven
approach for An-droid applications development.
Proc. Brazilian Symposium on Computing System
Engineering (SBESC).

Snoop-it 2014. https://code.google.com/p/snoop-it/
[Accessed on Oct 12, 2014].

Szydlowski et al. 2011. Challenges for Dynamic Analysis
of iOS Applications. Proc. of the IFIP WG 11.4
international conference on Open Problems in
Network Security.

Tilley S.R., Santanu P., Smith D.B. 1996. Toward a
Framework for Program Understanding. Proc. IEEE
Int. Workshop on Program Comprehension.

Wasserman A.I. 2011. Software Engineering Issues for
Mobile Application Development. Proc. 2nd Workshop
on Software Engineering for Mobile Application
Development MobiCase'11.

YaCC 2014. Yet Another Compiler-Compiler.
http://dinosaur.compilertools.net/yacc/. [Accessed on
Oct 12, 2014].

Zend 2013. Developer Pulse Survey - Second Quarter
2013. http://static.zend.com/topics/Zend-Developer-
Pulse-report-Q2-2013-0523-EN.pdf [Accessed on
March 5, 2015].

