
Measuring Inheritance Patterns in Object Oriented
Systems: the Dynamic Inheritance Ratio Metric
Niculescu M.

Haute ecole de gestion
Univ. of Applied Sciences of

Western Switzerland
7 route de Drize,

CH 1227 Geneva, Switzerland
+41 22 388 17 00

mihnea_niculescu@hotmail.fr

Dugerdil Ph.
Haute ecole de gestion

Univ. of Applied Sciences of
Western Switzerland

7 route de Drize,
CH 1227 Geneva, Switzerland

+41 22 388 17 00
philippe.dugerdil@hesge.ch

Canedo Blanco M.
Haute ecole de gestion

Univ. of Applied Sciences of
Western Switzerland

7 route de Drize,
CH 1227 Geneva, Switzerland

+41 22 388 17 00
michaelcanedob@gmail.com

ABSTRACT
Among the code structuration mechanisms in object oriented
systems, class hierarchies based on the generalization relationship
play a prominent role. Indeed it is used to represent and code
hierarchies of abstractions supposed to help with code
understanding, maintenance and extension. But it is common to
see class hierarchies and the associated inheritance mechanism be
diverted from this noble role to become a mere code sharing
mechanism. In this case, rather than helping, the inheritance
mechanism confuses the understanding of the code. Hence, we
have developed a metric to analyze the inheritance mechanism at
work in a running system, what we have called the inheritance
pattern. Although the metrics measuring inheritance are
numerous, our approach is original since it observes the actual
inheritance in the running code at the class level as well as among
the packages (i.e. among the classes through package). In some
sense, this metric measures how well the inheritance mechanism
has been leveraged in the software. But interpreting raw numbers
can be hard. Then we developed a visual and hierarchical
representation of the metric values at the scale of a whole system.
This helps to assess the quality of the code from the point of view
of code abstraction.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – Product metrics

General Terms
Measurement, Experimentation, Theory.

Keywords
Abstraction hierarchies, inheritance, metrics, system architecture

1. INTRODUCTION
In software engineering, a lot of metrics have been created for the
last decades. But, in practice, we observe that only few of them
are really used. Often the latter are old metrics that are more or
less well accepted by the software engineering community, but
barely used. We think three reasons could explain the lack of

practical use of some of the newest metrics. First, these metrics
are often designed with some theoretical concepts in minds but
therefore lack a practical purpose [12]. A case in point is
illustrated by the SEMAT initiative which acknowledges the lack
of credible experimental evaluation and validation of most of the
academic proposals [9]. Second, the metrics are often too broad
in scope, characterizing the entire system, or too narrow,
characterizing only the smallest structures i.e. the classes ignoring
larger structures such as packages and sub-packages. Indeed,
global metrics are often difficult to interpret because they can
show similar values for very different situations. On the other
hand, metrics that are too narrow in scope generate a large number
of values whose global interpretation is difficult. Finally, metrics
are generally computed trough static program analysis, i.e.
analysis of the source code of a system without actually executing
it, as opposed to dynamic analysis which is performed on the
result of executing the programs. Static approaches have
difficulties measuring behavior that arises only at runtime, such as
dynamic binding and polymorphism. But this is not a problem for
dynamic analysis.

In summary, most of the popular inheritance metrics suffer from
the problems explained above. They are often too broad in scope
and computed statically. In this paper, we propose a new metric
that overcomes these problems. Although inheritance is a feature
of classes, we overcome the “narrow scope problem” by showing
how the metric can be computed hierarchically i.e. at package
level whatever the level in the containment hierarchy. Of course,
this technique generates a much larger number of values than a
narrow scoped metric, which could be harder to interpret. To
overcome the problem, we developed a visual technique to show
the metric values on the full system, using colors to help
interpreting the values on a global scale. The key contributions of
our paper are: the definition of a dynamic metric for inheritance,
the inclusion of the packages in the metric and the design of a
visual representation to ease the interpretation of the metric
values.
In this paper, we present in section 2 the notion of the inheritance
pattern from which we could, in section 3, explain the problem
that might arise in systems. Next, to characterize the “quality” of
the inheritance pattern we propose in section 4 a new metric that
is both dynamic (i.e. based on the actual execution of the system)
and hierarchical (characterizing not only the classes but also the
containing packages). In section 5 we explain how the metric is
computed and in section 6 the way the metric is visually
represented for an entire system. Section 7 presents the
application of the metric to a medium size open source system:
Argo UML. Section 8 presents the related work and section 9
concludes the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ISEC '15, February 18 - 20, 2015, Bangalore, India
Copyright 2015 ACM 978-1-4503-3432-7/15/02…$15.00
http://dx.doi.org/10.1145/2723742.2723755.

dossantosgw
Texte tapé à la machine
Published in Proceedings of the 8th India Software Engineering Conference which should be cited to refer to this work

2. INHERITANCE PATTERNS
Since we are dealing with inheritance of behavior, our work
applies to object oriented programs. In order for our approach to
stay general, we use the term “substructure” to mean the syntactic
grouping of programming elements above the method/procedure
level which obeys to a composition relationship (which means
that one substructure can be composed of other substructures and
so on). Then, our work is applicable to whatever programing
paradigm that supports inheritance of behavior.
An inheritance graph is a graph whose nodes are the substructures
and whose edges are the relations enabling inheritance. Hence,
parent substructures define behavior that is inherited by child
substructures. The behavior of a child extends (add new) and/or
overrides (redefines existing) the behavior inherited from its
parents. The inheritance path from a given class is the sequence
of inheritance relation to travel to retrieve some inherited
behavior. The length of the path is the number of relation traveled.
It is important to note that our general definition of a substructure
which works at different granularity levels, allows us to observe
the inheritance of behavior beyond the class level. Indeed,
packages do not actually define behavior but we could
nonetheless be interested to know that a package contains classes
whose behavior is inherited by the classes located in another
package. Then, by analogy with the classes, we say that some
package “inherits” behavior from another package if some class in
the former inherits behavior from a class of the latter, whatever
the nesting level of the class in each package’s containment
hierarchy.
With these definitions, the (behavior) inheritance pattern is the
description of the way some specific configuration of
substructures share behavior through inheritance. The goal of our
work is to propose a method and a metric to evaluate the quality
of the design of the inheritance patterns and thus helping to spot
patterns that can potentially be improved. This will be especially
useful to check the quality of some maintenance. For example one
could compare the inheritance patterns before and after some
maintenance to check if the architecture has been damaged from
the point of view of inheritance. Indeed, it is well known that
maintenances could deteriorate the quality of the architecture of a
system. However this phenomenon has traditionally been
observed on the static point of view i.e. from the responsibilities
of the components. From a program understanding point of view
it is well know that inappropriate inheritance may lead to a source
code that is harder to understand [4][14]. Then, our metric can
play a important role in assessing the change in the inheritance
pattern hence the understandability of the resulting code.
For the sake of readability of the examples, in the UML class
diagrams we directly display the body of the methods in curly
brackets. Figure 1 shows an example of an inheritance pattern
highlighted in the blue rectangle. ClassB (child) extends ClassA
(parent). With our extended definition of inheritance, PackageB
“inherits” behavior from PackageA because it contains ClassB
which inherits from ClassA located in PackageA. ClassB declares
a new method m4 and redefines (overrides) the method m2 which
is already declared in ClassA. When the method m4 is executed
on an instance of ClassB, the inherited method m1 is executed
because it is called by m4. When the inherited method m3 is
executed on an instance of the ClassB, the overridden method m2
is also executed. This configuration of declared, inherited and
overridden methods represent the inheritance pattern of the
structure under study. Our metric measures the ratio of the
number of inherited methods among all the methods executed in
an instance of a class when running some scenario of business
value. This ratio will also be computed for the packages. In the

example of Figure 1, PackageC is not included in the inheritance
pattern since its class does not inherit any behavior from ClassA
or ClassB.

3. INHERITANCE PATTERNS PROBLEMS
The inheritance patterns may sometimes show problems due to
some flaw in the initial design or during maintenance. Because of
the quantity of maintenance a typical system undergo during its
lifetime, it is very likely to see changes in its inheritance patterns
over time, often for worse.

Figure 1. Inheritance pattern

There are two ways in which problems can be spotted: by
analyzing the design with respect to some known problem
patterns or by comparing the architecture before and after
maintenance. In the first case, one could for example detect
substructures that involve too little or too much inheritance (with
respect to some agreed threshold values) and decide to further
investigate them. In the second case one can spot changes and
check if these are improving or spoiling the inheritance pattern.
There are various maintenance scenarios in which the inheritance
patterns are deteriorating. We describe thereafter some of the
problematic scenarios we may encounter. For the sake of
simplicity, the inheritance patterns shown in the examples are at
the lowest level of granularity, the class-level, but the same
patterns exist at higher level of granularity such as between
packages. The examples show the problem with one or two
methods, but in a real maintenance the updates could be on a
much larger scale involving a lot of methods. Moreover the length
of the inheritance path is limited to 1 to reduce the size of the
figures. While the problems illustrated below may sound trivial
when the inheritance path length is 1, they are much more
frequent when the inheritance patterns involve paths longer than
1. In the first maintenance situation (Figure 2), a new method m3
must be added to the Child Class to implement some feature. To
implement this method, the maintenance engineer needs to call a
method whose functionality is equivalent to that of m1 but,
ignoring that m1 exists in the Parent Class, he writes a new
method m11 in in the Child Class. The problem here is that the
functionality (semantics) of m1 is duplicated.

 Before maintenance After maintenance

Figure 2. First maintenance scenario

Runtime diagnostic: after maintenance the number of executed
method in a scenario involving the feature is greater than before
maintenance, while the number of executed methods that are
inherited is the same.

 Before maintenance After maintenance

Figure 3. Second maintenance scenario

The second situation (Figure 3) is similar to the first, except that
the maintenance engineer uses the same name m1 for the called
method implemented in the Child Class, ignoring the method
already implemented in the Parent Class. In addition to the code
duplication problem, a worse problem occurs: the method m2 was
designed to work with m1 that is inherited from the Parent Class.
Now it calls the new implementation of m1 in the Child Class
(which overrides m1 of Parent Class). Since these two methods
are not necessarily equivalent, a bug is likely to result.

 Before maintenance After maintenance

Figure 4. Third maintenance scenario

Runtime diagnostic: after maintenance the number of executed
method in the scenario is greater than before maintenance, while
the number of executed inherited methods is lower.

In the third situation (figure 4) m2 in the Parent Class call m1
which is specialized in the Child Class. Suppose that the

maintenance engineer modifies m2 in order not to call m1
anymore for some reason (for example for code optimization).
After the maintenance, when m2 is executed on an instance of the
Child Class, it does not call m1 in the Child Class anymore. Since
the behavior corresponding to m1 was specialized in the Child
Class this specialized behavior is not invoked anymore resulting
to a likely bug.
Runtime diagnostic: after maintenance, when the m2 is executed
on an instance of Child Class, the number of executed inherited
methods is the same while the total number of executed methods
is less than before maintenance.

 Before maintenance After maintenance

Figure 5. Fourth maintenance scenario

Fourth situation (figure 5): during maintenance, a new class Child
Class is created with a new method m3. Suppose that m3 needs to
invoke the functionality of m2 in a specialized form. The
maintenance engineer then creates a new method m2 in the Child
Class while ignoring the fact that m1 uses m2. After maintenance,
when executing m1 on an instance of Child Class, m1 will call m2
of Child Class rather than m2 in Parent Class as it was initially
designed to work.
Runtime diagnostic: after maintenance when m1 is executed on
an instance of Child Class, the number of methods executed in
Parent Class is lower than before maintenance, while the
functionality of m1 was supposed to be unaffected by the
maintenance. It is worth mentioning that the last two situations
described above represent instances of a well-known problems
referred in literature as the Fragile Base Class Problem [13].

4. DYNAMIC INHERITANCE RATIO
In order to observe and measure the behavior involved in the
inheritance patterns we propose a dynamically computed metric,
which we called the DIR (Dynamic Inheritance Ratio). This
metric, as explained earlier, is computed dynamically when the
system is executed following some business-relevant scenarios
(use-case instances). Moreover, our inheritance metric can be
computed not only at class level but also at larger granularity level
(packages). Since we are interested by the patterns of inheritance,
we wish to observe where the behavior of the substructures is
implemented not how many times some behavior is executed.
This is why we count the number of distinct methods executed.
Hence, we define the following two functions where S denotes the
set of substructures in a program:

fimpl S �� Integer : number of distinct executed methods
implemented in s � S.

finh S � Integer : number of distinct executed methods inherited
by some s � S and directly called on an instance of s or called by
one of the executed methods implemented in s.

So fimpl(s) and finh(s) do not overlap. The first function counts
the executed methods implemented in s and the second counts the
executed methods not implemented in s. It follows from these
definitions that if a class does not implement any executed method
and if none of its instances execute any inherited method, the DIR
metric is undefined (0/0). For example, in the right part of figure
5, if a scenario would lead to the call of method m3 on an instance
of Child Class, then Parent Class would have an undefined DIR
metric value. In the case of the packages these functions are
interpreted the following way. fimpl : the method must be
implemented in some class in the package s, whatever the depth of
the class in the containment hierarchy. finh : the method must be
inherited by any class c in the package s, whatever the depth of c
in the containment hierarchy starting from s, from a class defined
in another package outside s. The instance for which the methods
are executed is that of c. With these functions, the Dynamic
Inheritance Ratio is, for any s � S [2]:

DIR(s) =

Specifically, DIR represents the ratio of the behavior that is
inherited versus the behavior that is inherited by and defined in
the substructure when running some business related scenario (use
case instance).

 Before maintenance After maintenance

Figure 6. Computing the DIR metric

Figure 6 presents examples where the metric is calculated before
and after some maintenance. The maintenance consists in the
addition of two methods m1 and m3 to the class D which override
the inherited methods with the same name. The scenario for which
the metric values are calculated is supposed to lead to the call of
m1, m2 and m3 on an instance of D. When the ratio is 0/0 we

define the metric’s value as N/A (not applicable or undefined).
This ratio must nonetheless be recorded since it may help to
highlight the changes in the inheritance pattern before and after
maintenance.
Metric value before maintenance

DIR(A) = |�| / |� � {m0, m5}| = 0/2= 0

DIR(B) = |{m0}| / |{m0} � {m1,m2}| = 1/3

DIR(C) = |�| / |� � {m3} = 0/1= 0
DIR(D) = |{m0,m1,m2,m3,m5}| /

 |{m0,m1,m2,m3,m5} � {m4}| = 5/6

DIR(P1) = |�| / |� �{m0,m1,m2,m5}| = 0/4 = 0
DIR(P2) = |{m0,m1,m2, m5}| /

 |{m0,m1,m2,m5} � {m3, m4}| = 4/6

Metric value after maintenance

DIR(A’) = |�| / |� � {m0, m5}| = 0/2= 0

DIR(B’) = |{m0}| / |{m0} � {m2}| = 1/2

DIR(C’) = |�| / |� � {m3} = 0/0= N/A
DIR(D’) = |{m0,m2,m5}| /

 |{m0,m2,m5} � {m1,m3,m4}| = 3/6

DIR(P1’) = |�| / |� �{m0,m2,m5}| = 0/3 = 0
DIR(P2’) = |{m0,m2, m5}| /

 |{m0,m2,m5} � {m1,m3, m4}| = 3/6
For example, fimpl(A) = 2 because this class implements 2
methods (m0 and m5) that are executed in an instance of its
subclass D. These two methods are included in the set of executed
methods inherited by D and counted by finh(D).

5. COMPUTING THE DIR METRIC
To perform any dynamic analysis of a system one must record the
sequence of methods that have been executed for a specific
scenario, what we call the execution trace. Along with each
method we record: the class of the instance that execute the
method and the class in which the method is declared. There are
four basic techniques to generate an execution trace [8]:
1. Instrument the code i.e. introduce extra lines in the source

code of the methods in a program to write some information
in a file when the method is executed.

2. Instrument the execution environment i.e. change this
environment to generate the trace while it executes the
original code. The Eclipse TPTP project is an example of such
an approach.

3. Run the program in a debugger and insert breakpoints in
locations of interest.

4. Use a profiler provided by the development environment.

Since execution traces can be as long as several million calls, the
option 3 and 4 are not scalable to such a volume of data. The
second option is viable for programming languages in which there
are some facilities to instrument the environment. Since we want
to be able to apply our method to whatever programming
language, we opted for the first technique above. But even in this
case, there is an alternative to be chosen: either to build an
instrumentor that will analyze the source code and insert the
required extra lines or use an Aspect Oriented Programming
(AOP) approach to inject the extra lines in the original code.
Indeed the latter is very convenient to instrument Java source

code. But is it limited to programming languages for which an
AOP environment exists. We finally decided to implement our
own instrumentor which, in the case of Java, is based on the java
parser of Eclipse. The format of the events (calls) generated by the
instrumented code is, roughly:

<declaration class><execution class><method signature>
Where “execution class” means the class whose instances execute
the method. The generated events are stored in a database from
which it is easy to compute the DIR metric.

6. DYNAMIC INHERITANCE RATIO MAP
As explained in the sections above, the metric presented in this
work is computed at different granularity (containment) levels of
substructures. But the raw numbers are nonetheless difficult to
interpret on a global scale. For example we cannot see
immediately where the problems with the inheritance patterns are,
or what patterns have been changed following some maintenance.
To overcome the problem, we proposed to represent the metric
values on a hierarchical map showing the containment hierarchy:
the DIR Map. This map uses the Treemap visualization tool from
Microsoft which can nicely represent the hierarchy of
substructures by nested boxes. Each box represents a substructure
(package, subpackage, class). Only substructures with defined
DIR metric values are represented. So substructure with undefined
DIR value (N/A) are not displayed at all. Moreover, if some use-
case involves only a subset of all the classes of a system, then
only this subset will be displayed.
The label of each box represents the short name of the
substructure followed by the metric value and the ratio (in
brackets). The color of the box is set according to the metric value
as shown in figure 7.

Figure 7. Color scale in the DIR map

If a substructure is colored red its inheritance pattern is potentially
problematic. The greener the color the better the inheritance
pattern of the substructure. If a substructure is not involved in a
given scenario, it is colored white. This will allow us to spot the
change in the color of the substructures among different scenarios.
The figure 8 presents an example of a DIR map. Navigating the
different levels of granularity is easy: when clicking on a box, the
Treemapper will zoom the map on the selected substructure.

Figure 8. DIR map

Based on the OO principles, a system should be structured as
hierarchies of classes representing abstractions with subclasses at

each level specializing the abstractions above them. Following
this structuring principle, the classes in an inheritance tree will
declare methods as well as inherit method from ancestor classes.
Hence we can identify two situations where this OO principle
would clearly not be leveraged:

� A class with no inherited methods. If all the behavior of the
class is declared in the class, then the abstraction mechanism
is not used and the very abstraction mechanism is useless.

� A class with no declared methods. If no behavior is defined in
the class but everything is inherited then the class is useless
(since, in the OO paradigm, the usefulness of a class is
relative to its behavior not its structure).

These represent the upper and lower limits in the metric values
and the corresponding substructure will be painted red. So a
“good” metric value should be situated in between these two limit
values. Broadly speaking, we could say that a well-designed class
should implement a “good” balance between the behavior it
inherits and the behavior it implements. But the proper setting of
the threshold values between green and red depends on the
evaluation of the acceptable inheritance patterns by a quality
engineer. We are well aware that this setting is somewhat
arbitrary since there is no reference value we could rest on. Hence
the tool must be calibrated according to the subjective values
defined by the quality engineer.
The DIR map can be used in two situations:
1. To assess the quality of a system based on the inheritance

patterns.
2. To compare the quality of a system before and after

maintenance on the basis of the inheritance patterns.
In the first situation above, the map is used to assess the
“absolute” quality of some system and the proper setting of the
threshold is important. In the second situation, we are interested in
the change of the values and the colors represent a simple
technique to identify these changes. In this case the color
themselves are less critical. This is the situation presented in the
figure 9 below which illustrates the situation of figure 6 (same
metric values).
 Before maintenance After maintenance

Figure 9. DIR map of the example of figure 6

It is easy to see the difference between the two situations which,
on the basis of the colors, can be interpreted the following way:

� Class C does not have any role in the scenario after
maintenance which should trigger some further
investigations by the maintenance engineer.

� Class D implements a much better balance between the
inherited and implemented behavior.

� Class B significantly improved the balance between the
inherited and implemented behavior.

� Package P2 slightly improved the balance between the
inherited and implemented behavior.

All other substructures did not change their inheritance patterns.
Such a technique let us identify changes by spotting different

color patterns and then allows us to further investigate the code of
the “red” substructures to check if their design could be improved.

7. CASE STUDY: ARGO UML
7.1 Single version display
We analyzed, with the DIR Map approach, the structure of
ArgoUMLv035, a medium sized open source java application to
draw UML diagrams (approx. 2000 classes organized in 150
packages). In the example presented in figure 10, we ran a small
scenario in which we used only a subset of the functionality of the
application. Specifically, we created a simple UML class diagram
and saved it. This shows one of the key features of our metric: it
can be computed at different levels of containment. We can

immediately observe that a majority of the substructures are
painted red which, in this case, represent low metric values, with
the notable exception of the uml.diagram.static_substructure
which holds most of the functionality executed in the scenario.
The majority of the packages are red because only a few of the
system’s functionality have been used. If the use of the
application would be limited to the scenario we ran, then the
architecture of the system would be badly designed because the
implementation of the behavior would be needlessly scattered
among several packages and classes. In order to truly analyze an
entire system, we should run all the scenarios representing the real
uses of the system. Fig 11 shows the DIR map of the package that
is the most specific to the scenario. We can see that about half of
the substructures are painted green representing a good balance
between the inherited and implemented code.

Figure 10. DIR map of Argo UML v035

Fig 11: DIR map of the uml.diagram.static_substructure package of ArgoUML

7.2 Version comparison
In this experiment, we compared the DIR maps of versions 028
and 035 of ArgoUML. In order for the maps to be comparable, we
must of course run the same use-case in both versions and record
their respective execution trace. Next we compute the DIR metric
for all the substructures in each system. Finally we build the maps
using the union of the substructures of both versions. This is
required to be able to easily compare the versions. Indeed if some

of the substructures are absent in one of the versions, then the
common substructures will be placed in different location in both
maps by the Treemapper. Then the maps will be hardly
comparable. Finally we create the two DIR maps with the same
set of packages and we paint them with the result of the DIR
metric for both cases. When a package is present only in one of
the versions, it will be painted white in the other version to
highlight that it is absent from the version.

Figure 12. DIR map of Argo UML v028 (union of the substructures with v035)

Figure 13. DIR map of Argo UML v035 (union of the substructures with v028)

As we can see by comparing both figures, a lot of the classes
involved in the first version disappeared from the second version.
A further investigation showed that these classes have indeed
been removed from the package in the new version. They have
been relocated in another package and are not involved in the
implementation of the use-case anymore. What is also notable is
the drop of the DIR metric of the uml/diagram/static_structure/ui
package (dark green to light green). This may be due to the fact
that the package in version 035 implements new classes.

8. RELATED WORK
Most of the metrics relating to inheritance have been defined quite
a long time ago and are rather primitive [12]. For example,
Chidamber and Kemerer [3] defined the classical Depth of
Inheritance Tree (DIT i.e. the number of the level in the
inheritance tree where a substructure is positioned) and the
Number of Children (NOC, i.e. the number of direct children of a
substructure) metrics. Compared with our work, these metrics are
static (i.e. not based on the actual execution of the system) and not
hierarchical (i.e. can only characterize classes). Wei Li [11]
further extended these metrics by adding the Number of Ancestor
Classes (NAC i.e. the number of parent classes which differs from
DIT when multiple inheritance is used) and Number of
Descendants Classes (NDC i.e. the number of direct and indirect
children). Again, compared with our work, these metrics are static
and not hierarchical. F.T. Sheldon et al. [15] defined the Average
Understandability (AU i.e. the average NAC of a substructures
among all substructures of an application) and the Average
Modifiability” (AM i.e. the average of (NAC+NDC)/2 of a
substructures among all substructures of an application). The
purpose of such metrics are not clear and again they are neither
dynamic nor hierarchical. Brito e Abreu [1] proposed the “Method
Inheritance Factor” (MIF) which represents the average ratio of
the inherited methods among all the methods a class contains
(inherited, implemented and overridden) for all the classes of the
application. But this it is too global since it only gives an average
value over the entire system. It is then hard to know where and
what could be done to improve the value of the metric. Moreover,
the metric, as originally proposed, is computed on static source
code therefore it does not represent how the methods are used
when the system is executed. Gill and Sikka [7] proposed the
“Method Reuse Per Inheritance Relation (MRPIR)” metric which
represents the average inherited functionality through an
inheritance relationship. This metric is quite similar to the MIF
but it is less global since it is calculated for each inheritance
relation rather than computing an average over the entire
application. But it nonetheless computes the inheritance of
behavior for all the classes situated below each relation in the
inheritance graph. Then, it remains a rather global metric and
shares the same other shortfalls as the MIF metric. Sahraoui and
Denier [5] proposed a visual representation of some metrics
related to inheritance in a form called “sunburst layout”. This
visualization uses a radial space-filling technique: a sunburst map
is a circle with slices and sub-slices representing hierarchies. As
opposed to our maps which show the containment hierarchy of
substructures, sunburst maps show the hierarchy of inheritance
between classes. Moreover, there are two inheritance related
metrics shown on the Sahraoui’s and Deiner’s sunburst :
hierarchical relationship and similarity between siblings.
Hierarchical relationship characterizes the sub-classing behavior,
i.e. whether the class has a tendency to add new methods or to
override methods from its parents. This metric is represented on a
scale of five colors, ranging from pure extender to pure overrider.
The similarity metric shows to which extend the children of a

given class shares a common set of functionality. Both of the
metrics and the visual representation describes information which
is useful to understand the design of inheritance patterns, but they
do not help identifying bad design since they do not represent the
amount of methods inherited between parent and children
substructures. Moreover, the metrics, as originally proposed, are
computed on the source code (static approach) and are not
hierarchic. Stasko and Zhang [16] claim that a radial space-filling
visualization offers a better intuitive overview of a hierarchy
when compared to a Treemap. The comparison was done on a file
system hierarchy display without the use of colors for
substructures, as opposed to our Treemap where all substructures
have colors. So the findings of these authors do not really apply to
our case. In their book, Lanza and Marinescu [10] proposed a
visualization called “class blueprint” which displays a table for
each class with a tree-like representation of functionalities
(methods) and their dependencies. Methods are classified by
visibility and utility (initializers, public, private,…). They use
colors to highlight some inheritance related characteristics such as
overriding, delegating and extending behavior. This information is
useful to understand to some extent the design of a class and some
(but not all) characteristics related to inheritance. However it does
not help identifying bad design because it does not represent the
amount of methods inherited or overridden between parents and
children substructures nor does it take the containment hierarchy
into account. Ducasse [6] proposed a visualization called
“package surface blueprint” similar to the one of Lanza and
Marinescu but at the level of packages instead of classes. The
visualization shows the inheritance hierarchy of classes contained
in each package and also the classes from other packages from
which functionality is inherited. This information is useful to
understand, to some extent, the design of inheritance class
hierarchies, how the behavior is scattered among the packages and
some (but not all) the characteristics related to inheritance. But
again, like for the work of Sahraoui and Denier and others, it does
not help identifying bad design because it does not represent the
amount of functionality inherited or overridden between parent
and children substructures. Besides, it is a static metric hence it
does not analyze the actual inheritance while the system is
executing. Finally the metric addresses only one level of packages
and cannot be computed for higher level of containment. The
work of Makkar et al. [12] focuses on the reuse aspect of
inheritance and proposes a new metric that is theoretically well
grounded. However, it is again a static metric which does not
address the substructures beyond the class level.

9. CONCLUSIONS
This paper presents a new metric to observe the dynamic
inheritance patterns among substructures. It brings several
contributions. First it defines the notion of inheritance pattern
among substructures (classes and packages).
Second it proposes a new metric to characterize the inheritance
pattern at any level of containment in the code containment
hierarchy. This metric is computed based on the actual running of
the system and can therefore measure the real use of inheritance in
the system. Since the metric can be applied at any level in the
containment hierarchy, it can scale up to whatever system size. It
is important to note that the computation of the metric above the
class level is not simply an aggregation of the metric values at
class level. It is the result of the application of the same
computation technique at all these levels. It is the clear definition
of the finh and fimpl functions for the substructures that makes it
possible. To our best knowledge, no inheritance metric has been
defined so far for other containment level than classes. This

feature allows one to display informative maps at any level of
containment (classes, packages, packages of packages,…) with
the exact same semantics at all these levels.
Third, the metric values are presented in a hierarchical map, the
Treemap, to allow the interpretation of the inheritance patterns at
the global system’s scale. We then presented a case study using
Argo UML, a medium size system written in Java. This metric
can be used to assess the quality of a system from the inheritance
pattern point of view and specifically help the maintenance
engineer identify the changes that impacted a system after
maintenance. This metric is part of a set of tools we developed to
assess the quality of a system from an architecture point of view.
As the next step we intend to systematically record the different
color patterns together with their interpretation in terms of the
quality of the inheritance pattern. Then, equipped with these color
pattern we could quickly diagnose a system by searching for these
patterns in the DIR map of a system.

10. REFERENCES
[1] F. Brito e Abreu, “The MOOD Metrics Set,” Proc.

ECOOP’95 Workshop on Metrics, 1995
[2] Canedo Blanco M. - Visualisation des patterns d’héritage à

l’aide de l’analyse dynamique. Bachelor Thesis. Geneva
Schol of Business Adnministration (HEG). Geneva, 2013

[3] S. R. Chidamber et C. F. Kemerer, A Metrics Suite for
Object Oriented Design. IEEE Trans. on Software
Engineering 20(6). 1994.

[4] J. Daly, J. Miller, A. Brooks, M. Roper, M. Wood, “The
Effect of Inheritance on the Maintainability of Object-
Oriented Software: An Empirical Study”. In Proc. of the
IEEE International Conf. on Software Maintenance, 1995,
pp. 20-29.

[5] S. Denier, H.A. Sahraoui, “Understanding the Use of
Inheritance with Visual Patterns”, in: Proceedings of the
Third International Symposium on Empirical Software
Engineering and Measurement, ESEM 2009, USA, October
2009, pp.79–88.

[6] S.Ducasse, D.Pollet, M.Suen, H.Abdeen, I.Alloui, “Package
Surface Blueprints: Visually Supporting the Understanding
of Package Relationships”, ICSM 2007.

[7] N. S. Gill et S. Sikka, “Inheritance Hierarchy Based Reuse &
Reusability Metrics in OOSD”, International Journal on
Computer Science and Engineering (IJCSE), vol.3, June
2011.

[8] Hamou-Lhadj A., Lethbridge T.C. - A Survey of Trace
Exploration Tools and Techniques. Proc of the Conference of
the Centre for Advanced Studies on Collaborative Research
CASCON 2004, October 5-7, 2004, Markham, Canada.

[9] Jacobson I, Meyer B., Soley R. - The SEMAT Initiative: A
Call for Action, Dr Dobbs journal, December 09, 2009.

[10] M. Lanza et R. Marinescu, Object-Oriented Metrics in
Practice, Springer 2006.

[11] W. Li, Another metric suite for object-oriented
programming, Journal of Systems and Software, Volume 44,
Issue 2, December 1998, Pages 155–162.

[12] G. Makkar, J.K Chhabra, R.K Challa,.- Object oriented
inheritance metric-reusability perspective. Int. Conf. on
Computing, Electronics and Electrical Technologies
(ICCEET) 2012.

[13] L. Mikhajlov et E. Sekerinski, A Study of The Fragile Base
Class Problem,1998, European Conference on Object-
oriented Programimng.

[14] G. Poels, G. Dedene, “Evaluating the Effect of Inheritance
on the Modifiability of Object-Oriented Business Domain
Models”, in: Fifth European Conference on Software
Maintenance and Reengineering (CSMR 2001), Lisbon,
Portugal, 2001, pp. 20–28.

[15] F. T. Sheldon, K. Jerath et H. Chung, “Metrics for
maintainability of class inheritance hierarchies”, Journal of
Software Maintenance and Evolution: Research and Practice,
Vol. 14, pp. 1-14, 2002.

[16] Zhang et J. Stasko, Focus+context display and navigation
techniques for enhancing radial, space-filling hierarchy
visualizations.In Proc. IEEE Symposium on Information
Vizualization, pages 57–65, 2000.

