
1

Crowd behaviour modelling developments
through mixed integer programming: the

case of airport queue management
Mahdi Doostmohammadi Dept. of Management Science

University of strathclyde
Glasgow, UK

Email: m.doostmohammadi@strath.ac.uk Emmanuel Fragniere and Rosanna Holdsworth
School of Management

UAS Western Switzerland and University of Bath
Sierre, Switzerland

Email: emmanuel.fragniere@hevs.ch

Abstract—Crowd behaviour is difficult to predict
and might not be easy to translate. A number of
mathematical and psychological models are proposed
in the literature to investigate crowd behaviour. In
this paper, we exploit mixed integer programming to
model crowd behaviour with multiple time periods.
This research improves upon methods by Breer et al.
(2015) for determining the number of active agents
and solving the problem of reducing this number by
controlling reputations in a single period, under the
added assumption of a reputation model of interac-
tions (Granovetter, 1978). Thus, this paper goes on to
extend the single period reputation control problem
and solution to the case of multiple time periods. This
class of problems requires a mixed integer program
to be solved several times with a varying constraint
and a varying number of variables. This model is
then supported by a promising case study of queue
management at airport security gates.
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I. INTRODUCTION

Passenger queues at airports represent an impor-
tant challenge today due to unexpected overall be-
haviour like panic or the outbreak of violence. Many
of the models arising from the scientific literature
address these issues. A large family of these models

is based on simulation techniques such as the well-
known agent-based approach. This latter approach
can be considered as a trial and error one. Given
a specific layout and predetermined human flows,
adding a disturbance to the model enables to see
how the situation might deteriorate. These models
are usually descriptive. They tend to explain past
cases like the love parade in Germany that ended up
with deaths and many injured participants. Inciden-
tally, this topic of crowd behaviour has become an
important research topic for the EU. In this paper,
we want to go a step further as compared to these
more classical models that are purely descriptive.
Even if descriptive models are good to learn about
behavioural patterns, a decision aid model can help
to provide an appropriate response to contain a
contagion (herd effect) that could lead to dramatic
outcomes. In this research, we try another approach
that is more decision making orientated. We rely on
the threshold model as first introduced by Granovet-
ter. It states that each agent be given a threshold
corresponding to the number of other agents who
would need to be taking part in an activity before
they would join in. This model, when properly
defined, can be translated into an MIP model and
solved using branch and bound techniques. How-
ever, the original threshold model is static. In this
paper we have developed, for the first time to our
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knowledge, a multi-stage formulation. The major
advantage of this model development is that it
takes into account the dynamic nature of the queue,
as some people leave it and others enter it. The
research is mainly theoritical. It has consisted in
defining human interactional constructs and trans-
lating them as well into mathematical expressions to
properly capture real crowd phenomena. The paper
is organized as follows. In Section 2, we present a
brief literature review about the different kinds of
approaches that addresses crowd behaviour issues,
we also describe the original threshold model as
proposed by Granovetter. In Section 3, we present
our methodological contribution, we explain how
the threshold model has been adapted to airport
queue behaviour and how it has been transformed
to integrate multiple periods. In Section 4, an il-
lustrative case study is developed to explain the
type of results provided by our new model and
how they differentiate from those produced by other
approaches (indeed they all offered different per-
spectives and cannot thus be strictly compared for
same crowd configurations and data sets).

II. LITERATURE REVIEW

Crowd behaviour has been extensively studied by
researchers during the last decade. Social influ-
ence in a general manner has been the subject
of study in many different fields. For instance the
phenomena of herding, defined as “the alignment
of the thoughts or behaviours of individuals in a
group (herd) through local interaction and without
centralized coordination” by [1]. This behaviour
can cause stock market bubbles, influence political
opinions and cause the formation of mass riots.
So understanding it has been of interest not only
to psychologists, but also economists and sociolo-
gists, amongst others [1]. Social influence doesn’t
just apply to emotions, it can also affect decision-
making. Mathematically this can be modelled as
agents moving between discrete states depending
on the states of other agents. Typically these models
consider binary states, for instance agents choosing
between being “active” or “passive”. There are
many models to choose from in this area, orig-
inating from many different academic disciplines.

For instance, the threshold model, the independent
cascade model, the SIR model, hazard rate models
and models of pluralistic ignorance. However, al-
though these models are all trying to describe the
same behaviour they are often irreconcilable due
to the assumptions made by each. The independent
cascade model requires a graph of connections
between the agents and a probability of transmission
p. At the initial time step certain agents are set
to “infected”, these are the “seeds”, and at each
subsequent time step newly infected agents infect
each adjacent uninfected agent with probability p.
The weighted cascade model is similar, but sets the
probability of agent i infecting agent j to be 1

d ,
where d is the in-degree of agent j i.e. the number
of agents who could infect j. These types of model
can be used, for instance, to predict the spread
of infections, the popularity of a new trend and
how quickly a rumour spreads. The threshold model
was introduced by Granovetter in [2], proposing
that each agent be given a threshold corresponding
the number of other agents who would need to
be taking part in an activity before they would
join in. Granovetter used the following example
to show how this model could be used to explain
the unstable nature of the size of a riot. Suppose
there are one hundred agents each with a threshold
between 0 and 99 (one agent with 0 threshold, one
with 1, one with 2 and so on). The 0-threshold agent
will start to riot as they do not require any other
agents to be rioting in order to do so themselves.
Therefore there will be one rioting agent, and so
the 1-threshold agent will also start to riot, and so
on until all agents have joined the riot. However,
suppose the distribution of thresholds is instead:
one agent of threshold 0, two of threshold 2, one
of threshold 3 and so on (so the change from the
previous example is just one agent increasing their
threshold by 1). Then the 0-threshold will again
start to riot, but no other agents will join them
as all other thresholds are above 1. The book [3]
shows how threshold models of collective state-
making has expanded since Granovetter’s original
paper. The general threshold model explained here
allows for interactions between agents to differ -
certain agents will have more of an influence on a
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particular agent’s state than others. The problem of
how to control the number of active agents has been
studied for several of the different models of binary
states. For instance, [4] considered the question
of maximizing influence in a network under both
cascade models by choosing the seeds, which is an
NP-hard problem. This paper proposed a genetic al-
gorithm to solve this problem and compared it to the
performance of a number of known heuristics, using
data from social networking sites. [5] addresses
the problem of mob control under the threshold
model - how to minimize (or maximize) the number
of active agents given different constraints and
assumptions. [5] also states and solves a multi-
period control problem of introducing “provokers”
to maximize active agents.

III. MULTIPLE-PERIOD REPUTATION CONTROL
PROBLEMS

Suppose a group of agents who each have a known
reputation and known threshold and are influenced
by every other agent in the group according to their
reputations. Assume there is at least one ringleader
in this group (an agent with a threshold of 0),
so that at the collective behaviour equilibrium the
group will have at least one active member. Suppose
an outside force acting on individual agents in the
group can lower the reputations of individuals for
a certain cost. The reputation control problem is
to choose which reputations should be changed,
and by how much. To mathematically model this
problem, let N = {1, 2, . . . , n} is the set of agents
in the system, θ ∈ [0, 1] is the threshold of agent i,
mi is the minimum reputation of agent i, r0i is the
reputation of agent i in the initial state, r1i is the rep-
utation of agent i after all changes have been made
to reputations and reputations have been normalised
(the final state), and r̂0i is the cumulative reputation
of agent i in the initial state. Furthermore, assume
k∗ is the maximum number of active agents allowed
and Rk∗ is the sum of reputation changes that need
to be made to the first k∗ agents in order for agent
k∗+1’s cumulative reputation to equal its threshold,

define by the following equation:

Rk∗ =
r̂0k∗+1 − θk∗+1

1− θk∗+1

Define binary decision variables xi as

xi =

{
1, if a change is made to agent i’s reputation
0, otherwise

Then the single-period reputation control problem
is modelled as

Min
k∗∑
i=1

cixi

s.t.
k∗∑
i=1

(r0i − qi)xi > Rk∗ (1)

xi ∈ {0, 1}

where ci and qi are the cost of changing agent
i’s reputation to mi and i’s minimum reputation
respectively.

To extend the optimization problem of the single-
period reputation control model (1) to the multiple-
period case we can take inspiration from the way
the Warehouse Location Problem can be extended
to the multiple-period case. An indicator variable
is introduced for whether an agents’ reputation is
changed for the first time in a certain period. When
dealing with more than one period we must include
all agents in the optimization (whether they are one
of the first kt in period t or not). This means the new
variables uit and wkit (defined above) are needed to
ensure the correct agents are optimised over.

Let ait be the cost to change agent i’s reputation
in period t, fit be the startup cost to be paid when
agents i’s reputation is changed in period t but not
in period t− 1, and Rkt =

r̂0kt+1−θk+1,t

1−θk+1,t
. Define the

variables of the optimization problem as

xit =

{
1, if agent i’s reputation is changed in period t
0, otherwise

yit =

{
1, if agent i’s reputation was unchanged in period t− 1

0, if agent i’s reputation was changed in period t− 1
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The multi-period reputation control problem
is:

Min
T∑
i=1

n∑
i=1

ait · xit +
T∑
i=1

n∑
i=1

fit · yit (2)

s.t.
n∑
i=1

wktit · (r
0
it −mit) · xit > Rkt, ∀t ∈ P

xit ≤ uit, ∀i ∈ N, t ∈ P
yit ≤ xit, ∀i ∈ N, t ∈ P
xit − xi,t−1 ≤ yit, ∀i ∈ N, t ∈ P
xit, yit ∈ {0, 1}, ∀i ∈ N, t ∈ P

The first constraint ensures that the reputation re-
ductions meet the requirement for moving agent
kt + 1 below the diagonal for every t in P , where
wktit ensures that only reductions to the first kt
agents in each period count towards this sum (as
these are the only reputations that influence the
cumulative reputation of agent kt + 1. The second
constraint ensures that only reputations of agents
who are in the system in period t can be changed
in period t. The third constraint implies that if an
agents’ reputation is being changed for the first time
in period t, then this agents reputation is being
changed in period t (the startup cost only needs to
be paid if that agent’s reputation is being changed
in that period). The fourth constraint implies that
an agents’ reputation is being changed for the first
time in period t only if it is being changed in period
t and if it was not changed in period t− 1.

Solving the above optimization for kt = k∗t , ∀t ∈
P provides a starting point for the solution of the
Reputation Control Problem, and an upper bound on
the value of the objective function if the problem is
feasible, just as in the single-period case. Following
the same logic as in the single-period case, the only
values of kt that need to be tried are those that
satisfy Rktt ≤ Rk∗t t, and for which agent kt does
not share a threshold with an earlier agent. Let these
values of kt form the set Kt. Then the optimization
above must be solved once for each combination of
elements from the sets Kt.

In an ideal world we would want to model the

formulation of this problem to include the constrain
that if an agent becomes active in period t then they
will also be active in period t + 1. However, the
complicated nature of the relationship between kt
and the number of active agents after reductions are
made means there is no easy way to include this
in the optimization problem formulation. Further
work into how this could be modelled may be an
interesting area of study.

IV. CASE STUDY

Imagine there are twenty-two passengers waiting
in line to get through passport control. There is a
family of four, two couples, a group of six friends,
and the remaining eight passengers are travelling
alone. Suppose the passengers are lined up as shown
in the illustration below. Groups of passengers who
are travelling together are indicated. The queue is
moving very slowly and many of the passengers
have already spent a long time queueing up meaning
they are frustrated and bored. In addition, the person
at the front of the queue is taking a long time to be
processed, and some of the passengers behind are
becoming increasingly agitated at the prospect of
missing their flight as a result of the delay. Some of
the passengers are travelling with others and may
place more weight on the opinions of those they
know than of strangers, thus placing this problem
in the more general case of the threshold model.
However, the reputation case can be applied to this
example by assuming that the threshold of each
passenger in a group is the same as every other
member of the group, which would mean that all
members of the group would riot simultaneously
if this threshold is breached. Or, alternatively, by
assuming that if one member of a group starts to
riot then all the other members of the group in-
stantaneously do so too due to the disproportionate
influence on them by people they know. Making
one of these assumptions means each group can be
considered as a single agent and the group can be
assigned a single threshold and a single reputation.
It must also be assumed that the physical formation
of the queue has no bearing on the influences
between agents.
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Illustration of the queue changing over three
periods.

Assume the costs are the same as defined in Sec-
tion III: fit = 2,∀i ∈ N ; t ∈ P and ait =
si(No. of adults),∀i ∈ N ; t ∈ P (we assume
the size of the groups has not changed). Table 1
describes the changes to reputations, thresholds and
the order id of agents over three periods.

If we take each period of this case in isolation
and apply the solution method developed for the
single-period reputation control problem with fixed
number of active agent to each (solved using R),
then we find the solutions xt to be:

x1 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

i.e. removing agent 2. The objective function has a
value of 4.

x2 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

i.e. removing agent 5. The objective function has a
value of 3.

x3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0)

i.e. removing agents 10 and 15. The objective
function has a value of 6. So if we took the solution
of the multi-period reputation control problem with
fixed number of active agents to be the combi-
nation of these solutions the cost would be 13.
The optimal answer to the multi-period reputation
control problem for the airport queue example
is: x = (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) i.e.
removing agents 5 and 10 in every period. The
objective function has a value of 10. This solution
is an improvement to performing the single-period
reputation control problem for each period.

V. CONCLUSION

Consequently, the added value of such an approach
is that it can be used in an ex-ante or anticipative
mode. Indeed the advantage of the detailed math-
ematical formulation is that specific and complex
queue configurations can be studied and modelled in
advance with a precise predefined granularity. Risk
responses and dispositions can then be elaborated
and trained before running the queue process for
real.
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