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Abstract. Building renovation is currently urgent in order to decrease the energy consumption 

of a building stock. In order to achieve robust renovation scenarios, uncertainty quantification is 

needed. Climate change scenarios are important factors and need to be included in the analysis. 

In this paper, three climate change scenarios are applied probabilistically for a renovation 

scenario using dimensionality reduction techniques and further uncertainty propagation. The 

results show that RCP2.6 provides more robust results and saves on average 2. 105 CHF and 

2. 105kgCO2eq. in a building life cycle comparing to RCP 8.5. The analysis under climate 

change is also compared to the probabilistic calculations under current climate and the results 

show the underestimation of both costs and environmental impacts when climate change is not 

included. It can also be clearly seen that even under the best case of RCP 2.6, building renovation 

is urgently needed to decrease the environmental impacts and costs.  

1.  Introduction 

The building sector is one of the largest sources of energy consumption and greenhouse gas emissions 

in the world [1]. The largest part of the energy demand in existing buildings occurs during the 

operational stage and, therefore, renovation of the building stock is crucial. However, the identification 

of both environmental and cost-effective solutions is difficult due to the large heterogeneity of the 

building stock and the associated uncertainties of some key parameters in a life cycle perspective. Such 

parameters include the reference service life of the materials, occupancy behavior, existing state of the 

building, electricity mix scenarios and climate change. The latter is one of the most important sources 

of uncertainty that have to be included in the analysis. 

Different projections for climate change scenarios have been recently discussed and global warming has 

become one of the most important topics for scientific research. Based on the projections, Europe will 
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experience in the future further warming and anthropogenic influence on the climate systems is clear. 

[2]. Three representative concentration pathways (RCP) as RCP2.6, 4.5 and 8.5, were estimated by the 

National Center for Climate Services (NCCS) in Switzerland. The ranges in the climate projections are 

scenario-based and therefore, are subject to uncertainties. The aim of the paper is to use the data provided 

by NCCS and include the climate change analysis probabilistically in the integrated analysis of Life 

cycle cost (LCC) and Life cycle assessment (LCA) for the building retrofit. By integrating climate 

change in the uncertainty quantification, we would like to see the influence of each RCP scenario on the 

LCC and LCA. 

2.  Methodology 

In this paper, we propose a method to account for uncertainties during the life cycle of a building. We 

apply three climate change scenarios probabilistically for a renovation scenario of a residential building 

located in Switzerland in order to compare the climate change scenarios with the analysis under standard 

conditions. To do so, we analyze the data for the three climate change scenarios as proposed by the 

Swiss National Center for Climate Services in a probabilistic context. The detailed procedure is 

explained below. 

2.1.  Model description 

The idea of the model is to create an integrated workflow for LCC and LCA calculations. First, the 

heating demand calculation is performed, following the procedure of the Swiss standard SIA 380/1 [3] 

with quasi-steady monthly results. The analysis includes the transmission and ventilation losses, as well 

as solar and internal gains. The cooling demand was also taken into account through the calculation of 

cooling degree days [4]. The heating and cooling demand is followed by LCC and LCA analyses. The 

stages of production, operation, replacement and demolition are included as system boundaries for both 

analyses.  For LCC, the procedure of Swiss Center for buildings’ rationalization (CRB) is followed [5].  

Global warming potential (GWP) is considered as an indicator for the climate change based on the 

characterization factors from IPCC[6]. The metrics of analyses are kg.CO2eq. and CHF over the 

building’s life cycle. The whole process is modelled using python programming language. The reference 

study period for the assessment is 60 years as defined by SIA 2032 [7]. 

2.2.  Description of the climate data 

In general, the climate in Switzerland is divided into four regions describing different climate zones 

defined by the National Center for Climate Services (NCCS)[2] (See Figure 1).  

 

Figure 1. Climate zones in Switzerland[2]. 

  The gathered data from the NCCS represent three different scenarios of anthropogenic forces over 

the 21st century which are generated using ten different projection models [2] [7]. These projections  are 

built from a selection of regional climate models (RCM) from the most recent EURO-CORDEX 

ensemble [9]. RCMs are based on Global climate model (GLM) projections, refined accordingly with 
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Swiss complex topography using dynamical downscaling to increase the resolution of the simulations. 

The data is afterwards divided into five regions shown in Figure 1 and averaged into monthly 

temperature values. We then consider the CHW region which gathers data from 85 stations in a time 

period ranging from 1981 to 2099. The current study is solely focused on the change in the mean dry-

bulb temperature, therefore, the change in precipitation, wind direction and solar irradiation are not taken 

into account. For solar irradiation, static monthly values are used for the assessment. 

2.3.  Uncertainty quantification 

After the model is created and the outdoor dry-bulb temperature data are processed,  further calculations 

are performed using the uncertainty quantification framework called UQLab [10]. Uncertainty 

quantification aims at identifying and quantifying all sources of uncertainties in a system with the aim 

of assessing how they influence the system response. Many studies were performed to assess the 

uncertainties in LCA and LCC [11]–[14]. Some consider climate change uncertainties [13] [14]. In 

general, such analysis is time-consuming as it requires a large number of evaluations of a computational 

model describing the system of interest. In this study, we use a metamodeling technique called 

polynomial chaos expansion (PCE) [17] in order to replace the computationally expensive model by an 

inexpensive surrogate. The metamodel is built on a set of polynomials of different degrees depending 

on the dimension of the model. The accuracy of the created metamodel is usually estimated using a 

leave-one-out error following a cross validation procedure. Practical details about building a PCE 

surrogate model can be found in Sudret (2007) [18].  

 To account for random temperatures in LCA/LCC calculations, the straightforward approach is to 

consider the 720 monthly temperatures (which corresponds to 60 years, the time span of the analysis) 

as independent random variables. This is however problematic as the dimension of the model that is to 

be approximated by PCE becomes extremely large. To make the problem more tractable, we resort to a 

dimensionality reduction technique, namely principal component analysis (PCA) [20]. 

2.4.  Temperature time-series generation  

The idea of the approach is to generate random temperature time-series by learning the underlying 

distribution from the Swiss climate data described in the previous section. This is achieved by first 

reducing the data and then learning the underlying distribution of the resulting PCA coefficients in 

order to sample new ones[19], [20]. 

2.4.1.  Dimensionality reduction using PCA 

Let us also consider the temperature time-series as a K-dimensional random vector 𝑻 =  {𝑇1, . . . ,  𝑇𝐾} 

where each 𝑇𝑖, 𝑖 =  {1, . . . , 𝐾} represents a monthly temperature. Its covariance matrix is defined by  

 

𝚺 =  𝔼[(𝑻 −  𝔼[𝑻])𝑇 (𝑻 −  𝔼[𝑻])]. 
 

Principal component analysis proceeds by first considering the eigenvalue decomposition of the 

covariance matrix [21]: 

𝚺 = 𝐕𝚲𝐕𝑇, 

where V is a K×K matrix with the 𝑖𝑡ℎ column being an eigenvector denoted by 𝒗𝑖 and Λ is a diagonal 

matrix such that diag (𝜦)  =  {𝜆1, . . . ,  𝜆𝐾} with 𝜆𝑖 being the 𝑖𝑡ℎ eigenvalue. 

The principal component decomposition of the random vector T then reads: 

𝑻 =  𝔼[𝑻] +  ∑ 𝑍𝑖𝒗𝑖
𝐾
𝑖=1 , 

where 𝑍𝑖 is a random variable defined by: 

𝑍𝑖 =  𝑣𝑖
𝑇(𝑻 − 𝔼[𝑻] ). 

 

The idea of PCA is that generally, a small portion of the eigenvectors is sufficient to represent the 

variability in the random vector T. Hence an approximation of T can be obtained by retaining only 𝐾′ <
<  𝐾 terms with the corresponding largest eigenvalues: 
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𝑻 ̃ =  𝔼[𝑻] +  ∑ 𝑍𝑖

𝐾′

𝑖=1

𝑣𝑖 

In practice, 𝐾′ is chosen such that 𝜀𝑐𝑢𝑡% of the variability in T is explained in 𝑻̃, i.e. 𝐾′ is the smallest 

integer such that ∑ 𝜆(𝑖)/ ∑ 𝜆(𝑖)
𝐾
𝑖=1

𝐾′

𝑖=1 ≥ 𝜀%, where 𝜆  is defined such that 𝜆(1) > 𝜆(2) > ⋯ >  𝜆(𝐾). 

In this work, we split the data into three sets of 20 years thus allowing us to have K = 240 < N = 260. 

Setting the threshold 𝜀𝑐𝑢𝑡 to 95% leads to 𝐾′  = 8 for each of the three subsamples. Therefore, the final 

dimensionality reduction is achieved by going from 720 to 24 random variables to describe the 

temperature time-series. 

2.4.2.  Time-series sampling 

Let us now consider that we have N realizations 𝓣 =  {𝒕(1), … , 𝒕(𝑁)} of the random vector T. By 

empirically computing the covariance matrix 𝚺̂ and proceeding to the developments above, we can 

obtain N realizations of 𝒁 =  {𝑍1, … , 𝑍𝐾′  }. The proposed idea is then to empirically learn the underlying 

joint distribution 𝑓𝒁of the random vectors Z. In this work, we simply consider kernel  density estimation, 

a non-parametric approach. Next, we can generate new samples 𝑍̂𝑖~𝑓𝑍 and therefore derive new time-

series as follows: 

𝑻̂ =  𝜇𝑻 + ∑ 𝑍̂𝑖
𝐾′

𝑖=1 𝒗̂𝑖 , 

where 𝜇𝑻 is the empirical mean of 𝓣 and 𝒗̂𝑖 are the eigenvectors associated to the eigen-

decomposition of 𝚺. 

3.  Case study and a renovation scenario  

To apply the developed methodology, a multi-family apartment building located in Western Switzerland 

is used as a case study and presented in Figure 2 The year of construction is 1972. The total energy 

reference area is 1440 m2.  

 
Figure 2 – Building representation, plan and section 

In order to apply a renovation solution, the Swiss construction database called Bauteilkatalog, which 

follows e-BKP-H SN 506 511 structure, where each element contains several components [22], is used. 

To select a renovation solution, a method for identifying renovation solutions using the sensitivity 

analysis is adapted as shown in Galimshina et al.[23]. This leads to the renovation scenario presented in 

Table 1. Basic construction details can be seen in Table 1. 

 

Table 1.Construction details of the selected building before and after renovation 
Element Before renovation After renovation 

Exterior walls  4cm mineral wool, U = 0.56 W/(m²K) 12 cm rockwool insulation and 

plaster, U – 0.25 W/m²K 

Ground floor (shop) 2cm cork insulation in the shop, U = 1.4 

W/(m²K) 

10 cm rockwool insulation and solid 

wood, U – 0.25 W/m²K 

Ceiling against attic 6cm mineral wool, U = 0.5 W/(m²K) Not renovated 

Windows Double glazing with low-E layer, PVC 

frame, Uframe = 2 W/(m²K), Uglazing = 1.1 

W/(m²K), gvalue = 0.55 

Wooden-aluminum window 3 WS, 

frame part 10%, U – 0.8 W/m²K 

Heating system Oil boiler, low efficiency Heat pump, air-to-water, COP 2.8 
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To account for all the sources of uncertainties, 44 parameters besides the climate change are included 

in this study. These parameters include the existing state of the building, materials production costs and 

impacts, building operation, occupancy behaviour and reference service life. The complete list of the 

parameters including their range and distribution can be seen in Table 2. 

 

Table 2. Probabilistic description of the uncertain parameters used in the case study. The parameters 

column represents the upper and lower bounds of the uniform distributions while the moments show 

the mean and standard deviation when other distributions are concerned. 
Parameters Parameters Moments  Distribution Source 

Embodied GWP and investment costs 

Exterior wall GWP [kgCO2eq./m2] [7, 13]  uniform Mean values - 

[24], 

Uncertainty costs 

- [25], 

Uncertainty GWP 

– assumption [%] 

– [-30, 30] 

Exterior wall cost [CHF/m2] [58.4, 84.1]  uniform 

Ground floor GWP [kgCO2eq./m2] [4.02, 6.9]  uniform 

Ground floor cost [CHF/m2] [37.1, 55.7]  uniform 

Windows GWP [kgCO2eq./m2] [53.1, 98.6]  uniform 

Windows cost [CHF/m2] [492.8, 739.2]  uniform 

Embodied GWP heating system (heat 

distribution+heat diffusion) [kgCO2-

eq./ERA] 

[0.685, 0.729]  uniform [26] 

Cost oil boiler [CHF/ERA] [34.2, 51.3]  uniform 
[25], [27] 

Cost heat pump [CHF/ERA] [40.7, 61]  uniform 

Operational environmental and cost inputs 

Oil [kgCO2-eq./kWh] [0.319, 0.322]  uniform 
[26], [27] 

Heat pump [kgCO2-eq./kWh] [0.036, 0.039]  uniform 

Oil [CHF/kWh]  [0.093, 0.111, 0.128] triangular 
[26], [28] Heat pump [CHF/kWh]  [0.064, 0.079, 0.093] triangular 

Inflation rate [%] [0.5,2]  uniform [29] 

Discount rate (real) [%] [2.5,4.5]  uniform [25] 

Components reference service life 

Exterior wall [years]  [40.6, 11.6] lognormal 

[30] 

Slab [years]  [33.7, 14.2] lognormal 

Wall against unheated surface [years]  [40.6, 11.6] lognormal 

Windows [years]  [27.5, 12.2] lognormal 

Oil boiler [years]  [19.4, 3.1] lognormal 

Heat pump [years]  [17.1, 6.4] lognormal  

System performance 

Existing windows U-value [W/m2*K]  [2.9, 0.58] lognormal Assumption 

Existing exterior wall degradation  [10, 3] gumbel Assumption 

Existing roof insulation degradation [%]  [20, 5] lognormal Assumption 

Thermal bridge new building [%]  [18.15, 5] gaussian Assumption 

Efficiency loss of the existing system [%] [0.15, 0.25]  uniform Assumption 

Efficiency loss of a new system [%] 

 [0.15, 0.05] gaussian Dependent on the 

heating system 

Existing slab against unheated surf., 

degradation [%] 

 [10, 5] lognormal Assumption 

User-oriented parameters 

Operating temperature inside [°C] [20,23]  uniform [31] 

Building occupation schedule [h/day] 

[8, 16]  uniform +/- 4 hours to the 

suggested 12 h 

value by 46 

Airflow existing building [m3h/m2] [0.7, 1]  uniform [31] 

4.  Results 

The input uncertainties are propagated through the PCE model using crude Monte Carlo simulation. In 

the following figures, the resulting distributions of both LCA and LCC are shown. They are obtained 

through kernel smoothing of the model responses histograms. The comparison of three climate change 
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scenarios alongside with the results of the renovation scenario under uncertainties but without climate 

change is shown in Figure 3. As it was expected, with RCP 2.6, lower LCA results are achieved (mean 

value – 𝟐𝟕𝟕 𝟓𝟎𝟎 kgCO2eq.) while with RCP 8.5, the mean value is 𝟒𝟗𝟖 𝟗𝟎𝟎 kgCO2eq. It is worth 

mentioning that the standard deviation for RCP 2.6 is also considerably smaller (𝟑𝟔 𝟎𝟎𝟎 kgCO2eq), 

while the standard deviation for RCP 8.5 is 𝟕𝟔 𝟓𝟎𝟎 kgCO2eq. There is also a considerably big 

overlapping area between RCP2.6 and 4.5. It can also be clearly seen that the climate change and is 

crucial to be included in the analysis as the results of the same applied renovation scenario without 

climate change is underestimating CO2 emissions. 

 
 

Figure 3. LCA distributions for the renovated building with RCP 2.6, 4.5 and 8.5. The straight line 

represents the response for a renovated building with climate data from SIA. 

 

From Figure 4, it can be seen that even with the optimistic scenario of RCP 2.6, the renovation of the 

building stock is needed to lower the emissions over the building life cycle. Likewise with Figure 3, the 

results under current climate underestimate the total LCA (Figure 4). 

 
Figure 4. LCA distribution following a probabilistic assessment of the non-renovated building with 

RCP 2.6 and a response for the non-renovated building with climate data from SIA 

For the LCC results, the picture is different. Even though the mean value for RCP2.6 (638 000 CHF) 

is lower than both RCP 4.5 (717 000 CHF) and RCP 8.5 (837 000 CHF), it can be seen that the standard 

deviation for RCP 2.6 (59 000 CHF) is relatively close to that of RCP4.5 (68 000 CHF).  
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Figure 5. LCC results of the renovated building with RCP 2.6, 4.5 and 8.5 and probabilistic assessment 

with temperature data from SIA. 

 

Similarly with the results of LCA, the results for LCC are shown in Figure 6. 

 
Figure 6. LCC distribution for the non-renovated building with RCP 2.6 and a response with 

calculations performed using data from SIA. 

5.  Discussion 

The current results show the crucial role of thorough uncertainty quantification in both LCA and LCC 

analyses. It is clear that the analysis without climate change underestimates the values of LCA 

(3 736 000 CHF versus 4 775 000 CHF). For the LCC, the response of the analysis without climate 

change is relatively similar (686 800 CHF versus 817 000 CHF). Also, the results for all the climate 

change scenarios are considerably overlapping for LCC. This can be explained by the discount rate, 

which has to be adapted for all the LCC calculations and discount the future cash flows in order to 

convert them to a present value. Due to the long building life span of 60 years, discounted future cash 

flows are less influential and therefore, the climate change affects the costs less than the environmental 

impacts.  

In this paper, we also compared a retrofitted building under three climate change scenarios with the 

non-renovated building under RCP2.6 as the most optimistic scenario. The results show that the 

renovated building under RCP8.5 has almost 10 times less emissions than the non-renovated building 

under the most optimistic scenario. 
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From the comparison with the calculations under current climate, it is clear that climate change has 

to be added in the analysis probabilistically as the results with the temperature values from the SIA 

standards leads to considerably underestimating the estimated of LCC and LCA values.  

6.  Conclusion 

In this paper, a methodology for different climate change scenarios application in the integrated 

assessment of LCC and LCA was proposed. Daily temperature data from RCP 2.6, 4.5 and 8.5 were 

received from the National Center for Climate Services and processed into average monthly values to 

be included into LCC and LCA analyses. Three climate change scenarios were compared 

probabilistically for one renovation scenario of a residential multi-family apartment building located in 

Switzerland. Metamodeling techniques were used for uncertainty propagation and principal components 

analysis was applied in order to decrease the dimensionality of the problem. The results were compared 

with probabilistic calculations with the temperature data currently included in a Swiss standard [3]. The 

results show that the renovation scenario with RCP2.6 does not only have on average lower LCA than 

RCP 4.5 and RCP 8.5 but also comparing the standard deviation. The results also show that the climate 

change should be included in the renovation model probabilistically in order to use the LCC and LCA 

analyses in the decision making process.  
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