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Abstract 19 

The tick Ixodes ricinus is the vector of various pathogens, including Chlamydiales bacteria, 20 

potentially causing respiratory infections. In this study, we modelled the spatial distribution of 21 

I. ricinus and associated Chlamydiales over Switzerland from 2009 to 2019. We used a total 22 

of 2293 ticks and 186 Chlamydiales occurrences provided by a Swiss Army field campaign, a 23 

collaborative smartphone application and a prospective campaign. For each tick location, we 24 

retrieved from Swiss federal datasets the environmental factors reflecting the topography, 25 

AEM Accepted Manuscript Posted Online 16 October 2020
Appl. Environ. Microbiol. doi:10.1128/AEM.01237-20
Copyright © 2020 Rochat et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

 on O
ctober 30, 2020 by guest

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org/


-2- 
 

climate and land cover. We then used the Maxent modelling technique to estimate the 26 

suitability for I. ricinus and to subsequently build the nested niche of Chlamydiales bacteria. 27 

Results indicate that I. ricinus high habitat suitability is determined by higher temperature and 28 

vegetation index (NDVI) values, lower temperature during driest months and a higher 29 

percentage of artificial and forests areas. The performance of the model was increased when 30 

extracting the environmental variables for a 100 m-radius buffer around the sampling points 31 

and when considering the climatic conditions of the two years previous to sampling date. For 32 

Chlamydiales bacteria, the suitability was favoured by lower percentage of artificial surfaces, 33 

driest conditions, high precipitation during coldest months and short distances to wetlands. 34 

From 2009 to 2018, we observed an extension of tick and Chlamydiales suitable areas, 35 

associated with a shift towards higher altitude. The importance to consider spatio-temporal 36 

variations of the environmental conditions for obtaining better prediction was also 37 

demonstrated.  38 

Importance 39 

Ixodes ricinus is the vector of pathogens, including the agent of Lyme disease, the tick borne 40 

encephalitis virus and the less known Chlamydiales bacteria at the origin of some respiratory 41 

infections. In this study, we identified the environmental factors influencing the presence of I. 42 

ricinus and Chlamydiales in Switzerland and generated maps of their distribution from 2009 43 

to 2018. We found an important expansion of suitable areas for both the tick and the bacteria 44 

during the last decade. Results provided also the environmental factors that determine the 45 

presence of Chlamydiales within ticks. Distribution maps as generated here are expected to 46 

bring valuable informations for decision-makers to control tick-borne diseases in Switzerland 47 

and establish prevention campaigns. The methodological framework presented could be used 48 

to predict the distribution and spread of other host-pathogen couples, to identify 49 
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environmental factors driving their distribution and to develop control or prevention strategies 50 

accordingly. 51 

Introduction 52 

Ixodes ricinus is the most common tick species in Switzerland and is known to be the vector 53 

of many pathogens, including the tick-borne encephalitis virus and the bacteria Borrelia 54 

burgdoferi, agent of the Lyme disease (1, 2). In 2015, Pilloux et al. showed that I. ricinus may 55 

also have a role of vector and even reservoir for Chlamydiales bacteria, especially 56 

Rhabdochlamydiaceae and Parachlamydiaceae. Chlamydiales is an order of strict 57 

intracellular bacteria containing various bacterial pathogens or emerging pathogens associated 58 

with serious diseases for humans and animals, including respiratory tract infections and 59 

miscarriage (3–5). Parachlamydiaceae have been largely associated to free-living amoebae (6, 60 

7) and are considered as emerging agents of pneumonia in humans (8, 9). They have also been 61 

associated with miscarriage in ruminants (10, 11) and have been documented in roe deer and 62 

red deer, as well as in some rodents (12, 13). Rhabdochlamydiaceae have been mainly 63 

described associated to arthropods, including Porcellio scaber, Blatta orientalis and Ixodes 64 

ricinus (14–16). The pathogenic role of Rhabdochlamydiaceae is still largely unknown, but 65 

suspected to cause newborn infections (17) and respiratory complications such as pneumonia 66 

(18). 67 

Considering the potential threat to human health caused by pathogens associated with the tick 68 

Ixodes ricinus, studies already investigated the influence of environmental factors on its 69 

presence or density. They showed that the distribution and activity of I. ricinus is mainly 70 

influenced by temperature and humidity (19–22). Indeed, this tick species is prone to 71 

desiccation and a relative humidity between 70 to 80% close to the soil is necessary for its 72 

survival (19, 20, 23). Its most favourable habitats may therefore be vegetation types able to 73 
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maintain a high humidity level close to the soil such as woodlands with thick vegetation litter 74 

(19, 22, 24).  75 

In Switzerland, several studies analysed the impact of environmental conditions on the 76 

activity or density of Ixodes ricinus. An early study done by Aeschlimann et al. (19) indicated 77 

that I. ricinus distribution is mainly limited by the presence of a favourable vegetation cover, 78 

with a relative humidity close or superior to 80% and an altitude inferior to 1500 m. Perret et 79 

al. (20) showed that the questing activity of ticks takes place from a temperature of 7°C and 80 

Hauser et al. (25) indicated that questing activity is largely reduced when the temperature 81 

exceeds 27°C. Jouda et al. (26) showed that in the region of Neuchâtel, the density of ticks 82 

decrease with altitude, which was confirmed by Gern et al. (27). However, this relationship 83 

was found opposite in the Alps (Valais), which they explained by drier conditions at lower 84 

altitude.  85 

Bacteria communities within ticks are also known to be influenced by environmental 86 

conditions, notably through a modification of the tick density, the tick behaviour or the 87 

vector-host interactions (28–30). For example, B. burgdorferi is most likely found at lower 88 

altitude (27), infect more ticks collected in forests than in pastures (29, 31), and may be 89 

favoured by the forest fragmentation (31, 32) while Rickettsia bacteria may be more prevalent 90 

in ticks in pasture sites showing a shrubby vegetation and a medium forest fragmentation (31). 91 

Environmental factors might provide us with critical information for bacteria distribution and 92 

thus potential threats to human. However, nothing has been investigated regarding 93 

Chlamydiales bacteria yet. 94 

Most studies described above analysed the impact of environmental factors on the density or 95 

questing activity of ticks. None modelled across years the spatial distribution of Ixodes ricinus 96 

habitat suitability for the whole Switzerland, nor the distribution of the Chlamydiales bacteria. 97 

In our study, we therefore aimed to build a model estimating the spatial distribution of the I. 98 
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ricinus species from 2009 to 2019 in all Switzerland using the Maxent modelling technique. 99 

Beside, we also investigated the ecological factors that determine the distribution of 100 

Chlamydiales bacteria and the environmental factors that influence the presence of this 101 

bacteria within its tick host.  102 

Modelling of I. ricinus distribution with Maxent has already been done at the scale of Europe 103 

(33), for an area including Europe, North Africa and Middle East (34) and in Romania (35). 104 

Environmental data used in these studies were extracted from Worldclim climatic data at a 105 

spatial resolution of 30 arc-second (approximately 1 km). These data summarized climatic 106 

conditions from 1950 to 2000. Therefore, in these studies as in many others (36–44) 107 

environmental data were extracted at a resolution that did not match the species ecology and 108 

more importantly the environmental conditions at sampling dates. Our goals were thus first to 109 

build a model of higher spatial resolution (100 m) for Switzerland and second to use recent 110 

climatic data to characterize in detail the distribution of Ixodes ricinus and its associated 111 

Chlamydiales bacterial pathogen over Switzerland from 2009 to 2019. To better understand 112 

the importance of the environmental conditions surrounding the sampling points, and the 113 

conditions preceding sampling date, we analysed the performance of the model 1) across 114 

buffer zones around the sampling point and 2) through different period of time before the 115 

sampling date. Finally, we investigated the potential to use the Maxent modelling to estimate 116 

the nested niche of a parasite within the ecological niche of its host. 117 

Material and Methods 118 

Species distribution can be modelled with various methods that use either records of presence 119 

and absence of the species or only presences (45–48). Among them, the maximum entropy 120 

model, called Maxent (49), is a presence-only method, which uses a set of georeferenced 121 

presence records and a set of environmental grid data. Based on the environmental conditions 122 
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observed at presence records and at background locations (i.e. random locations 123 

representative of the entire study area), Maxent uses a machine learning algorithm to estimate 124 

a suitability index for each cell of the environmental grid, which is proportional to the 125 

probability of finding the species in that cell (50). This method has been shown to perform 126 

particularly well as compared to other presence-only modelling methods, in particular based 127 

on its ability to discriminate presence sites from background locations (45, 47). We thus chose 128 

to use this model to determine the potential ecological niche of Ixodes ricinus and its 129 

associated Chlamydiales bacterial pathogen over Switzerland. The various steps of the 130 

method detailed in the paragraphs below are summarised on a Figure in Suppl. File 2. 131 

Ticks and bacteria occurrences data 132 

Data regarding tick occurrences were obtained from three different sources. First, ticks were 133 

collected by a field campaign conducted by the Swiss Army from 21
st
 of April to 13

th
 of July 134 

2009. During this campaign, 172 forests were sampled with convenience sampling in forests 135 

in altitude lower than 1,500 m. 62,889 ticks were collected by flagging low vegetation using a 136 

white-cloth. The ticks were then aggregated into 8,534 pools of 5 to 10 ticks (5 nymphs or 10 137 

adults) and each pool was analysed for the presence of Chlamydiales DNA by using a pan-138 

Chlamydiales real-time qPCR as described by Pilloux et al. (51), after extracting the DNA as 139 

described by Gäumann et al. (52). A pool was considered as positive if the CT value was 140 

lower than 37. As a result, among the 8,534 pools, 543 were positive (6.4%) and they were 141 

located in 118 out of the 172 sampling sites (68.6%). 142 

Second, data were obtained from the collaborative smartphone application “Tick Prevention” 143 

(zecke-tique-tick.ch) developed by A&K Strategy GmbH, a Spin-off from the Zurich 144 

University of Applied Sciences (ZHAW) in which users can indicate tick locations on a map. 145 

The application was launched in February 2015 and by the end of December 2019, 29,153 146 

locations of tick’s observations were available in Switzerland. To each observation a spatial 147 
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accuracy is assigned depending on the scale (zoomed area) to which the observation was 148 

reported by the user. For our analysis, only observations with a spatial accuracy equal or 149 

higher to 100 m and only data collected from March to October were used. The final dataset 150 

corresponded to 5,781 tick’s locations. Moreover, since January 2017, users bitten by a tick 151 

can send the tick removed from their body to the national centre for tick-transmitted diseases 152 

(NRZK, www.labor-spiez.ch). The ticks received are analysed by three different laboratories 153 

for detecting the presence of various bacteria, including Chlamydiales. In April 2019, 554 154 

ticks from 506 sites were received and sequenced, among which 21 ticks (3.79%) were 155 

positive for Chlamydiales bacteria and were located in 19 sites (3.75%).  156 

Finally, to increase the number of data, especially regarding Chlamydiales occurrences, a 157 

prospective campaign was conducted by the authors from 11
th

 of May to 24
th

 of June 2018. 158 

During this campaign, 95 sites were visited, mainly in west Switzerland. Those sites were 159 

chosen in areas predicted to be favourable for the presence of ticks based on a pre-analysis of 160 

the two other datasets, and such to maximise the environmental variability between visited 161 

sites (see Suppl. File 1 for more details). Whenever possible, three ticks were collected in 162 

each site, by dragging a white-cloth over the soil. For some sites however, only one or two 163 

ticks could be found. Eventually, the campaign allowed the collection of 256 ticks, each of 164 

which were placed in a sterile tube and kept at 4°C before being sent to the laboratory to be 165 

analysed for the presence of Chlamydiales bacteria. In the laboratory, the ticks were washed 166 

once with 70% ethanol and twice with PBS. DNA was extracted using the NucleoSpin DNA 167 

Insect Kit (Macherey-Nagel) with NucleoSpin Bead Tubes Type E and MN Bead Tube 168 

Holder in combination with the Vortex-Genie 2. Manufacturer’s protocol was slightly adapted 169 

by performing disruption during 20 min followed by a 2h incubation at 56°C in order to allow 170 

proteinase K digestion. DNA was then analysed using the pan-Chlamydiales qPCR developed 171 

by Lienard et al. (53). A tick was considered as positive for the presence of Chlamydiales if 172 
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either the two replicates were positive or if one of the two was highly positive (CT value < 173 

35). As a result, 72 out of the 256 ticks were positive (28.13%), in 51 out of 95 sites (53.6%).  174 

The characteristics of each dataset are summarized in Table 1. 175 

Environmental data 176 

To characterise the environmental conditions potentially influencing the spatial distribution of 177 

Ixodes ricinus and Chlamydiales, several information were retrieved for the whole 178 

Switzerland territory regarding 1) the morphometry 2) the land cover and 3) the climate.  179 

To characterise the morphometry of each data point site, seven indicators were derived from 180 

the digital elevation model provided by the USGS/NASA SRTM data version 4.1, at a 90m-181 

resolution (54). The chosen indicators were computed using the SAGA GIS 2.3.2 software 182 

(55) and represent: slope, aspect, general curvature, morphometric protection index, terrain 183 

ruggedness, sky-view factor and topographic wetness. The definition of each of these 184 

indicators and the exact procedure followed to derive them are detailed in Supp. File 3. 185 

To characterise the land cover, we first used the land cover statistics from the Swiss Federal 186 

Statistical Office (56). From this dataset we retrieved the classification of each Swiss hectare 187 

into six land cover types representative of the period 2004-2009: artificial areas, grass and 188 

herb vegetation, brush vegetation, tree vegetation, bare land and watery areas. To better 189 

classify forest type, we computed in R (57) the percentage of coniferous in each forest based 190 

on a dataset provided by the OFS at a 25-m resolution which classifies the forests of 191 

Switzerland in four classes : pure coniferous, mixed coniferous, mixed broadleaved and pure 192 

broadleaved (58). Secondly, we retrieved the vector landscape model swissTLM3D 2016 193 

from the Swiss Federal Office of Topography (59) and we use the function “Proximity” in the 194 

QGIS 2.14.7 software (60) to derive four indices characterising the minimal Euclidean 195 

distance to watery areas: distance to wetland, to watercourses, to stagnant water and to any 196 

watery elements. Thirdly, we retrieved the 16-days composite Normalised Difference 197 
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Vegetation Index (NDVI) available in the MODIS Satellite products at a 250m-resolution 198 

(61), from which we derived in R the average, minimum, maximum and range of monthly 199 

mean NDVI. More details regarding all those land cover data and the derived indicators are 200 

also available in Supp. File. 3. 201 

Finally, several indicators were computed to summarise the climatic conditions of each data 202 

point site. They were derived from monthly temperature (average, minimal and maximal) and 203 

sum of precipitation grids computed at a 100m-resolution by the Swiss Federal Institute for 204 

Forest, Snow and Landscape Research (www.wsl.ch), based on data from MeteoSwiss 205 

(www.meteoswiss.ch) and using the Daymet software (62). From these data, 31 indicators 206 

were derived to represent the climatic conditions during the period of interest and before 207 

sampling date (from 1 to 36 months preceding sampling date, see extraction chapter for more 208 

details). These indicators are presented in Supp. File 3 and they summarise 1) the values of 209 

the monthly mean, minimal and maximal temperature and sum of precipitation (8 indicators), 210 

2) the variation of monthly temperature and precipitation (5 indicators), 3) the temperature of 211 

the warmest (resp. coldest) month (2 indicators) and 4) the temperature and precipitation of 212 

the three consecutive warmest (resp. coldest, wettest, driest) months (16 indicators). In 213 

addition, grids of the daily maximum and minimum temperature values at a 1km-resolution 214 

were obtained from MeteoSwiss. From these datasets, we estimated the daily saturated and 215 

ambient vapour pressure using the Tetens formula (63) and by approximating the temperature 216 

at dew point by the minimum temperature (64). We used them to compute the daily relative 217 

humidity and to derive 22 indicators summarising the monthly (9 indicators) and daily (13 218 

indicators) values of relative humidity. All these climatic predictors were computed in R, with 219 

the detailed procedure presented in Supp. File 3. In total, this resulted in 77 environmental 220 

indicators, each of which were resampled to a final spatial resolution of 100 m. 221 
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Data extraction 222 

The values of the 77 environmental predictors were extracted for each data point site (tick 223 

occurrence) according to their coordinates using the function “extract” from the R “raster” 224 

package. The climatic and NDVI variables were retrieved as a function of the sampling dates. 225 

To assess the influence of the conditions before sampling, we retrieved these variables for 1 226 

month, 3 months, 6 months, 1 year, 2 years and 3 years before sampling date. For the other 227 

stable predictors such as morphometric predictors, land cover type, percentage of coniferous 228 

in forest and distances to watery areas one single extraction was used for all sampling dates 229 

over the period of analysis (from 2009 to 2019).  230 

To assess the influence of the environmental conditions surrounding the sampling points, for 231 

each environmental predictor we also computed the mean value observed in square buffers 232 

centred on the sampling point, with radius of 100 m, 200 m, 500 m, 700 m, 1 km and 1.5 km. 233 

Raster layers were also computed for each of these indicators, with every buffer radius and 234 

time period, for June months from 2009 to 2019. For each pixel, the computation of mean 235 

values considering a square buffer around the pixel was done with a moving-window 236 

procedure implemented in R, based on the “focal” function from the “raster” package. 237 

Finally, we also extracted all predictors for a generated background dataset composed by sites 238 

with 10,000 coordinates randomly localised in Switzerland. As with the presence records, we 239 

also computed the mean values in buffers and considered different time periods for the 240 

extraction of NDVI and climatic variables. To this end a fictive sampling date was assigned to 241 

each background location, which was randomly selected from the distribution of observed 242 

sampling dates on the presence records (Supp. File 4).  243 
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Ixodes ricinus modelling 244 

Selection of environmental variables 245 

In order to compare the influence of the time period and buffer radius on the performance of 246 

the model, independent Maxent species distribution models were derived using environmental 247 

predictors extracted successively for each combination of buffer radius (100 m, 200 m, 500 m, 248 

700 m, 1 km and 1.5 km) and time period (1 month, 3 months, 6 months, 1 year, 2 years and 3 249 

years), i.e. one Maxent model was derived using all environmental conditions extracted within 250 

a 100m-buffer and 1-month preceding sampling date, then a second model was derived using 251 

200m-buffer and 1-month, etc. In addition, to know if the performance of the model could be 252 

increased by selecting different buffer radius and time period for the different environmental 253 

variables, we computed a “combination model” in which we selected the most significant 254 

combination of buffer radius and time period individually for each environmental variable. To 255 

this end, we performed a Student T-test to identify, for each environmental variable, the 256 

combination that best discriminates the tick’s presences from background locations. The 257 

computation was done using the function “t.test” in R and the discriminative power of 258 

variables was considered as significant if the p-value of the T-test was lower than 0.01 after a 259 

Bonferroni correction for multiple comparisons. For each environmental variable, we then 260 

kept only the combination of buffer radius and time period showing the highest T-value. The 261 

“combination” model was then derived using this “combination” set of variables. 262 

As some environmental variables considered might be correlated, we used two methods to 263 

pre-select uncorrelated environmental predictors. In the first one, we run a Principal 264 

Component Analysis (PCA) on the variables to retrieved independent components. The 265 

coordinates of the PCA-components were then used as environmental predictors to run the 266 

species distribution model. In the second method, for each pair of variables showing a 267 

Pearson correlation higher than 0.8, we kept only the variable with the highest T-value in the 268 
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T-test previously computed. In addition, to avoid multicollinearity between our variables, 269 

which can influence the resulting models, we computed the variance inflation factor (VIF) for 270 

each variable using the R function “vif”. This index estimates how much the variance of a 271 

regression coefficient is inflated due to collinearity and VIF values higher than 10 can be 272 

considered as indicative of problematic collinearity (65). We thus successively removed the 273 

variable showing the strongest VIF index, until the highest VIF value was lower than 10. Only 274 

the remaining variables were used to train the model. 275 

Maxent Modelling 276 

Species distribution modelling was performed using the Maxent algorithm (49) implemented 277 

in the R package “maxnet” (66). Maxent estimates a suitability index which is proportional to 278 

the probability of presence of the species knowing the environmental conditions of a site of 279 

interest (50). The computation requires the values of environmental predictors observed on 280 

sites where presence was recorded and on background locations (i.e. locations representative 281 

of the entire study area). The model was trained with all Ixodes ricinus occurrences available 282 

for years 2009 to 2017 and the occurrences from the 2018 prospective campaign. This 283 

represents a total of 2,293 presence points. The occurrences reported by the users of the Tick 284 

Prevention app in 2018 and 2019 with 3,751 presence points were kept as an independent 285 

dataset used to test the models.  286 

Since the performance of the Maxent models is known to be influenced notably by the 287 

background point selection, environmental variable selection, features types and 288 

regularisation parameters (67–70), we tested different alternatives regarding them. For the 289 

selection of background points, we tested two options: either we used the 10,000 points 290 

randomly selected in the Swiss territory or we used only the random points situated below 291 

1,500 m in altitude, where tick occurrence is more likely. For the environmental variables, we 292 

used the two procedures to derive uncorrelated set of variables, i.e. the coordinates of the 293 
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PCA components and the variables filtered by the previously described method based on 294 

Pearson correlation and variance inflation factor. Moreover, when using the PCA 295 

components, we considered either all components of the PCA or only the components needed 296 

to retain 50% of the variance, resp. 70%, 80%, 90% or 95%. For the feature types, we tested 297 

the use of linear features only, or the combination of linear and product, linear and quadratic 298 

or linear, product and quadratic together. Finally, we varied the regularisation constant 299 

parameter, which is used to select against complex models that are unlikely to generalize well, 300 

with constant values equal to 1, 2, 5 or 10 (the higher the value, the stronger the penalization). 301 

In order to perform a cross-validation procedure, we used 75% of the occurrences and 302 

background points to train the model and kept 25% to test it. The training and testing 303 

occurrences were selected randomly and 20 different runs were computed. All models were 304 

projected using the “cloglog” scaled output (71), interpreted in terms of suitability index to 305 

avoid making assumptions regarding the prevalence of the species. 306 

Model evaluation 307 

The models were compared based on four criteria. First the Area under the Receiver 308 

Operating curve (AUC) (72) was computed on the testing dataset. The mean value of AUCtest 309 

over the 20 runs was used as a measure of discrimination power. The AUC is a measure 310 

commonly used for the evaluation of species distribution models (45, 73). It has the advantage 311 

to be threshold-independent, but needs to be used in combination with other evaluation 312 

parameters (74–76). Therefore, we used as a second evaluation measure the omission error 313 

rate, which reflects the accuracy of the model. The computation of this rate requires the 314 

definition of a threshold value to classify the predictions into binary presences or absences. 315 

Based on the receiver operating curve, we chose the threshold which maximises the sum of 316 

specificity and sensitivity and therefore minimizes the misclassification rate (77). Omission 317 

errors were computed both on the testing and independent (3,751 points from 2018 and 2019) 318 
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datasets. Finally, to avoid the selection of complex models, that would be difficult to interpret 319 

and probably prone to overfitting, we used a third evaluation measure that selected against 320 

models having high number of coefficients (following the principle of information criterion 321 

(78)). .  322 

To combine the four evaluation parameters and select the most powerful model, we assigned 323 

four performance ranks to each model as a function of each evaluating parameter and we 324 

selected the model which minimises the sum of ranks. We then applied the best model to the 325 

raster layers to map the predicted suitability across entire Switzerland for June months from 326 

2009 to 2019. 327 

Identification of effective variables 328 

In order to identify the environmental variables most contributing to the model, we 329 

implemented in R a jackknife procedure as proposed by Phillips (71). For each environmental 330 

predictor, we computed the Maxent model with only this variable and calculated the 331 

corresponding AUC (AUConly). Variables leading to high values of AUConly therefore 332 

contribute a lot to the model by themselves. Similarly, we successively computed models with 333 

all variables except the one under interest and we computed the corresponding AUCwithout. 334 

Predictors associated with high values of AUCwithout were identified as containing important 335 

information that is not present in the other variables. 336 

Chlamydiales Modelling 337 

Background dataset 338 

To model the distribution of Chlamydiales bacteria within ticks, we used a similar procedure 339 

to that of Ixodes ricinus. The modelling was also done using Maxent, based on the 186 340 

occurrence points available for 2009 and 2018. As for I. ricinus, the modelling required the 341 

definition of background data. Since we are interested by the probability to find Chlamydiales 342 
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within ticks, background points have to represent the environmental conditions of the 343 

ecological niche for the tick. Consequently, we built a background dataset in two steps. First, 344 

we selected the points where ticks have been observed and analysed for the presence of 345 

Chlamydiales, but being negative (374 points). Secondly, in order to avoid a model 346 

discriminating presences from background due to differences in sampling dates, we 347 

completed the background dataset such to have a similar distribution of sampling months and 348 

sampling years as in the presence dataset (Supp. File 4). This was achieved by selecting 349 

random points within areas predicted to be suitable for ticks, based on the suitability predicted 350 

by the models previously derived for Ixodes ricinus. The final background dataset contains 351 

1028 data points. 352 

Variable selection and modelling 353 

The same procedure was then applied as for the modelling of the tick’s suitability: 1) 354 

computation of a T-test to select a “combination” dataset of environmental variables, 2) 355 

selection of uncorrelated variables with either a PCA or a correlation/VIF procedure, 3) run of 356 

Maxent models by testing various parameters (method to select uncorrelated variables, feature 357 

types and regularisation parameters). In order to build models for the suitability of 358 

Chlamydiales within areas suitable for ticks, the predicted suitability for Chlamydiales 359 

obtained by the Maxent model was then multiplied by the suitability obtained for I. ricinus.  360 

As for I. ricinus, twenty runs were computed for each model, using 75% of the data to train 361 

the model and 25% to test it. The ranking procedure used to evaluate the models was slightly 362 

different to the one used for the tick. The AUCtest and the number of coefficients were used 363 

similarly, but the omission rates on testing and independent datasets were replaced by two 364 

other indicators 1) the difference between the mean of suitability values predicted on 365 

occurrences sites in 2009 and the mean suitability predicted on sites without Chlamydiales in 366 

2009 and 2) the same difference for 2018. Indeed, even if sites where no Chlamydiales were 367 
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found could not be considered as proper absences, we suspected the probability to find 368 

Chlamydiales to be lower on these sites. A model showing a lower suitability in areas where 369 

Chlamydiales were not identified as compared to occurrence sites would therefore be 370 

considered as more powerful.  371 

Results 372 

Ixodes ricinus modelling 373 

Best model 374 

Among the 56 models tested with various parameters, the best one, according to the ranking 375 

procedure, was obtained with the following parameters: 1) background points selected below 376 

1500 m in altitude (corresponding to 6049/10 000 points), 2) a PCA procedure to avoid 377 

correlated variables, with the components selected to retained 95% of the variance, 3) a 378 

combination of linear and quadratic features and 4) a value of 5 for the regularisation constant 379 

parameter. Details of the models tested, and their corresponding evaluation parameters, are 380 

available in Supp. File 5. These parameters were then used to test the influence of the choice 381 

of buffer radius and time period on the performance of the models. Figure 1 shows the 382 

AUCtest and sum of ranks obtained for each combination. According to these results, the best 383 

model was obtained by extracting the environmental variables in a buffer with a 100-m radius 384 

around the sampling point and for the 2 years (24 months) preceding the sampling date. Note 385 

that the performance of the “combination” model was very close, as well as the performance 386 

of models obtained with an extraction for the 3 years preceding sampling date and a buffer 387 

radius of 100 m, or for the two years preceding sampling date with a 200 m buffer. Moreover, 388 

we observed for each buffer radius, that the models were more powerful when considering the 389 

variables extracted for the 2 or 3 years previous sampling date, instead of considering the 390 

conditions of the current year or even shorter time period. Similarly, the models obtained by 391 
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extracting the variables within buffers of 100 m or 200 m radius always outperformed the 392 

other models. Performance of models with variables extracted at the sampling coordinates 393 

only (radius = 0m) was much lower than any buffer model, even those with a radius larger 394 

than 500 m. We retained the best model with variables extracted in a 100 m-radius buffer and 395 

for the two years preceding the sampling date (Figure 1). The global AUC obtained (with both 396 

the training and testing data) is 0.794 and the mean AUCtest obtained through the 20 runs is of 397 

0.789. The threshold maximising the sum of sensitivity and specificity equals 0.59. Using this 398 

threshold, the average omission error on the testing dataset reach 23% and the omission rate 399 

on the independent dataset is 11%. The model estimated 31 non-negative coefficients. The 400 

median predicted suitability on all occurrences used in the model is 0.74 and the median 401 

suitability on independent occurrences from 2018 and 2019 is 0.88. 402 

Effective variables 403 

The four variables containing the largest amount of important information not available in the 404 

other variables (lowest AUCwithout) were: the dimension 1 (AUCwithout=0.748), dimension 12 405 

(0.776), dimension 8 (0.780) and dimension 5 (0.784) (using jackknife procedure, Figure 2) 406 

indicated that the four variables containing the largest amount of important information by 407 

themselves (highest AUConly) were: the first dimension of the PCA (AUConly=0.641), the 408 

dimension 12 (0.617), dimension 21 (0.591) and dimension 8 (0.582).  409 

The dimension 1 of the PCA is strongly positively correlated with average of the monthly 410 

mean temperatures (r=0.91) and indicates that presence of Ixodes ricinus is favoured by 411 

higher mean temperature. Dimension 8 is moderately correlated with the percentage of herbs 412 

and grass vegetation (r=0.57) and the mean temperature during the three consecutive driest 413 

months (r=0.40). Its negative coefficient indicates that a higher percentage of herb and grass 414 

vegetation or higher temperature values during the driest months are less favourable for the 415 

presence of ticks. Dimension 12 is moderately negatively correlated with the percentage of 416 
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artificial surfaces (r=-0.51) and positively correlated with the range of monthly NDVI 417 

(r=0.35). This dimension is also negatively associated with the suitability for ticks, indicating 418 

that a higher percentage of artificial surfaces and a lower range of NDVI values are more 419 

favourable for I. ricinus presence. Finally, the dimension 5 is positively correlated with the 420 

mean monthly NDVI (r=0.72), the minimum and maximum NDVI (r=0.55 and 0.52) and is 421 

negatively correlated with the percentage of watery areas (r=-0.56). Its positive coefficient 422 

indicates that the areas with higher NDVI values and less water are more favourable for ticks. 423 

Distribution maps 424 

The maps of the distribution of Ixodes ricinus with values of suitability index predicted by the 425 

model across Switzerland for June 2009 and June 2018 are shown on Figure 3. The 426 

corresponding projections for June 2015, 2016, 2017 and 2019 are available in Supp. File 6. 427 

Results for June 2009 shows that 16% of the Swiss territory is predicted suitable for the 428 

presence of Ixodes ricinus, when using the threshold maximising the sum of specificity and 429 

sensitivity (threshold = 0.59). The suitable areas are mainly localized in land covered by tree 430 

vegetation (48.6 % of all suitable areas), however 26.6% are observed on hectares statistically 431 

classified as artificial surfaces. In addition, most of suitable area lied between 500 and 1000 m 432 

in altitude (53.04%) or below 500 m (46.5%). Only 8.4 % of the favourable area is found 433 

above 1000 m in altitude.  434 

In June 2018, 25% of the Swiss territory is predicted suitable for Ixodes ricinus (considering 435 

the threshold of 0.59). Between June 2009 and 2018, the predicted suitable area increased by 436 

more than 4000 km
2
 as shown in Figure 3 and only 31 km

2
 became unsuitable. The increased 437 

suitability is particularly pronounced in the Rhône Valley (Valais), in Surselva, in Simmental, 438 

in the Jura border and in other lateral valleys of medium to high altitude (circles on the map). 439 

The evolution of the PCA components from 2009 to 2018 in these areas shows that the 440 

increase in suitability is generally associated with an increase of the values of Dimension 1 441 
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(warmer temperature), an increase of Dimension 5 (higher NDVI values), a decrease of 442 

Dimension 12 (lower range of NDVI values), and a decrease of Dimension 8 (temperature 443 

during driest months) in Valais and Jura (whereas this last dimension shows an increase of the 444 

values in Grisons). The new suitable areas concerned mainly grass and tree vegetation (40.8% 445 

each) with a large proportion (64.8%) located at an altitude between 500 and 1000 m 446 

(corresponding for example to the altitude of the suited hectares in Jura border or Rhône 447 

valley). An increase of suitable areas mainly in forests was also observed between 1000 and 448 

1500 m (8%).The model also predicted suitable areas above 1500 m. These results therefore 449 

highlighted a spread of the favourable areas towards higher altitude. 450 

The distribution maps of Ixodes ricinus for the years 2015 to 2017 (Supp. File 6) indicate a 451 

constant and drastic increase in suitability which is highest between 2017 and 2018. Indeed, 452 

15.7% of the Swiss territory was predicted as suitable in 2009, 16.8% in 2015, 16.2% in 2016, 453 

17.6% in 2017 and 25.4% in 2018 (by considering the threshold of 0.59 for suitable areas). 454 

Moreover, the map computed for 2019 predicted important increase from 2018 to 2019, with 455 

35% of the Swiss territory being predicted as suitable in 2019. The spread towards higher 456 

altitude was also observed between 2018 and 2019, with a maximal altitude for the favourable 457 

areas that reached 1595 m in 2019. The results indicate that since 2018, there is a relatively 458 

high probability that ticks reach such altitudes. 459 

Chlamydiales modelling 460 

Best model 461 

The best model for Chlamydiales bacteria, among the 60 models tested with various 462 

parameters, was obtained with the following parameters: 1) the “correlation-VIF” procedure 463 

to select uncorrelated variables, 2) a combination of linear and quadratic features and 3) a 464 

value of 1 for the regularisation constant parameter. The details of all models tested and their 465 
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corresponding evaluation parameters are available in Supp. File 7. As for the modelling of 466 

Ixodes ricinus, we then tested the influence of the choice of buffer radius and time period on 467 

the performance of the models. Figure 4 shows the AUCtest and sum of ranks obtained for 468 

each combination. According to these results, the “combination” model outperformed the 469 

other models. Unlike the results obtained for Ixodes ricinus the models for Chlamydiales 470 

performed better when the variables are extracted for the three- or six-months preceding 471 

sampling date than when considering two or three years before sampling (Figure 4). In 472 

addition, the influence of buffer radius seems to be much less pronounced than for the tick 473 

models. Accordingly, we retained the “combination” model. This model used 17 uncorrelated 474 

variables selected based on the “correlation/VIF” procedure. The list of these variables, as 475 

well as the results of the T-test are available in Supp. File 8. As the “combination” model 476 

aims to retain for each variable the best combination of buffer radius and time period, not all 477 

variables are selected using the same buffer radius or time period. Interestingly, we observed 478 

that the variables used in the model involved either buffer radius smaller or equal to 200 m, or 479 

superior to 1 km (Supp. File 8). The characteristics of the model are summarised on the right 480 

of Figure 4. The global AUC (with both training and testing occurrences) is 0.78 and the 481 

mean AUCtest obtained through the 20 runs is of 0.74. The threshold maximising the sum of 482 

sensitivity and specificity equals 0.3. The mean suitability for Chlamydiales occurrence in 483 

2009 is 0.47 and the mean suitability for sites where Chlamydiales where not identified in 484 

2009 is 0.37. For 2018, the mean suitability on presence points is 0.46 and the suitability on 485 

sites where no Chlamydiales were identified is 0.15. The model estimated 35 non-negative 486 

coefficients. 487 

Effective variables 488 

The four variables containing the highest amount of important information that are not 489 

available in the other variables (lowest AUCwithout) are (Figure 5): the percentage of tree 490 
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vegetation in a 100 m buffer (AUCwithout = 0.75), the coordinates (no buffer) number of 491 

successive days with a relative humidity inferior to 80% during the 3 months preceding 492 

sampling (0.77) or inferior to 70% during the 6 months preceding sampling (0.77) and the 493 

distance to wetlands within a buffer of 1km (0.77). The four variables containing the highest 494 

amount of important information by themselves (highest AUConly) are: the percentage of 495 

artificial surfaces in a 100 m buffer (AUConly = 0.59), the number of days with a relative 496 

humidity superior to 90% in a 200 m buffer during the two years preceding sampling date 497 

(0.57), the precipitation of the three coldest months in a 1.5 km buffer during the two years 498 

preceding sampling (0.55) and the percentage of tree vegetation in a 100 m buffer around the 499 

sampling point (0.55).  500 

The conditions favourable for Chlamydiales are thus characterised by: a lower percentage of 501 

artificial surfaces around the sampling point (7.8% in average for the occurrences locations in 502 

a 100m-buffer versus 16.8% for the background locations), a higher percentage of tree 503 

vegetation (62.8% versus 53.1%), a lower number of days with a relative humidity superior to 504 

90% during the two years preceding sampling date (21.1 versus 25.2), a highest amount of 505 

precipitation during the coldest months (24.15mm versus 20.7mm), a higher number of 506 

successive days with a relative humidity inferior to 80% during the three previous months 507 

(29.7 versus 27.1) and lower than 70% during the 6 previous months (16 versus 14.4) and 508 

finally a shorter distance to wetlands (2.5 km versus 3.1km). 509 

Distribution maps 510 

The distribution maps of Chlamydiales with values of suitability predicted by the model 511 

across Switzerland for June 2009 and June 2018 are shown on Figure 6. In June 2009, 8% of 512 

the Swiss territory is predicted as favourable for Chlamydiales bacteria (using the threshold 513 

maximising the sum of sensitivity and specificity). As the niche of the bacteria is nested 514 

within the niche of the tick, modelling Chlamydiales bacteria suitability involved a 515 
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multiplication by the suitability results for Ixodes ricinus. Therefore, the areas predicted to be 516 

unfavourable for the presence of the tick species are also predicted as weakly suitable for 517 

Chlamydiales. On the contrary, some areas predicted to be highly favourable for the presence 518 

of Ixodes ricinus on Figure 3 did not match and showed very low values on Figure 6. This is 519 

the case for the areas situated within urban settlements, in which a large portion was predicted 520 

to be suitable for ticks but not for Chlamydiales. Indeed, the distribution of the favourable 521 

areas within the various categories of land cover classes indicates that they are essentially 522 

observed in natural areas, covered either by tree (74%) or grass (12%) vegetation, and only 523 

4% of them are observed in regions characterised by a large portion of artificial elements. 524 

When considering the altitudinal distribution, areas favourable for Chlamydiales seem to be 525 

essentially predicted in forest suitable for ticks, between 500 and 1,000 m in altitude. 526 

However, due to other factors influencing the model, notably the climatic conditions, 52% of 527 

those forests are also predicted to be unfavourable for the bacteria. 528 

In June 2018, 9% of the Swiss territory is predicted as suitable for the presence of 529 

Chlamydiales. Between June 2009 and 2018, more than 1850 km
2
 are newly suitable for 530 

Chlamydiales as shown in Figure 6. Some regions showing a sharp increase in suitability 531 

values (more than 0.4). However, more than 1,300 km
2
 is also becoming unsuitable. In 2018, 532 

the proportion of suitable area within land cover classes is close to what observed in 2009, 533 

with however a clear spread towards higher altitude, with 23% of the favourable areas 534 

localised between 1000 and 1500 m, versus 2% only in 2009. Newly suitable area match those 535 

of Ixodes ricinus on Figure 3 (Rhône valley, Surselva, Jura border). The spread of favourable 536 

areas towards higher altitude is also predicted, with 45% of the newly suitable hectares being 537 

localised between 1,000 and 1,500 m. Loss of suitable area mainly occurred in the North-538 

West part of Switzerland and appear to be associated with a decrease in precipitation during 539 

the three coldest months and a decrease of the successive number of days with a relative 540 
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humidity inferior to 70% during the 6 previous months (15
th

 of December 2017 to 15
th

 of June 541 

2018 as compared to 15
th

 of December 2008 to 15
th

 of June 2009).  542 
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Discussion 543 

Expansion of Ixodes ricinus and Chlamydiales in Switzerland 544 

Suitability index is proportional to the probability of presence of the species, but involves an 545 

unknown proportionality coefficient that corresponds to the prevalence of the species. 546 

Suitability index are thus not expected to be comparable between ticks and Chlamydiales 547 

distribution maps. Distribution maps for ticks and bacteria from 2009 to 2019 highlighted an 548 

extension of the suitable areas for both species and a spread towards higher altitude. Ixodes 549 

ricinus expended from 16% to 25% of the Swiss territory, and a subsequent extension for 550 

Chlamydiales bacteria is observed from 8% to 9.3%. Ixodes ricinus expansion occurred all 551 

over the Swiss Plateau and toward higher altitude in the alpine valleys and was more extended 552 

in the South-West. Newly available habitat concerned mostly grass and forest areas. 553 

Extension of Chlamydiales followed similar trends, restricted to forest areas. As Ixodes 554 

ricinus presence is favoured by higher temperature, we might expect that, in the future, this 555 

expansion might continue following global warming with some limitation by dryer conditions 556 

at lower altitude  557 

Our results agree with the observed increased cases of tick-borne encephalitis (TBE) in 558 

Switzerland, that spread from eastern to western part of Switzerland (79), leading to the 559 

extension of the vaccination recommendation (80, 81). Similar tick’s expansions towards 560 

higher altitudes were observed in other European countries during the last decades (82–84), 561 

notably in association with milder winters and extended spring and autumn seasons (85, 86). 562 

Noteworthy, the suitability index is proportional to the probability of presence of the species, 563 

but involved an unknown proportionality coefficient that corresponds to the prevalence of the 564 

species. Suitability index are thus not expected to be comparable between ticks and 565 

Chlamydiales distribution maps. 566 
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Variables explaining I. ricinus distribution  567 

The effective variables identified by our model are related to temperature and humidity, 568 

which reflects well the tick’s ecology. We found that a high temperature favours Ixodes 569 

ricinus, in agreement with previous studies (33, 87). However, our analysis indicated that this 570 

relationship does not hold during driest months. This can be explained by an increased 571 

evaporation of the soil humidity under warmer temperature, thus accentuating the desiccation 572 

risk for ticks (22). The NDVI variables, an important contribution to our model, are indicators 573 

of physiological plant activity and have often been shown to be powerful for modelling the 574 

presence of ticks as they reflect humidity conditions (22, 87). Nevertheless, our results 575 

indicated that the ambient relative humidity variables showed limited effect on the model. 576 

They may thus constitute a less precise predictor of soil humidity than the combination of 577 

NDVI variables with temperature and land cover indicators. Surprisingly, our results also 578 

showed that I. ricinus presence is favoured by a higher percentage of artificial surfaces. This 579 

might relate to an overrepresentation of ticks collected in vegetated areas situated within 580 

urban settlements or close to roads. Indeed, we expect a sampling bias as many tick 581 

occurrences comes from the Tick Prevention app, in which users provide tick locations that 582 

are likely biased towards areas closer to roads or paths and thus artificial surfaces. Moreover, 583 

the other tick occurrences, either provided by the army field campaign in 2009 or by the 584 

prospective campaign in 2018, were collected essentially in forests or close to their borders. 585 

On the contrary, grass areas, often corresponding to agricultural fields, were not sampled by 586 

the two field campaigns and were also probably less explored by the users of the application, 587 

since people are less likely to visit these areas. This might explain why our model associated a 588 

low percentage of grass vegetation as favourable for I. ricinus and we might have an 589 

underestimation of the suitability index in some grass areas. Nevertheless, the presence of 590 

ticks in urban and suburban areas of Switzerland has already been reported (88, 89) and the 591 
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presence of vegetated areas in urban settlement, or close to artificial surfaces (roads, paths, 592 

recreational areas) may constitute favourable habitats. In addition, even if we may expect 593 

some grass zones, especially at the forest border, to be highly favourable for ticks, in general, 594 

land pasture, open land and cultivated areas have been reported to be much less favourable 595 

than woodlands (22, 90, 91). Finally, in agreement with previous studies (25, 92), we 596 

observed that the morphometric parameters and the precipitation variables show little effect 597 

on the suitability for ticks. 598 

Variables for Chlamydiales spatial distribution 599 

Identified effective variables for the presence of Chlamydiales may provide novel insights to 600 

the bacteria's ecology. First, our results indicated that Chlamydiales are more likely present in 601 

ticks collected in forests or grass fields than in ticks collected close to artificial areas. The 602 

highest prevalence of Chlamydiales within natural areas could be explained by the presence of 603 

different hosts (likely rodents) on which ticks feed, with potentially a highest number of 604 

reservoir-competent hosts for Chlamydiales in natural areas. This may also relate to a higher 605 

tick abundance in natural areas, which is known to be associated with a higher prevalence of 606 

other pathogens in ticks (30) but not for all tick pathogens (89). Our results also showed that 607 

the presence of Chlamydiales bacteria is favoured by driest conditions (negatively associated 608 

with the number of days with a relative humidity superior to 90% and positively associated 609 

with the number of days with relative humidity inferior to 70%). High amount of precipitation 610 

during the coldest months also appeared to be favourable for the presence of Chlamydiales. 611 

Several suitable areas for Chlamydiales are predicted at an altitude higher than 1000 m, thus 612 

highest precipitation during the coldest months could be associated with largest snow 613 

amounts, preserving the soil from frost and leading to a highest tick’s survival (24). Finally, a 614 

shorter distance to wetlands was also highlighted as a factor favouring the bacteria’s presence. 615 

Several Chlamydiales have been considered symbionts of amoebae (93), which are free-living 616 
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organisms usually found at the interface between water and soil, air or plants (93). It is 617 

therefore likely that amoebae can be found in wetlands, which might favour the transmission 618 

of Chlamydiales to various animal hosts on which ticks feed. 619 

Chlamydiales prevalence values were heterogeneous among our datasets. In 2009, ticks were 620 

collected in forests only and Chlamydiales were present in 68.6% of the sites visited with a 621 

low prevalence within pools (6.4%). Low prevalence was also observed in the ticks received 622 

by the users of the Tick Prevention App in 2018 and 2019 (3.79%). In 2018, the ticks sampled 623 

during the prospective campaign were also mainly collected in forest areas and Chlamydiales 624 

were present in 53.7% of the site but with much higher prevalence reaching 28.13%. This rate 625 

reflects values obtained in 2010 in one specific site in the Swiss Alps (Rarogne), where 626 

Chlamydiales prevalence rate of 28.1% was found in 192 pools collected in forests and 627 

meadows (94). Differences between year 2009 and 2018 could be explained by a difference in 628 

the time and sampling areas (we excluded potential PCR contaminations, see Supp. File 9). 629 

As infected ticks were already present in most forest sites in 2009, spread of infection might 630 

have occurred between 2009 and 2018. Then, ticks from Tick Prevention App were collected 631 

in sites more closely related to artificial areas, which we have shown reduces the prevalence 632 

of the bacteria. 633 

On the importance of considering the spatial and temporal scale of the 634 

environmental variables 635 

For I. ricinus, the most powerful models are obtained when extracting the environmental 636 

variables in a buffer with a radius of 100 or 200 m (corresponding to an area of 9 ha to 25 ha 637 

around the sampling point). This can be explained by the ecology of the species. First, the 638 

establishment of a population of ticks will probably need a suitable area that is large enough. 639 

Moreover, the presence of ticks strongly depends on the presence of hosts, which disperse 640 
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across larger areas and may thus be influenced by the climatic conditions observed at some 641 

distance. Our results also indicate that buffer radius larger than 500 m (corresponding to areas 642 

larger than 121 ha) are not improving our model. This might relate to the dispersal range of 643 

tick hosts, likely rodents, which is usually smaller (among the long dispersal hosts, the roe 644 

deer dispersal is estimated to cover around 50 and 100 hectares (95)). In addition, the most 645 

powerful models are obtained when considering the climatic conditions of the two- or three- 646 

years preceding sampling date. This time period appears to be relevant as it corresponds to the 647 

estimated duration of the life cycle of ticks (22). 648 

For the modelling of Chlamydiales bacteria, small buffer (≤200m) and a short time period 649 

(one year or less) is favourable for some variables, whereas for some others, to consider a 650 

larger buffer (1 km or 1.5 km) and a longer time period (2-3 years) is better. Some variables 651 

might be influencing locally the establishment of the tick species and the ability for the 652 

bacteria to colonize and/or reproduce within it, whereas other variables may be related to the 653 

interaction of the tick with the hosts on which it feeds, that may disperse in a larger area and 654 

thus be influenced by climatic conditions at a larger scale. 655 

Our results thus highlighted the importance of considering the environment around the 656 

sampling point for a good variables estimation in species distribution model, while single 657 

point is commonly considered (36–45). Our results also showed that the time period 658 

considered before the sampling date, with sliding windows, has a significant impact on the 659 

performance of the resulting models. This should be favour over using an average of the 660 

climatic conditions over the sampling period (36, 96) or any larger period of time (as 661 

Worldclim climatic data from 1950 to 2000 which are commonly used for species distribution 662 

modelling (97, 98)). Previous studies already suggested the use of multi-grain approaches 663 

involving various spatial resolutions to consider variables affecting the presence of a species 664 

at different scales (99–101). This adds to the recommendation of using data based on species 665 
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ecology rather than on availability (100, 102). In addition, our results showed that the 666 

temporal scale of the environmental predictors should be accounted for.  667 

Model performance 668 

Ixodes ricinus distribution models are robust as they allowed a good discrimination between 669 

presences and randomly generated points and correctly predicted the presences of I. ricinus 670 

observed in an independent dataset. Chlamydiales distribution models are more difficult to 671 

validate due to the limited amount of data and poor knowledge regarding their distribution. 672 

Nevertheless, our model performed relatively well for the data collected in 2018 as most of 673 

the occurrence locations had higher suitability index than the locations where no 674 

Chlamydiales were identified. Year 2009 did not show such trend as many locations where no 675 

Chlamydiales were found were predicted as potentially suitable. This might be due to an 676 

absence of Chlamydiales colonisation of these sites at the sampling time despite favourable 677 

conditions. 678 

Our investigations considered mainly environmental factors. However, other factors such as 679 

species interaction and species life history traits might influence the presence of both the ticks 680 

and their bacterial pathogens (22, 29, 103–106) . Also, additional abiotic factors might play an 681 

important role, such as landscape fragmentation and barriers that can limit dispersal of ticks 682 

hosts (22, 105) or disturbances that can drive local populations to extinction (107).  683 

The precision of our predictions is limited by the precision of the data used. The interpolated 684 

climatic grids used were produced based on weather stations measurements and thus contain 685 

interpolation uncertainties that may influence the models results (103). Also, with interpolated 686 

grids, the inherent collinearity and autocorrelation may lower the reliability of the results (92). 687 

Finally, the occurrence data are probably prone to sampling bias and do not represent a 688 

random sample of the studied population : they were collected in three separate processes, 689 
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among which two constituted active surveillance, while the third was passive surveillance. 690 

These elements can affect the predictions (69, 108), and, since passive surveillance can be 691 

influenced by population density, the results are likely to slightly overestimate the suitability 692 

index in urban and artificial areas as compared to natural regions (69, 108). 693 

Conclusion 694 

Both Ixodes ricinus and Chlamydiales are causing a potential threat to human health and their 695 

prevalence are currently increasing in Switzerland, with a strong expansion of ticks in forests 696 

but also in urban and suburban areas. Ticks’ expansion has already recently alarmed the 697 

Public Health Services (81), and this expansion is predicted to continue in the future due to 698 

global warming. In this context, our results offer a unique tool to identify precisely locations 699 

where diseases are likely to spread, to colonize new sites and to increase in prevalence. Maps 700 

as developed here, and associated methods, could thus bring critical information for decision-701 

makers to control tick-borne diseases and target prevention campaigns.  702 

Our methodological framework allowed a coherent identification of environmental factors 703 

influencing the presence and distribution of both Ixodes ricinus tick and their Chlamydiales 704 

bacteria in Switzerland, and enabled the mapping of suitability evolution across Switzerland 705 

from 2009 to 2019. Our results highlighted an important increase of suitable areas for both 706 

species and predicted their extension towards higher altitude. Our investigations consist in an 707 

exploratory analysis of the environmental factors influencing the presence of Chlamydiales 708 

bacteria within ticks in Switzerland, showing an application of species distribution models to 709 

study the nested niche of a parasite within the ecological niche of its host. Finally, our study 710 

demonstrated the importance of considering the spatial and temporal scale of the 711 

environmental variables used for species distribution models. 712 
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Spread of pathogens through a vector is at the origin of major epidemics and infectious 713 

diseases, and affects humans, wildlife, and agriculture. We proposed a methodological 714 

framework based on geographical system able to provide deep insights on factors affecting 715 

patterns of disease emergence by providing a better characterisation of the spatial distribution 716 

of their vectors. This method can be applied to a wide range of host-pathogen association to 717 

identify their spread and distribution, which is expected to bring critical information for a 718 

better understanding and control of pathogens.  719 
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Tables 738 

Table 1: Characteristics of the three data sources regarding Ixodes ricinus occurrences and infection by 739 

Chlamydiales bacteria. The data obtained via the Tick Prevention app are divided into two datasets (column 2 740 

and 3). The first dataset (column 2) corresponds to tick locations recorded on the app. including a majority of 741 

ticks for which no information regarding Chlamydiales bacteria were available. This dataset was used in the 742 

modelling of the distribution of Ixodes ricinus only. The second dataset (column 3, which represents a subset of 743 

dataset listed in column 2) contains some ticks that were sent to laboratory for the analysis of Chlamydiales. 744 

This dataset was therefore used in the modelling of Chlamydiales distribution. Data from the two other sources 745 

(column 1 and 4) were used both for the modelling of I. ricinus and Chlamydiales. 746 

  

Swiss Army field  

campaign 

"Tick Prevention" app 

ticks recorded 

"Tick Prevention" app 

ticks sent for analysis 

Authors' prospective  

campaign 

Observation/Sampling dates 

21.04.2009 -  

13.07.2009 

09.03.2015 - 

30.10.2019 

04.04.2017 - 

07.04.2019 

11.05.2018 - 

24.06.2018 

Number of sites 172 5,781 506 95 

Number of individual ticks 62,889 5,781 554 256 

       Number of adults 20,313  - 58 114 

       Number of nymphs 42,576  - 444 142 

       Number of larvae 0  - 50  - 

Number of pools 8,534  -  -  - 

Number of ticks/pools infected 543  - 21 72 

Infection rate in ticks/pools 6.34%  - 3.79% 28.13% 

Number of sites infected 118  - 19 51 

Infection rate in sites 68.6%  - 3.75% 53.68% 

 747 

  748 
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Figures 749 

Figure 1: Performance of models predicting the suitability for Ixodes ricinus. (Left) Values of the AUCtest 750 

and the sum of ranks as a function of the buffer radius and the time period considered for the extraction of the 751 

environmental variables. For the AUCtest, the points indicate the mean value computed through the 20 runs and 752 

the lines correspond to the 95% confidence intervals. The “combination” model refers to the model derived using 753 

for each environmental variable the combination of time period and buffer radius that best discriminates the 754 

tick’s presence from background locations (T-test). (Right) Characteristics of the best model chosen according 755 

to best values on the graphics on the left. OE_test is the omission error on the test samples and OE_indep the 756 

omission errors on the independent additional data available for 2018 and 2019. 757 

 758 

  759 

 

 

 

 

 

 

____ « combination » model (mean) 

- - - « combination » model (95% CI) 

Characteristics of the best model 

Buffer radius: 100 m 

Time period: 24 months  

Mean AUC_test: 0.789 

Mean OE_test: 0.23 

Mean OE_indep: 0.11 

 

AUC global: 0.794 

Number of coefficients: 31 

Optimal threshold (max Se+Sp): 0.59 

Median suitability on occurrences: 0.74 

Median suitability on independent data: 0.88 

 

Median suitability on occurrences data per 

year 

 
Year Number of occurrences* Median suitability 

2009 170 0.749 
2015 391 0.722 
2016 729 0.739 
2017 908 0.737 
2018 2,117 0.849 
2019 1,729 0.906 

 

* including independent data for 2018 and 2019 

  

 

 

Time period 

(months) 
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Figure 2: Jackknife results for the best model predicting the suitability of Ixodes ricinus. The variables 760 

Dim1 – Dim26 correspond to the components of the PCA needed to retain 95% of the variance. AUCglobal 761 

corresponds to the performance of the model with all environmental variables, AUConly the performance with 762 

only the environmental variable mentioned in the first column, and AUCwithout the performance with all the 763 

variables except the one mentioned. The column with +/- indicates the type of association between the 764 

component and the presence of Ixodes ricinus (with a positive association, the higher the value of the PCA 765 

dimension, the higher the suitability for ticks). The last column shows the raw environmental variable most 766 

correlated to the PCA dimension, with the value of the correlation indicated in parenthesis (Temp. = 767 

Temperature, RH = Relative Humidity, Quant. = Quantile, Prec. = Precipitation, Perc. = Percentage). 768 

 769 

  770 

 

 

 

 

 

 

Variables Jackknife results  Most correlated raw variables 

Dim 1  + Average of monthly Temp. (0.91) 

Dim 2  + Quant. 0.75 of daily RH (0.92) 

Dim 3  + Min. of monthly max. Temp. (0.63) 

Dim 4  - Range of monthly RH (-0.52) 

Dim 5  + Average NDVI (0.72) 

Dim 6  + Min Temp 3 wettest (0.58) 

Dim 7  - Max. Prec. (0.54) 

Dim 8  - Perc. grass (0.57) 

Dim 9  + Perc. grass (-0.48) 

Dim 11  + Perc. artificial (0.47) 

Dim 12  - Perc. artificial (-0.51)  

Dim 13  + Prec. seasonality (0.47) 

Dim 14  - Dist. wetlands (-0.42) 

Dim 15  + Perc. brush vegetation (0.62) 

Dim 16  + Dist. wetlands (0.45) 

Dim 17  + Aspect (0.64) 

Dim 18  + General curvature (0.37) 

Dim 19  - Perc. bare lands (0.63) 

Dim 20  - Dist. stagnant water (0.38) 

Dim 21  + Aspect (0.3) 

Dim 22  + Temp. Seasonality (0.16) 

Dim 23  + Max. daily RH (0.24) 

Dim 24  + Number successive days RH > 90% (0.31) 

Dim 25  - Number  successive days RH < 80% (0.51) 

Dim 26  - Topographic wetness index (0.24) 

AUConly (model with only this variable) AUCwithout (model with all variables except this one) 

AUCtotal 

0.0              0.2              0.4              0.6               0.8 
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Figure 3: Suitability maps for Ixodes ricinus. Suitability map for Ixodes ricinus in June 2009 (upper panel) 771 
and June 2018 (lower panel) as predicted by the best model (i.e. with environmental variables extracted with a 772 
100m-radius buffer and for the two years preceding sampling date). The area concerned by the transition in 773 
suitability are represented in the intermediate panel. 774 

 775 

  776 

 
 

 

 

 

 

Repartition in % of the suitable areas 

(Suitability > 0.59) within altitude (in m) and 

land cover classes:  

  <500  
 500 
1,000  

1,000  
1,500 

>1,500 Total 

artificial 18.16 8.38 0.04 0 26.58 

grass 9.73 6.44 0 0 16.18 

bush 2.95 3.45 0.02 0 6.41 

tree 14.15 34.02 0.39 0 48.56 

bare land 0.65 0.51 0.01 0 1.17 

water 0.86 0.25 0 0 1.11 

Total 46.5 53.04 0.46 0 100 

 

Total suitable area: 6,483 km2 

(16 % of the Swiss territory) 

 

Repartition in % of the suitable areas 

(Suitability > 0.59) within altitude (in m) 

and land cover classes:  

  <500  
 500 
1,000  

1,000  
1,500 

>1,500 Total 

artificial 12.56 7.78 0.23 0 20.57 

grass 12.94 12.52 0.18 0 25.65 

bush 2.20 3.08 0.11 0 5.39 

tree 9.71 32.97 2.87 0.0003 45.54 

bare land 0.50 0.72 0.09 0 1.31 

water 1.12 0.41 0.01 0 1.54 

Total 39.03 57.48 3.49 0.0003 100 

 

Total suitable area: 10,484 km2 

(25 % of the Swiss territory) 

 

Repartition in % of the newly suitable areas 

(Suitability > 0.59 in 2018 and < 0.59 in 

2009) within altitude (in m) and land cover 

classes: 

  <500  
 500 
1,000  

1,000  
1,500 

>1,500 Total 

artificial 3.47 6.78 0.55 0 10.79 

grass 18.06 22.33 0.47 0 40.86 

bush 0.99 2.5 0.27 0 3.75 

tree 2.56 31.43 6.83 0.0007 40.82 

bare land 0.27 1.06 0.21 0 1.54 

water 1.54 0.68 0.03 0 2.24 

Total 26.88 64.77 8.35 0.0007 100 

 

Total newly suitable area: 4,032 km2 

Total newly unsuitable area: 31 km2 
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Figure 4: Performance of models predicting the suitability for Chlamydiales. (Left) Values of the AUCtest 777 

and the sum of ranks as a function of the buffer radius and the time period considered for the extraction of the 778 

environmental variables. For the AUCtest, the points indicate the mean value computed over the 20 runs and the 779 

lines correspond to the 95% confidence intervals. The “combination” model refers to the model derived using for 780 

each environmental variable the combination of time period and buffer radius that best discriminates the tick’s 781 

presence from background locations (T-test). (Right) Characteristics of the best model chosen according to the 782 

graphics on the left. Mean diff 2009 (resp. 2018) is the average difference between the mean suitability values 783 

predicted on Chlamydiales occurrences points and on locations where no Chlamydiales were identified in 2009 784 

(resp. 2018). 785 

 786 

  787 

  

 

 

 

 

____ « combination » model (mean) 

- - - « combination » model (95% CI) 

Characteristics of the best model 

Buffer radius: combination 

Time period: combination  

Mean AUC_test: 0.74 

Mean diff 2009: 0.12 

Mean diff 2018: 0.31 

 

AUC global: 0.78 

Number of coefficients: 35 

Optimal threshold (max Se+Sp): 0.30 

 

Median suitability on occurrences 2009: 0.47 

Median suitability on “absences” 2009: 0.37 

Median suitability on occurrences 2018: 0.46 

Median suitability on “absences” 2018: 0.15 

  

 

 

Time period 

(months) 
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Figure 5: Jackknife results for the best model predicting the suitability of Chlamydiales. The column 788 

“Buffer” indicates the buffer radius around the sampling point and “Months” the number of months before 789 

sampling date. The column with +/- indicates the type of association between the variable and the presence of 790 

Chlamydiales (with a positive association, the higher the value of the variable, the higher the suitability for 791 

Chlamydiales). AUCglobal corresponds to the performance of the model with all environmental variables, AUConly 792 

the performance with only the environmental variable mentioned in the first column, and AUCwithout the 793 

performance with all the variables except the one mentioned. Perc. = Percentage, Temp. = Temperature, Prec. = 794 

Precipitation, quant. 0.75 = quantile 0.75, RH = Relative Humidity. 795 

 796 

 797 

 798 

  799 

 

 

 

 

 

 

 

Variables Buffer [m] Months  
 

Jackknife results 

Perc. artificial 100 - -  

Perc. tree vegetation 100 - +  

Perc. coniferous 0 - +  

Dist. wetlands 1000 - -  

General curvature 1500 - +  

Average max. Temp 3 wettest 1500 36 -  

Average Temp. 3 driest 1500 36 -  

Prec. 3 coldest 1500 24 +  

Prec. 3 driest 1500 36 +  

Min. monthly quant. 0.75 RH 1500 6 +  

Max. monthly quant. 0.75 RH 0 24 -  

Max. daily RH 1500 24 -  

Range daily RH 1500 6 -  

Number days RH>90 200 24 -  

Number successive days RH>90 100 36 -  

Number successive days RH<80 0 3 +  

Number successive days RH<70 0 6 +  

0.0        0.2        0.4        0.6         0.8 

AUConly (model with only this variable) AUCwithout (model with all variables except this one) 

AUCtotal 
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Figure 6: Suitability maps for Chlamydiales. Suitability map for Chlamydiales in June 2009 (upper panel) and 800 
June 2018 (lower panel) as predicted by the best model (i.e. with “composition” set of environmental variables). 801 
The area concerned by the transition in suitability are represented in the intermediate panel. The green dots show 802 
sites where ticks were sampled but no Chlamydiales were identified. Please note that, as explained in the text, 803 
these sites cannot be considered as real “absences”. 804 

 805 

 806 

 
 

  

 

 

 

Repartition in % of the suitable areas 

(Suitability > 0.3) within altitude (in m) and 

land cover classes:  

  <500  
 500 
1,000  

1,000  
1,500 

>1,500 Total 

artificial 1.64 2.34 0.08 0 4.06 

grass 3.89 8.49 0.11 0 12.49 

bush 1.79 5.16 0.16 0 7.11 

tree 17.28 54.88 1.80 0 73.96 

bare land 0.23 0.74 0.07 0 1.04 

water 0.69 0.60 0.01 0 1.30 

Total 25.52 72.21 2.23 0 100 

 

Total suitable area: 3,279 km2 

(8 % of the Swiss territory) 

 

Repartition in % of the suitable areas 

(Suitability > 0.3) within altitude (in m) and 

land cover classes:  

  <500  
 500 
1,000  

1,000  
1,500 

>1,500 Total 

artificial 0.72 2.08 0.71 0 4.24 

grass 1.47 8.90 2.84 0 15.98 

bush 0.91 3.85 0.81 0.21 5.29 

tree 7.76 48.9 18.07 0.01 71.85 

bare land 0.13 0.88 0.56 0 1.37 

water 0.33 0.65 0.18 0 1.27 

Total 11.32 65.26 23.17 0.22 100 

 

Total suitable area: 3,850 km2 

(9.3 % of the Swiss territory) 

 

Repartition in % of the newly suitable areas 

(Suitability > 0.3 in 2018 and < 0.3 in 2009) 

within altitude (in m) and land cover classes: 

  <500  
 500 
1,000  

1,000  
1,500 

>1,500 Total 

artificial 0.45 1.81 1.35 0 3.61 

grass 0.99 10.25 5.70 0 16.94 

bush 0.29 1.46 1.44 0.02 3.21 

tree 1.92 36.21 34.63 0.43 73.19 

bare land 0.06 0.82 1.03 0.02 1.93 

water 0.18 0.56 0.35 0 1.09 

Total 3.89 51.11 44.5 0.47 100 

 

Total newly suitable area: 1,858 km2 

Total newly unsuitable area: 1,287 km2 
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