Résumé

The co-simulation of both urban and building-level models leverages the advantages of both platforms. It better accounts for the localized effects of surrounding buildings, geography and climate conditions while maintaining high-fidelity building systems representation. This paper describes the co-simulation process of the building and urban-scale models of two university campuses in Switzerland using EnergyPlus and CitySim. In the first case study, on-site measured performance data is compared to the co-simulation results. The second case study examines the results of the two engines. The results show that coupling of EnergyPlus with CitySim resulted in a −15.5% and −7.5% impact on cooling consumption and a +6.5% and +4.8% impact on heating use as compared to solo simulations.The co-simulation process was able to better model realistic conditions for heating, but not cooling in one case study. It was able to substantially reduce the discrepancies in prediction between the engines in the other study.

Détails

Actions