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ABSTRACT 
Among the code structuration mechanisms in object oriented 
systems, class hierarchies based on the generalization relationship 
play a prominent role. Indeed it is used to represent and code 
hierarchies of abstractions supposed to help with code 
understanding, maintenance and extension. But it is common to 
see class hierarchies and the associated inheritance mechanism be 
diverted from this noble role to become a mere code sharing 
mechanism. In this case, rather than helping, the inheritance 
mechanism confuses the understanding of the code. Hence, we 
have developed a metric to analyze the inheritance mechanism at 
work in a running system, what we have called the inheritance 
pattern. Although the metrics measuring inheritance are 
numerous, our approach is original since it observes the actual 
inheritance in the running code at the class level as well as among 
the packages (i.e. among the classes through package). In some 
sense, this metric measures how well the inheritance mechanism 
has been leveraged in the software. But interpreting raw numbers 
can be hard. Then we developed a visual and hierarchical 
representation of the metric values at the scale of a whole system. 
This helps to assess the quality of the code from the point of view 
of code abstraction.   

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – Product metrics 

General Terms 
Measurement, Experimentation, Theory. 

Keywords 
Abstraction hierarchies, inheritance, metrics, system architecture 

1. INTRODUCTION 
In software engineering, a lot of metrics have been created for the 
last decades. But, in practice, we observe that only few of them 
are really used. Often the latter are old metrics that are more or 
less well accepted by the software engineering community, but 
barely used. We think three reasons could explain the lack of 

practical use of some of the newest metrics. First, these metrics 
are often designed with some theoretical concepts in minds but 
therefore lack a practical purpose [12]. A case in point is 
illustrated by the SEMAT initiative which acknowledges the lack 
of credible experimental evaluation and validation of most of the 
academic proposals [9].  Second, the metrics are often too broad 
in scope, characterizing the entire system, or too narrow, 
characterizing only the smallest structures i.e. the classes ignoring 
larger structures such as packages and sub-packages. Indeed, 
global metrics are often difficult to interpret because they can 
show similar values for very different situations. On the other 
hand, metrics that are too narrow in scope generate a large number 
of values whose global interpretation is difficult. Finally, metrics 
are generally computed trough static program analysis, i.e. 
analysis of the source code of a system without actually executing 
it, as opposed to dynamic analysis which is performed on the 
result of executing the programs. Static approaches have 
difficulties measuring behavior that arises only at runtime, such as 
dynamic binding and polymorphism. But this is not a problem for 
dynamic analysis.  

In summary, most of the popular inheritance metrics suffer from 
the problems explained above. They are often too broad in scope 
and computed statically. In this paper, we propose a new metric 
that overcomes these problems. Although inheritance is a feature 
of classes, we overcome the “narrow scope problem” by showing 
how the metric can be computed hierarchically i.e. at package 
level whatever the level in the containment hierarchy. Of course, 
this technique generates a much larger number of values than a 
narrow scoped metric, which could be harder to interpret. To 
overcome the problem, we developed a visual technique to show 
the metric values on the full system, using colors to help 
interpreting the values on a global scale. The key contributions of 
our paper are: the definition of a dynamic metric for inheritance, 
the inclusion of the packages in the metric and the design of a 
visual representation to ease the interpretation of the metric 
values.  
In this paper, we present in section 2 the notion of the inheritance 
pattern from which we could, in section 3, explain the problem 
that might arise in systems. Next, to characterize the “quality” of 
the inheritance pattern we propose in section 4 a new metric that 
is both dynamic (i.e. based on the actual execution of the system) 
and hierarchical (characterizing not only the classes but also the 
containing packages). In section 5 we explain how the metric is 
computed and in section 6 the way the metric is visually 
represented for an entire system. Section 7 presents the 
application of the metric to a medium size open source system: 
Argo UML. Section 8 presents the related work and section 9 
concludes the paper. 
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2. INHERITANCE PATTERNS 
Since we are dealing with inheritance of behavior, our work 
applies to object oriented programs. In order for our approach to 
stay general, we use the term “substructure” to mean the syntactic 
grouping of programming elements above the method/procedure 
level which obeys to a composition relationship (which means 
that one substructure can be composed of other substructures and 
so on). Then, our work is applicable to whatever programing 
paradigm that supports inheritance of behavior.  
An inheritance graph is a graph whose nodes are the substructures 
and whose edges are the relations enabling inheritance. Hence, 
parent substructures define behavior that is inherited by child 
substructures. The behavior of a child extends (add new) and/or 
overrides (redefines existing) the behavior inherited from its 
parents. The inheritance path from a given class is the sequence 
of inheritance relation to travel to retrieve some inherited 
behavior. The length of the path is the number of relation traveled. 
It is important to note that our general definition of a substructure 
which works at different granularity levels, allows us to observe 
the inheritance of behavior beyond the class level. Indeed, 
packages do not actually define behavior but we could 
nonetheless be interested to know that a package contains classes 
whose behavior is inherited by the classes located in another 
package. Then, by analogy with the classes, we say that some 
package “inherits” behavior from another package if some class in 
the former inherits behavior from a class of the latter, whatever 
the nesting level of the class in each package’s containment 
hierarchy.  
With these definitions, the (behavior) inheritance pattern is the 
description of the way some specific configuration of 
substructures share behavior through inheritance. The goal of our 
work is to propose a method and a metric to evaluate the quality 
of the design of the inheritance patterns and thus helping to spot 
patterns that can potentially be improved. This will be especially 
useful to check the quality of some maintenance. For example one 
could compare the inheritance patterns before and after some 
maintenance to check if the architecture has been damaged from 
the point of view of inheritance. Indeed, it is well known that 
maintenances could deteriorate the quality of the architecture of a 
system. However this phenomenon has traditionally been 
observed on the static point of view i.e. from the responsibilities 
of the components. From a program understanding point of view 
it is well know that inappropriate inheritance may lead to a source 
code that is harder to understand [4][14]. Then, our metric can 
play a important role in assessing the change in the inheritance 
pattern hence the understandability of the resulting code.   
For the sake of readability of the examples, in the UML class 
diagrams we directly display the body of the methods in curly 
brackets. Figure 1 shows an example of an inheritance pattern 
highlighted in the blue rectangle. ClassB (child) extends ClassA 
(parent). With our extended definition of inheritance, PackageB 
“inherits” behavior from PackageA because it contains  ClassB 
which inherits from ClassA located in PackageA. ClassB declares 
a new method m4 and redefines (overrides) the method m2 which 
is already declared in ClassA. When the method m4 is executed 
on an instance of ClassB, the inherited method m1 is executed 
because it is called by m4. When the inherited method m3 is 
executed on an instance of the ClassB, the overridden method m2 
is also executed. This configuration of declared, inherited and 
overridden methods represent the inheritance pattern of the 
structure under study. Our metric measures the ratio of the 
number of inherited methods among all the methods executed in 
an instance of a class when running some scenario of business 
value. This ratio will also be computed for the packages. In the 

example of Figure 1, PackageC is not included in the inheritance 
pattern since its class does not inherit any behavior from ClassA 
or ClassB. 

3. INHERITANCE PATTERNS PROBLEMS 
The inheritance patterns may sometimes show problems due to 
some flaw in the initial design or during maintenance. Because of 
the quantity of maintenance a typical system undergo during its 
lifetime, it is very likely to see changes in its inheritance patterns 
over time, often for worse. 

  

Figure 1. Inheritance pattern  

There are two ways in which problems can be spotted: by 
analyzing the design with respect to some known problem 
patterns or by comparing the architecture before and after 
maintenance. In the first case, one could for example detect 
substructures that involve too little or too much inheritance (with 
respect to some agreed threshold values) and decide to further 
investigate them. In the second case one can spot changes and 
check if these are improving or spoiling the inheritance pattern. 
There are various maintenance scenarios in which the inheritance 
patterns are deteriorating. We describe thereafter some of the 
problematic scenarios we may encounter. For the sake of 
simplicity, the inheritance patterns shown in the examples are at 
the lowest level of granularity, the class-level, but the same 
patterns exist at higher level of granularity such as between 
packages. The examples show the problem with one or two 
methods, but in a real maintenance the updates could be on a 
much larger scale involving a lot of methods. Moreover the length 
of the inheritance path is limited to 1 to reduce the size of the 
figures. While the problems illustrated below may sound trivial 
when the inheritance path length is 1, they are much more 
frequent when the inheritance patterns involve paths longer than 
1. In the first maintenance situation (Figure 2), a new method m3 
must be added to the Child Class to implement some feature. To 
implement this method, the maintenance engineer needs to call a 
method whose functionality is equivalent to that of m1 but, 
ignoring that m1 exists in the Parent Class, he writes a new 
method m11 in in the Child Class. The problem here is that the 
functionality (semantics) of m1 is duplicated.  

 



            Before maintenance            After maintenance 

 
Figure 2. First maintenance scenario 

Runtime diagnostic: after maintenance the number of executed 
method in a scenario involving the feature is greater than before 
maintenance, while the number of executed methods that are 
inherited is the same.  

         Before maintenance            After maintenance 

 
Figure 3. Second maintenance scenario 

The second situation (Figure 3) is similar to the first, except that 
the maintenance engineer uses the same name m1 for the called 
method implemented in the Child Class, ignoring the method 
already implemented in the Parent Class. In addition to the code 
duplication problem, a worse problem occurs: the method m2 was 
designed to work with m1 that is inherited from the Parent Class. 
Now it calls the new implementation of m1 in the Child Class 
(which overrides m1 of Parent Class). Since these two methods 
are not necessarily equivalent, a bug is likely to result. 

          Before maintenance            After maintenance 

 
Figure 4. Third maintenance scenario 

Runtime diagnostic: after maintenance the number of executed 
method in the scenario is greater than before maintenance, while 
the number of executed inherited methods is lower.  

In the third situation (figure 4) m2 in the Parent Class call m1 
which is specialized in the Child Class. Suppose that the 

maintenance engineer modifies m2 in order not to call m1 
anymore for some reason (for example for code optimization). 
After the maintenance, when m2 is executed on an instance of the 
Child Class, it does not call m1 in the Child Class anymore. Since 
the behavior corresponding to m1 was specialized in the Child 
Class this specialized behavior is not invoked anymore resulting 
to a likely bug.  
Runtime diagnostic: after maintenance, when the m2 is executed 
on an instance of Child Class, the number of executed inherited 
methods is the same while the total number of executed methods 
is less than before maintenance. 

           Before maintenance            After maintenance 

 
Figure 5. Fourth maintenance scenario 

Fourth situation (figure 5): during maintenance, a new class Child 
Class is created with a new method m3. Suppose that m3 needs to 
invoke the functionality of m2 in a specialized form. The 
maintenance engineer then creates a new method m2 in the Child 
Class while ignoring the fact that m1 uses m2. After maintenance, 
when executing m1 on an instance of Child Class, m1 will call m2 
of Child Class rather than m2 in Parent Class as it was initially 
designed to work.  
Runtime diagnostic: after maintenance when m1 is executed on 
an instance of Child Class, the number of methods executed in 
Parent Class is lower than before maintenance, while the 
functionality of m1 was supposed to be unaffected by the 
maintenance. It is worth mentioning that the last two situations 
described above represent instances of a well-known problems 
referred in literature as the Fragile Base Class Problem [13].   

4. DYNAMIC INHERITANCE RATIO 
In order to observe and measure the behavior involved in the 
inheritance patterns we propose a dynamically computed metric, 
which we called the DIR (Dynamic Inheritance Ratio). This 
metric, as explained earlier, is computed dynamically when the 
system is executed following some business-relevant scenarios 
(use-case instances). Moreover, our inheritance metric can be 
computed not only at class level but also at larger granularity level 
(packages).  Since we are interested by the patterns of inheritance, 
we wish to observe where the behavior of the substructures is 
implemented not how many times some behavior is executed. 
This is why we count the number of distinct methods executed. 
Hence, we define the following two functions where S denotes the 
set of substructures in a program: 

fimpl S �� Integer : number  of distinct executed methods 
implemented in s � S. 

finh S � Integer : number of distinct executed methods inherited 
by some s � S  and directly called on an instance of s or called by 
one of the executed methods implemented in s.  



So fimpl(s) and finh(s) do not overlap. The first function counts 
the executed methods implemented in s and the second counts the 
executed methods not implemented in s. It follows from these 
definitions that if a class does not implement any executed method 
and if none of its instances execute any inherited method, the DIR 
metric is undefined (0/0). For example, in the right part of figure 
5, if a scenario would lead to the call of method m3 on an instance 
of Child Class, then Parent Class would have an undefined DIR 
metric value. In the case of the packages these functions are 
interpreted the following way. fimpl : the method must be 
implemented in some class in the package s, whatever the depth of 
the class in the containment hierarchy. finh : the method must be 
inherited by any class c in the package s, whatever the depth of c 
in the containment hierarchy starting from s, from a class defined 
in another package outside s. The instance for which the methods 
are executed is that of c. With these functions, the Dynamic 
Inheritance Ratio is, for any s � S [2]: 

DIR(s)  =   

Specifically, DIR represents the ratio of the behavior that is 
inherited versus the behavior that is inherited by and defined in 
the substructure when running some business related scenario (use 
case instance).  

       Before maintenance                 After maintenance 

 
Figure 6. Computing the DIR metric 

Figure 6 presents examples where the metric is calculated before 
and after some maintenance. The maintenance consists in the 
addition of two methods m1 and m3 to the class D which override 
the inherited methods with the same name. The scenario for which 
the metric values are calculated is supposed to lead to the call of 
m1, m2 and m3 on an instance of D. When the ratio is 0/0 we 

define the metric’s value as N/A (not applicable or undefined). 
This ratio must nonetheless be recorded since it may help to 
highlight the changes in the inheritance pattern before and after 
maintenance. 
Metric value before maintenance 

DIR(A) = |�| / |� � {m0, m5}| = 0/2= 0 

DIR(B) = |{m0}| / |{m0} � {m1,m2}| = 1/3  

DIR(C) = |�| / |� � {m3} = 0/1= 0 
DIR(D) = |{m0,m1,m2,m3,m5}| /  

 |{m0,m1,m2,m3,m5} � {m4}|  = 5/6 

DIR(P1) = |�| / |� �{m0,m1,m2,m5}|  = 0/4 = 0 
DIR(P2) = |{m0,m1,m2, m5}| /  

  |{m0,m1,m2,m5} � {m3, m4}|  = 4/6 

Metric value after maintenance 

DIR(A’) = |�| / |� � {m0, m5}| = 0/2= 0 

DIR(B’) = |{m0}| / |{m0} � {m2}| = 1/2  

DIR(C’) = |�| / |� � {m3} = 0/0= N/A 
DIR(D’) = |{m0,m2,m5}| /  

  |{m0,m2,m5} � {m1,m3,m4}|  = 3/6 

DIR(P1’) = |�| / |� �{m0,m2,m5}|  = 0/3 = 0 
DIR(P2’) = |{m0,m2, m5}| /  

      |{m0,m2,m5} � {m1,m3, m4}|  = 3/6 
For example, fimpl(A) = 2 because this class implements 2 
methods (m0 and m5) that are executed in an instance of its 
subclass D. These two methods are included in the set of executed 
methods inherited by D and counted by finh(D). 

5. COMPUTING THE DIR METRIC 
To perform any dynamic analysis of a system one must record the 
sequence of methods that have been executed for a specific 
scenario, what we call the execution trace. Along with each 
method we record: the class of the instance that execute the 
method and the class in which the method is declared. There are 
four basic techniques to generate an execution trace [8]: 
1. Instrument the code i.e. introduce extra lines in the source 

code of the methods in a program to write some information 
in a file when the method is executed. 

2. Instrument the execution environment i.e. change this 
environment to generate the trace while it executes the 
original code. The Eclipse TPTP project is an example of such 
an approach. 

3. Run the program in a debugger and insert breakpoints in 
locations of interest. 

4. Use a profiler provided by the development environment. 

Since execution traces can be as long as several million calls, the 
option 3 and 4 are not scalable to such a volume of data. The 
second option is viable for programming languages in which there 
are some facilities to instrument the environment.  Since we want 
to be able to apply our method to whatever programming 
language, we opted for the first technique above.  But even in this 
case, there is an alternative to be chosen: either to build an 
instrumentor that will analyze the source code and insert the 
required extra lines or use an Aspect Oriented Programming 
(AOP) approach to inject the extra lines in the original code. 
Indeed the latter is very convenient to instrument Java source 



code. But is it limited to programming languages for which an 
AOP environment exists. We finally decided to implement our 
own instrumentor which, in the case of Java, is based on the java 
parser of Eclipse. The format of the events (calls) generated by the 
instrumented code is, roughly: 

<declaration class><execution class><method signature> 
Where “execution class” means the class whose instances execute 
the method. The generated events are stored in a database from 
which it is easy to compute the DIR metric. 

6. DYNAMIC INHERITANCE RATIO MAP 
As explained in the sections above, the metric presented in this 
work is computed at different granularity (containment) levels of 
substructures. But the raw numbers are nonetheless difficult to 
interpret on a global scale. For example we cannot see 
immediately where the problems with the inheritance patterns are, 
or what patterns have been changed following some maintenance. 
To overcome the problem, we proposed to represent the metric 
values on a hierarchical map showing the containment hierarchy: 
the DIR Map. This map uses the Treemap visualization tool from 
Microsoft which can nicely represent the hierarchy of 
substructures by nested boxes. Each box represents a substructure 
(package, subpackage, class). Only substructures with defined 
DIR metric values are represented. So substructure with undefined 
DIR value (N/A) are not displayed at all. Moreover, if some use-
case involves only a subset of all the classes of a system, then 
only this subset will be displayed.   
The label of each box represents the short name of the 
substructure followed by the metric value and the ratio (in 
brackets). The color of the box is set according to the metric value 
as shown in figure 7.  

  
Figure 7. Color scale in the DIR map 

If a substructure is colored red its inheritance pattern is potentially 
problematic. The greener the color the better the inheritance 
pattern of the substructure. If a substructure is not involved in a 
given scenario, it is colored white. This will allow us to spot the 
change in the color of the substructures among different scenarios. 
The figure 8 presents an example of a DIR map. Navigating the 
different levels of granularity is easy: when clicking on a box, the 
Treemapper will zoom the map on the selected substructure. 

 
Figure 8. DIR map 

Based on the OO principles, a system should be structured as 
hierarchies of classes representing abstractions with subclasses at 

each level specializing the abstractions above them. Following 
this structuring principle, the classes in an inheritance tree will 
declare methods as well as inherit method from ancestor classes. 
Hence we can identify two situations where this OO principle 
would clearly not be leveraged: 

� A class with no inherited methods. If all the behavior of the 
class is declared in the class, then the abstraction mechanism 
is not used and the very abstraction mechanism is useless. 

� A class with no declared methods. If no behavior is defined in 
the class but everything is inherited then the class is useless 
(since, in the OO paradigm, the usefulness of a class is 
relative to its behavior not its structure). 

These represent the upper and lower limits in the metric values 
and the corresponding substructure will be painted red. So a 
“good” metric value should be situated in between these two limit 
values. Broadly speaking, we could say that a well-designed class 
should implement a “good” balance between the behavior it 
inherits and the behavior it implements. But the proper setting of 
the threshold values between green and red depends on the 
evaluation of the acceptable inheritance patterns by a quality 
engineer. We are well aware that this setting is somewhat 
arbitrary since there is no reference value we could rest on. Hence 
the tool must be calibrated according to the subjective values 
defined by the quality engineer. 
The DIR map can be used in two situations: 
1. To assess the quality of a system based on the inheritance 

patterns. 
2. To compare the quality of a system before and after 

maintenance on the basis of the inheritance patterns. 
In the first situation above, the map is used to assess the 
“absolute” quality of some system and the proper setting of the 
threshold is important. In the second situation, we are interested in 
the change of the values and the colors represent a simple 
technique to identify these changes. In this case the color 
themselves are less critical. This is the situation presented in the 
figure 9 below which illustrates the situation of figure 6 (same 
metric values). 
      Before maintenance                 After maintenance 

    
Figure 9. DIR map of the example of figure 6 

It is easy to see the difference between the two situations which, 
on the basis of the colors, can be interpreted the following way: 

� Class C does not have any role in the scenario after 
maintenance which should trigger some further 
investigations by the maintenance engineer. 

� Class D implements a much better balance between the 
inherited and implemented behavior.  

� Class B significantly improved the balance between the 
inherited and implemented behavior. 

� Package P2 slightly improved the balance between the 
inherited and implemented behavior. 

All other substructures did not change their inheritance patterns. 
Such a technique let us identify changes by spotting different 



color patterns and then allows us to further investigate the code of 
the “red” substructures to check if their design could be improved. 

7. CASE STUDY: ARGO UML 
7.1 Single version display 
We analyzed, with the DIR Map approach, the structure of 
ArgoUMLv035, a medium sized open source java application to 
draw UML diagrams (approx. 2000 classes organized in 150 
packages). In the example presented in figure 10, we ran a small 
scenario in which we used only a subset of the functionality of the 
application. Specifically, we created a simple UML class diagram 
and saved it. This shows one of the key features of our metric: it 
can be computed at different levels of containment. We can

immediately observe that a majority of the substructures are 
painted red which, in this case, represent low metric values, with 
the notable exception of the uml.diagram.static_substructure 
which holds most of the functionality executed in the scenario. 
The majority of the packages are red because only a few of the 
system’s functionality have been used. If the use of the 
application would be limited to the scenario we ran, then the 
architecture of the system would be badly designed because the 
implementation of the behavior would be needlessly scattered 
among several packages and classes. In order to truly analyze an 
entire system, we should run all the scenarios representing the real 
uses of the system. Fig 11 shows the DIR map of the package that 
is the most specific to the scenario. We can see that about half of 
the substructures are painted green representing a good balance 
between the inherited and implemented code.  

 
Figure 10. DIR map of Argo UML v035 

 
Fig 11: DIR map of the uml.diagram.static_substructure package of ArgoUML 



7.2 Version comparison 
In this experiment, we compared the DIR maps of versions 028 
and 035 of ArgoUML. In order for the maps to be comparable, we 
must of course run the same use-case in both versions and record 
their respective execution trace. Next we compute the DIR metric 
for all the substructures in each system. Finally we build the maps 
using the union of the substructures of both versions. This is 
required to be able to easily compare the versions. Indeed if some 

of the substructures are absent in one of the versions, then the 
common substructures will be placed in different location in both 
maps by the Treemapper. Then the maps will be hardly 
comparable. Finally we create the two DIR maps with the same 
set of packages and we paint them with the result of the DIR 
metric for both cases. When a package is present only in one of 
the versions, it will be painted white in the other version to 
highlight that it is absent from the version. 

 
Figure 12. DIR map of Argo UML v028 (union of the substructures with v035) 

 

Figure 13. DIR map of Argo UML v035 (union of the substructures with v028) 



As we can see by comparing both figures, a lot of the classes 
involved in the first version disappeared from the second version. 
A further investigation showed that these classes have indeed 
been removed from the package in the new version. They have 
been relocated in another package and are not involved in the 
implementation of the use-case anymore. What is also notable is 
the drop of the DIR metric of the uml/diagram/static_structure/ui 
package (dark green to light green). This may be due to the fact 
that the package in version 035 implements new classes. 

8. RELATED WORK 
Most of the metrics relating to inheritance have been defined quite 
a long time ago and are rather primitive [12]. For example, 
Chidamber and Kemerer [3] defined the classical Depth of 
Inheritance Tree (DIT i.e. the number of the level in the 
inheritance tree where a substructure is positioned) and the 
Number of Children (NOC, i.e. the number of direct children of a 
substructure) metrics. Compared with our work, these metrics are 
static (i.e. not based on the actual execution of the system) and not 
hierarchical (i.e. can only characterize classes). Wei Li [11] 
further extended these metrics by adding the Number of Ancestor 
Classes (NAC i.e. the number of parent classes which differs from 
DIT when multiple inheritance is used) and Number of 
Descendants Classes (NDC i.e. the number of direct and indirect 
children). Again, compared with our work, these metrics are static 
and not hierarchical. F.T. Sheldon et al. [15] defined the Average 
Understandability (AU i.e. the average NAC of a substructures 
among all substructures of an application) and the Average 
Modifiability” (AM i.e. the average of (NAC+NDC)/2 of a 
substructures among all substructures of an application). The 
purpose of such metrics are not clear and again they are neither 
dynamic nor hierarchical. Brito e Abreu [1] proposed the “Method 
Inheritance Factor” (MIF) which represents the average ratio of 
the inherited methods among all the methods a class contains 
(inherited, implemented and overridden) for all the classes of the 
application. But this it is too global since it only gives an average 
value over the entire system. It is then hard to know where and 
what could be done to improve the value of the metric. Moreover, 
the metric, as originally proposed, is computed on static source 
code therefore it does not represent how the methods are used 
when the system is executed. Gill and Sikka [7] proposed the 
“Method Reuse Per Inheritance Relation (MRPIR)” metric which 
represents the average inherited functionality through an 
inheritance relationship. This metric is quite similar to the MIF 
but it is less global since it is calculated for each inheritance 
relation rather than computing an average over the entire 
application. But it nonetheless computes the inheritance of 
behavior for all the classes situated below each relation in the 
inheritance graph. Then, it remains a rather global metric and 
shares the same other shortfalls as the MIF metric. Sahraoui and 
Denier [5] proposed a visual representation of some metrics 
related to inheritance in a form called “sunburst layout”. This 
visualization uses a radial space-filling technique:  a sunburst map 
is a circle with slices and sub-slices representing hierarchies. As 
opposed to our maps which show the containment hierarchy of 
substructures, sunburst maps show the hierarchy of inheritance 
between classes.  Moreover, there are two inheritance related 
metrics shown on the Sahraoui’s and Deiner’s sunburst : 
hierarchical relationship and similarity between siblings. 
Hierarchical relationship characterizes the sub-classing behavior, 
i.e. whether the class has a tendency to add new methods or to 
override methods from its parents. This metric is represented on a 
scale of five colors, ranging from pure extender to pure overrider. 
The similarity metric shows to which extend the children of a 

given class shares a common set of functionality. Both of the 
metrics and the visual representation describes information which 
is useful to understand the design of inheritance patterns, but they 
do not help identifying bad design since they do not represent the 
amount of methods inherited between parent and children 
substructures. Moreover, the metrics, as originally proposed, are 
computed on the source code (static approach) and are not 
hierarchic. Stasko and Zhang [16] claim that a radial space-filling 
visualization offers a better intuitive overview of a hierarchy 
when compared to a Treemap. The comparison was done on a file 
system hierarchy display without the use of colors for 
substructures, as opposed to our Treemap where all substructures 
have colors. So the findings of these authors do not really apply to 
our case. In their book, Lanza and Marinescu [10] proposed a 
visualization called “class blueprint” which displays a table for 
each class with a tree-like representation of functionalities 
(methods) and their dependencies. Methods are classified by 
visibility and utility (initializers, public, private,…). They use 
colors to highlight some inheritance related characteristics such as 
overriding, delegating and extending behavior. This information is 
useful to understand to some extent the design of a class and some 
(but not all) characteristics related to inheritance. However it does 
not help identifying bad design because it does not represent the 
amount of methods inherited or overridden between parents and 
children substructures nor does it take the containment hierarchy 
into account. Ducasse [6] proposed a visualization called 
“package surface blueprint” similar to the one of Lanza and 
Marinescu but at the level of packages instead of classes. The 
visualization shows the inheritance hierarchy of classes contained 
in each package and also the classes from other packages from 
which functionality is inherited. This information is useful to 
understand, to some extent, the design of inheritance class 
hierarchies, how the behavior is scattered among the packages and 
some (but not all) the characteristics related to inheritance. But 
again, like for the work of Sahraoui and Denier and others, it does 
not help identifying bad design because it does not represent the 
amount of functionality inherited or overridden between parent 
and children substructures. Besides, it is a static metric hence it 
does not analyze the actual inheritance while the system is 
executing. Finally the metric addresses only one level of packages 
and cannot be computed for higher level of containment. The 
work of Makkar et al. [12] focuses on the reuse aspect of 
inheritance and proposes a new metric that is theoretically well 
grounded. However, it is again a static metric which does not 
address the substructures beyond the class level. 

9. CONCLUSIONS 
This paper presents a new metric to observe the dynamic 
inheritance patterns among substructures. It brings several 
contributions. First it defines the notion of inheritance pattern 
among substructures (classes and packages).  
Second it proposes a new metric to characterize the inheritance 
pattern at any level of containment in the code containment 
hierarchy. This metric is computed based on the actual running of 
the system and can therefore measure the real use of inheritance in 
the system. Since the metric can be applied at any level in the 
containment hierarchy, it can scale up to whatever system size. It 
is important to note that the computation of the metric above the 
class level is not simply an aggregation of the metric values at 
class level. It is the result of the application of the same 
computation technique at all these levels. It is the clear definition 
of the finh and fimpl functions for the substructures that makes it 
possible. To our best knowledge, no inheritance metric has been 
defined so far for other containment level than classes. This 



feature allows one to display informative maps at any level of 
containment (classes, packages, packages of packages,…) with 
the exact same semantics at all these levels.  
Third, the metric values are presented in a hierarchical map, the 
Treemap, to allow the interpretation of the inheritance patterns at 
the global system’s scale. We then presented a case study using 
Argo UML, a medium size system written in Java. This metric 
can be used to assess the quality of a system from the inheritance 
pattern point of view and specifically help the maintenance 
engineer identify the changes that impacted a system after 
maintenance. This metric is part of a set of tools we developed to 
assess the quality of a system from an architecture point of view. 
As the next step we intend to systematically record the different 
color patterns together with their interpretation in terms of the 
quality of the inheritance pattern. Then, equipped with these color 
pattern we could quickly diagnose a system by searching for these 
patterns in the DIR map of a system. 
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