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Introduction
The quality of life of children with unilateral 
 cerebral palsy (uCP) can be compromised by their 
upper limb (UL) sensorimotor problems.1 In the 

last few decades, improving these deficits has been 
the focus of many studies. Constraint-induced 
movement therapy (CIMT) is one of the few 
 treatments that has been thoroughly investigated 
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and proven to be effective.2 It consists of constrain-
ing the less impaired hand while intensively training 
the more impaired UL to promote increased use of 
the latter.3 Whilst CIMT focuses on improving UL 
movement quality and efficiency, children with 
uCP also show deficits in motor representation and 
motor planning.4,5 To overcome these deficits, 
action-observation training (AOT) has been sug-
gested as a potential treatment modality. AOT is 
based on the well-established principle that obser-
vation of actions activates the same cortical struc-
tures that are active during the actual performance 
of the task.6 Although preliminary evidence has 
shown positive effects of AOT on UL function in 
children with uCP,7 it remains unknown whether 
the combination of CIMT and AOT would 
enhance the effect of CIMT on improving UL sen-
sorimotor function in these children.

Despite increasing evidence proving the effective-
ness of CIMT, the large variability in reported results 
leads to overall small to medium effect sizes (ESs).2 
Therefore, identifying factors influencing treatment 
response would contribute to the development of 
more efficient and more individualized treatment 
planning. Poor initial hand function has influenced a 
better response to CIMT in previous studies,8 but 
there remains controversy regarding age.8,9 In adult 
stroke survivors, there is preliminary evidence that 
sensory deficits may also influenced UL motor out-
come.10 We hypothesize that children with impaired 
sensory function might also benefit more from the 
intensive use of their more impaired hand. Similarly, 
mirror movements (MM) have a negative impact on 
UL function,11 yet their value to influence treatment 
response remains unknown. Among potential neu-
rological factors are the underlying lesion type (pre-
dominantly white matter versus grey matter damage) 
and the corticospinal tract (CST) wiring pattern, 
due to their value in explaining variability in UL 
function.12 Thus far, only one small study showed 
improvements after CIMT regardless of the lesion 
type.13 However, there is controversy regarding the 
influence of the CST wiring pattern on treatment 
response.13–15 Some studies have reported a worse 
outcome after CIMT in children with an ipsilateral 
CST wiring14,15 whilst others showed positive out-
come irrespective of the CST wiring pattern.13 
Nevertheless, these studies had small sample sizes 
and did not include children with different lesion 
types.

The aim of this study was twofold: we first inves-
tigated the added value of AOT to CIMT in 

improving UL sensorimotor function in children 
with uCP; and secondly, we explored the influ-
ence of behavioural and neurological factors 
treatment response.

Materials and methods

Participants
This prospective randomized with blinded evalu-
ation trial has been fully described elsewhere,16 
and will be briefly summarized here. The study 
was conducted at KU Leuven and was approved 
by the Ethics Committee of the University 
Hospitals Leuven (S56513) and registered at 
www.clinicaltrials.gov (ClinicalTrials.gov identi-
fier: NCT03256357). All children agreed to par-
ticipate, and their parents or caregivers signed the 
informed consent.

Study population and randomization
Children with uCP were recruited between June 
2014 and June 2017 via the cerebral palsy (CP) 
reference centre of the University Hospitals 
Leuven. Inclusion criteria were (a) confirmed 
diagnosis of uCP, (b) aged 6–12 years, (c) suffi-
cient cooperation to complete the activities and 
assessments, and (d) minimal ability to actively 
grasp and stabilize an object with the more 
impaired hand [House Functional Classification 
Score (HFC) ⩾ 4].17 Children were excluded in 
case of UL surgery in the last 2 years, or botuli-
num toxin A-injections 6 months prior to enrol-
ment. The participants were stratified according 
to the HFC scale (4–5 versus 6–7), age (6–9 years 
versus 10–12 years), and the CST wiring pattern 
(contralateral, bilateral, ipsilateral) and assigned 
to the CIMT + AOT or CIMT + placebo AOT 
group by using a permuted block design of two. 
Randomization was performed by a researcher 
(HF) independent of the recruitment and evalua-
tion sessions. Sample size estimation for the pri-
mary outcome measure was conducted prior to 
study initiation, resulting in a total of 21 children 
in each group (ES = 0.9, alpha-level = 0.05, statis-
tical power = 0.80), as described in more detailed 
in.16 The sample size was increased to a total of 
44 to account for dropouts.

Intervention
The intervention was delivered in a day camp 
model during 9 out of 11 consecutive days  (6 h/day,  
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total of 54 h of therapy). During the camp, all 
 children wore a tailor-made hand splint on the less 
impaired hand while performing unimanual exer-
cises during individual therapy (9 h), group activi-
ties (30 h), and AOT/placebo condition (15 h). A 
day (6 h of therapy) was structured with 1 h of indi-
vidual therapy, 2 h of AOT/placebo, and 3 h of 
group activities. The children wore the hand splint 
during the whole time of the camp, as long as  
daily life activities (i.e. eating and toileting) were 
feasible.

The individual therapy was based on motor learn-
ing principles of shaping and repetitive practice by 
focusing on four goals: (a) active wrist and elbow 
extension, (b) forearm supination, (c) grip 
strength, and (d) fine motor tasks. The group 
activities consisted of painting, crafting, cooking, 
and outdoor playing, selected to stimulate the 
intensive use of the more impaired hand. Children 
assigned to the CIMT + AOT group received 15 h 
of AOT sessions. During these sessions, children 
watched video sequences showing unimanual 
goal-directed actions, adapted to the child’s func-
tional level: easier activities for children with a 
HFC level of 4–5 and more difficult activities for 
children with a HFC level of 6–7. The description 
of the activities can be found in more detail 

 elsewhere (Figure 1 and Additional files of Simon-
Martinez and colleagues).16 Each AOT session 
lasted about 1 h and 15 AOT sessions were per-
formed over 9 days (either 1 or 2 per day). Each 
AOT session contained 3 sub-activities, which 
were watched for 3 min. After watching the video, 
the children executed the observed task for 3 min. 
This process was repeated a second time for each 
sub-activity. The completion of the AOT session 
was achieved when the 3 sub-activities of the ses-
sion were watched, and its tasks executed. In con-
clusion, per AOT session the videos were watched 
for 18 min (6 times, 3 min). The CIMT + placebo 
group watched video games free of human motion 
(e.g. Tetris, Word Soup, Hanged Game). The 
children interacted with the game whilst the thera-
pists controlled the mouse and/or keyboard. After 
watching the video with the sub-activity being 
repeated for 3 min, they executed the same sub-
activity for 3 min in the same order as the experi-
mental group, for which only verbal, non-suggestive 
instructions (e.g. try to extend your wrist, open 
the hand) were provided. This ensured that the 
potential additional measured effect solely derived 
from the video-observation. To account for the 
compliance of the video observation in the experi-
mental group, the therapists asked a yes/no ques-
tion after the second execution of each sub-activity. 

Figure 1. Illustration of a goal-directed activities used for the action-observation Training (AOT) for each 
different hand function level. On the top panel, the three sub-activities for children with House Functional 
Classification (HFC) levels 4–5. On the bottom panel, three sub-activities for children with HFC levels 6–8. For 
both levels, each consecutive sub-activity becomes one step more challenging by changing the direction of 
inserting the coin, as indicated by the arrows. Children were shown from the first-person perspective how to 
grasp the poker coin and insert it in the box through the slot. Note that the activities for levels 6–8 are more 
challenging, as they require a combination of increased wrist extension and supination.
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These questions were not related to how the 
movement was performed but rather to features 
related to the video (e.g. is the box taken from the 
top? Did you see the palm of the hand?). This pro-
cedure kept the motivation of the child in observ-
ing attentively. At the end of the intervention, the 
number of correct answers were summed, ranging 
from 0 (all answers incorrect) to 45 (all answers 
correct).

Evaluation
An experienced physiotherapist blinded to group 
allocation (JH) conducted the evaluations at T0 
(baseline, 3–4 months before the intervention), 
T1 (within 4 days before the intervention), T2 
(within 4 days after the intervention), and T3 
(6 months after the intervention). At T0, we col-
lected descriptive and clinical characteristics to 
individually set the child’s therapy goals by expe-
rienced physiotherapists. Primary and secondary 
outcome measures were collected at T1, T2, and 
T3. At T1, we evaluated sensory function, MM, 
type of brain lesion, and CST wiring pattern, 
identified with magnetic resonance imaging 
(MRI) and Transcranial Magnetic Stimulation 
(TMS), respectively, as influencing factors.

Outcome measures. The primary outcome mea-
sure was the Assisting Hand Assessment (AHA), 
which evaluates the spontaneous use of the 
impaired hand during bimanual activities.18,19 A 
certified rater scored the videos, blinded to group-
allocation and time-point evaluation. The small-
est detectable difference is 5 AHA units.20

Secondary outcome measures comprised body 
function (muscle tone, muscle strength and grip 
strength) and activity (unimanual movement speed 
and unimanual and bimanual dexterity) measures, 
following a valid and reliable protocol.21 Muscle 
tone was assessed using the Modified Ashworth 
Scale,22 We evaluated muscle strength using the 
8-point ordinal scale of the Medical Research 
Council23 and grip strength using the mean of three 
maximum contractions with the Jamar® dynamom-
eter (Sammons Preston, Rolyan, Bolingbrook, IL, 
USA). Movement quality was evaluated with the 
Melbourne Assessment 2 (MA2).24,25 The test was 
scored afterwards by a trained physiotherapist 
blinded to group- allocation and time-point evalua-
tion. At activity level, we included unimanual 
movement speed and unimanual and bimanual 
dexterity. Movement speed (time) was evaluated 

during six unimanual tasks with the modified ver-
sion of the Jebsen-Taylor Hand Function test 
(JTHFT).26,27 For this test, the minimal clinically 
important difference has been reported to be 54.7 s 
in a group of children with CP (80% of uCP).28 
Unimanual and bimanual dexterity were evaluated 
using the Tyneside Pegboard Test, an instru-
mented 9-hole pegboard test.29 Lastly, parents 
were asked to complete the ABILHAND-Kids and 
the Children’s Hand-use Experience Questionnaire 
(CHEQ). More detailed information on the evalu-
ation of the secondary outcome measures can be 
found in Supplementary Materials.

Influencing factors of treatment response. Sen-
sory assessments comprised measures of extero-
ception (tactile sense), proprioception (movement 
sense), two-point discrimination (2PD, Aesthesi-
ometer®) and stereognosis (tactile object identifi-
cation), which have been shown to be reliable in 
this population.21 Tactile and movement sense 
were classified as normal (score 2), impaired 
(score 1) or absent (score 0). 2PD was classified 
according to the minimum width between the two 
points that the children could discriminate: nor-
mal (0–4 mm, score 2), or impaired (>4 mm, 
score 1).30 Tactile object identification was quan-
tified as the number of objects that the child could 
recognize (0–6). In addition, a kit of 20 nylon 
monofilaments (0.04–300 g) (Jamar® Monofila-
ments, Sammons Preston, Rolyan, Bolingbrook, 
IL, USA) was used to reliably determine thresh-
old values for touch sensation.31,32 Touch sensa-
tion was categorized as normal (0.008–0.07 g), 
diminished light touch (0.16–0.4 g), diminished 
protective sensation (0.6–2 g), loss of protective 
sensation (4.19–180 g) and untestable (300 g), 
according to the manual.

MM were quantitatively assessed with the grip 
force tracking device during a squeezing task, fol-
lowing the protocol defined by Jaspers and col-
leagues.33 Before performing the task, we tested 
the maximum voluntary contraction of each 
hand, starting with the less affected hand. We 
instructed the children to play a game requiring 
rhythmic squeezing of one handle with one hand 
(active hand), while holding the second handle 
with the other hand (passive hand). The game 
consisted of controlling with the active hand the 
position of an astronaut (higher forces corre-
sponding to a higher position on the screen), 
with the goal to jump over meteorites flying 
across the screen. MM characterization was 
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based on the comparison of grip force profiles of 
the active  versus the passive hand and consisted 
of the calculation of MM amplitude. MM fre-
quency represents the number of squeezes in the 
passive hand that exceeded a predefined thresh-
old, expressed as a percentage of the total num-
ber of squeezes produced in the active hand. MM 
amplitude is the average amplitude ratio of the 
squeezes between both hands, based on only 
those squeezes in the passive hand that exceeded 
a predefined threshold. Lastly, MM amount was 
computed as the frequency by amplitude prod-
uct, providing an overall indication of the MM 
occurrence. Full details on the calculation can be 
found in Rudisch and colleagues.34 MM amount 
in each hand was used for further statistical 
analysis.

Brain imaging and neurophysiological evaluation 
were  performed before the intervention. The MRI 
was acquired with a 3T system (Achieva, Philips 
Medical Systems, Best, The Netherlands) 
equipped with a 32-channel coil. Structural 
images were acquired using three-dimensional 
fluid-attenuated inversion recovery and magneti-
zation prepared rapid gradient echo. MRI results 
were used to characterize the lesion type accord-
ing to the presumed timing (malformation, pre-
dominantly white matter, predominantly grey 
matter)35 by a child neurologist (EO). To identify 
the underlying CST wiring pattern, a single-pulse 
TMS session was conducted. A MagStim 200 
Stimulator (Magstim Ltd., Whitland, Wales, UK) 
equipped with a focal 70 mm figure-eight coil and 
a Bagnoli electromyography system (Delsys Inc., 
Natick, MA, USA) was used for data acquisition. 
After identifying the hotspot and the rest motor 
thresholds, motor evoked potentials were elicited 
and recorded on the thumb adductor and oppo-
nent muscles on both hands to identify the wiring 
pattern (contralateral, bilateral or ipsilateral). 
Children with contraindications to MRI or TMS 
did not undergo the respective measurement. 
There were no adverse events.

Statistical analyses
Effect of the intervention over time. Normality was 
checked using the Shapiro-Wilk test and inspec-
tion of the histograms for symmetry. To conduct 
parametric statistics, a logarithmic transformation 
was applied to the parameters of grip strength, the 
JTHFT, the instrumented pegboard test, the ‘range 
of motion’ subscale of the MA2, and the ‘feeling 

bothered’ subscale of the CHEQ questionnaire. A 
reflect and square root transformation was applied 
to the ‘accuracy’ subscale of the MA2. Descriptive 
statistics were reported according to the nature of 
the data (i.e. means and standard deviations for 
continuous data and median and interquartile 
ranges for ordinal data). Mixed models were used 
to study changes after the intervention over time. 
By using random effects, these models can correct 
for the dependency among repeated observations. 
Furthermore, these models deal with missing data 
offering valid inferences, assuming that missing 
observations are unrelated to unobserved out-
comes.36 Changes over time between groups were 
tested by including group × time interactions. In 
case of a significant interaction, group-dependent 
changes were investigated separately in each group. 
ESs for the full models were calculated from the 
F-values, according the Cohen’s partial η2 formula 
[partial η2 = (F × dfbetween)/((F × dfbetween) + dfwithin)] 
and interpreted accordingly (small, 0.02–0.13; 
medium, 0.13–0.26; and large>0.26).37 Signifi-
cant time trends were further inspected using pair-
wise post hoc comparisons between T1–T2, T1–T3, 
and T2–T3 (Bonferroni corrected). The ESs of 
these comparisons were calculated and interpreted 
according to Cohen’s d formula (ES-d) (small, 
0.2–0.5; medium, 0.5–0.8, and large >0.8).38

Influencing factors of treatment response. Both 
behavioural (age, initial motor function based on 
AHA and JTHFT score at T1, sensory function, 
and MM amount) and neurological characteristics 
(type of brain lesion and CST wiring pattern) were 
evaluated as potential influencing factors of treat-
ment response. All variables were included in their 
original scale except for a dichotomized score for 
initial motor function. Initial low motor function 
was defined as either <50 in the AHA units or 
>350 s in the JTHFT (defined as the 25th percen-
tiles for the total group at T1). These variables were 
included as covariates in the models to influence 
outcomes in the AHA (bimanual) and JTHFT 
(unimanual), together with the time × group inter-
action. If the interaction with group was not sig-
nificant, the interaction with time was examined. 
Post hoc analyses with Bonferroni correction were 
conducted in case of significant interactions and 
trends (<0.10), as this would allow us to capture 
tendencies immediately after the intervention.

All statistical analyses were performed using 
SPSS Statistics for Windows version 25.0 (IBM 
Corp. Armonk, NY: IBM Corp.). The two-sided 
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5% level of significance was used for interactions 
and main effects.

Results

Participants
A total of 44 children participated in the study 
[mean age (SD) 9 years 6 months (1 year 
10 months); 27 boys; 23 left-sided uCP; 9 Manual 
Ability Classification System I (MACS),39 15 
MACS II, and 20 MACS III], and were allocated 
to the CIMT + AOT group (n = 22) and 
CIMT + placebo group (n = 22) (Table 1; 
Supporting information Table S1). All children 
completed the intervention program (100% com-
pliance), but two allocated to the CIMT + pla-
cebo group were lost to follow-up (Figure 2).

Treatment efficacy
Table 2 summarizes the outcome measures for 
each intervention group at every time point. All 
children who received AOT sessions showed a 
good compliance to the video observation, based 
on the number of correct answers to the video-
related questions (median = 42, interquartile 
range = 5, range 30–45). No differences in hand 
function between groups were found at T1 (all 
p > 0.05, Table S2 Supporting information).

The added value of AOT to CIMT. We did not find 
between-groups differences in improvements over 
time on the primary outcome (AHA; p > 0.05) nor 
on the secondary outcomes (all p > 0.05, Table 2).

Improvements over time. The descriptive data is 
shown in Table S3 of Supporting information. The 
total group improved over time in the AHA 
(p < 0.001), with a significant mean improvement of 
2.21 AHA units immediately after the intervention 
(T1–T2, p < 0.001) and maintained at follow-up 
(T2–T3, p < 0.001). ESs were low (ES = 0.14–0.18). 
Immediately after the intervention, most of the chil-
dren (n = 32, 74%) improved their AHA score, of 
which 28% (n = 9) showed an improvement ⩾5 
AHA units (Figure 3 a).

Each bar represents an individual child. The grey 
horizontal line represents the smallest detectable 
difference for the AHA test (5 AHA units) and 
the minimal clinically important difference for the 
JTHFT (54.7 s).

At body function level, we found an improvement 
in grip and muscle strength (p < 0.001), occur-
ring immediately after the intervention (p < 0.001) 
and maintained at follow-up (p < 0.001). From 
the MA2 scale, only range of motion improved 
over time (p = 0.04), although the improvements 
were not immediately after the camp (p > 0.05), 
but at follow-up (p = 0.04). No significant changes 
were found for spasticity scores (p > 0.05).

At activity level, we found large improvements in 
movement speed (JTHFT, p < 0.001), perform-
ing on average 43 s faster after the intervention 
(p < 0.001) and retaining the gains at follow-up 
(p < 0.001). After the intervention, 89% of the 
children (n = 39) improved, and 39% (n = 17) 
improved more than the minimal clinically impor-
tant difference (54.7 s) (Figure 3 b). At follow-up, 
68% (n = 30) maintained the gains, and 32% 
(n = 14) maintained the gains beyond the minimal 
clinically important difference. The improve-
ments were also large in unimanual and bimanual 
dexterity (pegboard test, all p < 0.02). Unimanual 
dexterity improved immediately after the inter-
vention (p < 0.01) and improvements were 
retained at follow-up (p < 0.05). The ‘small pegs’ 
condition was incomplete for eight children 
before the camp, although six of these eight chil-
dren could complete the task after the camp, and 
four of them still completed it at follow-up. 
Bimanual dexterity also improved immediately 
after the intervention (p < 0.01) and at follow-up 
(p < 0.01). Lastly, the CHEQ results showed a 
reduction in time consumption and feeling both-
ered while performing activities (p = 0.009 and 
p = 0.04, respectively), increasing by 4.47% (T1 
versus T2, p = 0.008) and 5.96% (T1 versus T2, 
p = 0.03), respectively. ABILHAND-Kids did not 
change after the intervention (p = 0.65).

In summary, we found large ESs (η2 > 0.26) on 
most outcomes over time. We found improve-
ments immediately after the intervention on mus-
cle strength (ES-d 0.93) and grip strength (ES-d 
0.16), on unimanual dexterity measured with the 
JTHFT (ES 5.81) and in unimanual (ES-d 0.65–
1.57) and bimanual dexterity (ES-d 0.85–1.44) 
measured with the instrumented pegboard test. 
Lastly, the subscales of the CHEQ ‘feeling both-
ered’ and ‘time used’ improved with large (ES-d 
0.85) and small (ES-d 0.31) ESs, respectively. In 
addition, the retained gains were also captured by 
these assessments with similar ESs.
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Table 1. Demographic characteristics of the participants per group.

CIMT + placebo group 
(n = 22)

CIMT + AOT group 
(n = 22)

p-value

Age mean (SD) 9 years 6 months 
(1 year 10 months)

9 years 6 months  
(1 year 11 months)

0.891

Sex n (%)  

 Boys 12 (55) 15 (68) 0.352

 Girls 10 (45) 7 (32)  

More affected side n (%)  

 Left 14 (64) 9 (41) 0.132

 Right 8 (36) 13 (59)  

MACS n (%)  

 I 3 (14) 6 (27) 0.392

 II 7 (32) 8 (36.5)  

 III 12 (55) 8 (36.5)  

HFC system n (%)  

 Levels 4–5 18 (82) 16 (73) 0.472

 Level 6–8 4 (18) 6 (27)  

Lesion type n (%)  

 Malformation 0 (0) 1 (4.5) 0.182

 PV lesion 5 (23) 12 (54.5)  

 CSC lesion 13 (59) 7 (32)  

 Acquired 1 (4.5) 0 (0)  

 Other 3 (13.5)§ 0 (0)  

 Unknown 0 (0) 2 (9)$  

CST wiring n (%) 0.422

 Contralateral 1 (5) 3 (14)  

 Bilateral 8 (36) 5 (23)  

 Ipsilateral 7 (32) 8 (36)  

 Unknown‡ 6 (27) 6 (27)  

AOT, action-observation training; CIMT, constraint-induced movement therapy; CSC, cortico-subcortical; CST, 
corticospinal tract; HFC, House Functional Classification; MACS, Manual Ability Classification System; MRI, Magnetic 
resonance imaging; PV: periventricular.
§Other: brainstem tumour (n = 1), hemispherectomy (n = 2).
$No MRI performed (n = 1 panic attack, n = 1 refused to complete MRI).
‡TMS not performed or inconclusive.
1Independent samples t-test.
2Pearson chi-squared test.

https://journals.sagepub.com/home/tan


Therapeutic Advances in Neurological Disorders 13

8 journals.sagepub.com/home/tan

Influencing factors
We evaluated the influence of behavioural and 
neurological characteristics on treatment out-
come for the primary outcome measure (AHA) 
and for movement speed (JTHFT), as it showed 
the largest ES (>5, Table 2). An overview of the 
statistical results is reported in Table 3. Table S4 
in ‘Supporting information’ reports the number 
of children included in each category for the sig-
nificant influencing factors.

Are there subgroups of children who respond 
 better to AOT? We found a trend toward a sig-
nificant influence of initial hand function (AHA 

score) on treatment response at three time 
points (F = 3.00, p = 0.06; Figure 4 (a), which 
was significant between T1–T2 (p = 0.02). This 
interaction indicated that if the initial AHA 
score was low, the CIMT + AOT group benefit-
ted more than the CIMT + placebo group. If the 
initial AHA score was high, both groups 
improved equally (Figure 4 b).

Similarly, we found a trend toward a significant 
influence of MM amount in the less affected hand 
(more affected hand actively moving) on treat-
ment response of bimanual performance (F = 3.21, 
p = 0.06, Figure 5). This interaction indicated that 

Figure 2. CONSORT flowchart with number of participants and reasons for missing data in each group, at 
each time point.

https://journals.sagepub.com/home/tan
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if the initial amount of MM was high, the 
CIMT + AOT group benefitted more than the 
CIMT + placebo group. If the initial MM amount 
was low, both groups improved similarly.

Responsiveness to AOT did not depend on age 
nor sensory function for either AHA or JTHFT 
(p > 0.05). Regarding neurological characteris-
tics, neither type of brain lesion nor CST wiring 
pattern had an influence on responsiveness to 
AOT (p > 0.05).

Are there subgroups of children who respond bet-
ter to CIMT with or without AOT? We found that 
sensory function was able to influence treatment 
response for the total group for unimanual dex-
terity. More specifically, exteroception, 2PD, and 
touch sensation influenced the outcome of the 
JTHFT (p = 0.03–0.08; Table 3), indicating that 
children with more impaired sensory function 
benefitted more from the CIMT intervention, 
compared with those with normal sensory func-
tion (Figure 6). Note that initial motor function 
did not interfere with these interactions (interac-
tion term p < 0.05).

The responsiveness to CIMT with or without 
AOT did not depend on age, initial motor func-
tion, stereognosis, nor amount of MM (p > 0.05, 
Table 3). Similarly, neither type of brain lesion 
nor CST wiring pattern had an influence on 
responsiveness to CIMT with or without AOT 
when tested individually (p > 0.05, Figure 7) or 
combined (interaction between CST wiring pat-
tern and type of the brain lesion, p > 0.05).

Discussion
This randomized controlled trial was the first to 
investigate the effects of an intensive camp-based 
treatment model combining CIMT and AOT to 
improve UL function at body function and activ-
ity level, by including clinical and instrumented 
outcome measures, as well as both behavioural 
and neurological factors to determine their influ-
ence on treatment outcome. The effects showed 
that, with or without AOT, an intensive CIMT 
training approach delivered in a summer camp 
setting leads to improvements in UL function. 
Although we could not demonstrate an overall 
added effect of AOT, our results suggest that the 
addition of AOT to CIMT may be beneficial for 
children with initial poor hand function and high 
amount of MM. In addition, we found that sen-
sory function influenced treatment response fol-
lowing CIMT (with or without AOT).

What is the added value of AOT to CIMT on UL 
function?
The novelty of this RCT lies in the investigation 
of the added value of AOT to a well-established 
therapy approach, such as CIMT. Overall, our 
results show similar improvements in the 
CIMT + AOT and CIMT + placebo group. To 
date, the first studies exploring AOT in children 
with uCP have proven its effectiveness in improv-
ing UL motor function.7,40–42 However, these 
studies investigated the effect of AOT alone com-
pared with a placebo or no observation, and not 
the added effect of AOT to a well-established UL 
therapy, such as CIMT. Our results are in 

Figure 3. Individual change in Assisting Hand Assessment (AHA) (a) and Jebsen-Taylor Hand Function test 
(JTHFT) (b) scores immediately after the intervention (T1 versus T2).
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Table 3. Statistical inference overview of the influencing value of behavioural, and neurological characteristics on treatment 
response [F (p-values; partial η2)].

Bimanual performance 
(AHA)

Unimanual dexterity 
(JTHFT)

Age (years, continuous) Interaction with group 0.74 (0.49; 0.04) 1.87 (0.17; 0.09)

Total group 0.24 (0.79; 0.01) 0.18 (0.84; 0.01)

Initial motor function

AHA score (low (<50 units) versus high (>50 units); 
class)

Interaction with group 3.00 (0.06; 0.14)$*  

Total group 0.45 (0.64; 0.02)  

JTHFT score (low (>355 s) versus high (<355 s); 
class)

Interaction with group 0.33 (0.72; 0.02)

Total group 0.43 (0.66; 0.02)

Sensory function

Exteroception (0–2; class) Interaction with group 1.36 (0.87; 0.01) 0.54 (0.59; 0.03)

Total group 0.90 (0.48; 0.09) 3.13 (0.03; 0.25)*

Proprioception (0–2; class) Interaction with group 0.41 (0.67; 0.02) 0.05 (0.95; 0)

Total group 1.14 (0.33; 0.06) 0.92 (0.41; 0.05)

2PD score (impaired and normal; class) Interaction with group 0.05 (0.95; 0) 0.65 (0.53; 0.04)

Total group 0.59 (0.56; 0.03) 2.66 (0.08; 0.10)*

Stereognosis (0–6; categorical) Interaction with group 1.87 (0.17; 0.09) 1.38 (0.27; 0.07)

Total group 1.59 (0.22; 0.08) 2.28 (0.12; 0.11)

Touch sensation (monofilaments (0–4); categorical) Interaction with group 1.67 (0.20; 0.08) 1.90 (0.16; 0.09)

Total group 1.62 (0.21; 0.08) 3.27 (0.05; 0.14)*

MM amount

In the more affected hand (continuous) Interaction with group 1.73 (0.19; 0.10) 0.67 (0.52; 0.04)

Total group 0.14 (0.87; 0.01) 0.26 (0.78; 0.02)

In the less affected hand (continuous) Interaction with group 3.21 (0.06; 0.18)$* 0.06 (0.95; 0)

Total group 2.68 (0.08; 0.14) 0.63 (0.54; 0.04)

Neurological characteristics

Lesion type (PV and CSC; class) Interaction with group 0.11 (0.90; 0) 0.63 (0.54; 0.04)

Total group 0 (1; 0) 1.89 (0.17; 0.10)

CST wiring (contralateral, bilateral, and ipsilateral; 
categorical)

Interaction with group 0.54 (0.71; 0.08) 1.34 (0.28; 0.18)

Total group 0.28 (0.89; 0.04) 0.52 (0.72; 0.07)

Lesion type & CST wiring Total group 1.98 (0.13; 0.33) 0.33 (0.85; 0.07)

2PD, two-point discrimination; AHA, Assisting Hand Assessment; CSC, cortico-subcortical; CST, corticospinal tract; JTHFT, Jebsen-Taylor Hand 
Function test; MM, mirror movements; PV, periventricular.
The significant comparisons are highlighted in grey, indicating factors influencing different outcome for the total group or also depending on the 
intervention group.
*Significant between T1–T2.
$In favour of CIMT + AOT group.
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agreement with Kirkpatrick and colleagues who 
found no effect of AOT compared with repetitive 
practice in a home setting.43 In our study, the lack 
of additional value of AOT for the total group 
could be explained by a ceiling effect driven by 
the large gains after CIMT, reported in current 
and previous studies.44–46

Interestingly, we identified that children with 
 initially poorer hand function (lower than 50 AHA 
units) benefitted more from the combined 
approach CIMT + AOT compared with CIMT 
alone. On average, the group receiving 
CIMT + AOT with initially poorer AHA scores 
improved 4 AHA units, while the CIMT + placebo 

Figure 4. Interaction over time between intervention group and initial bimanual performance score (a, 
low initial score, n = 6 in CIMT + placebo group, n = 7 in CIMT + AOT group; b, high initial score, n = 16 in 
CIMT + placebo group, n = 15 in CIMT + AOT group). With low initial bimanual performance, the action-
observation training showed an added value to modified constraint-induced movement therapy immediately 
after the intervention.
EMM, estimated marginal means; SE, standard error.

Figure 5. Impact of amount of mirror movements (MM) in the less affected hand on bimanual performance 
over time. Whilst children with low amount of MM responded similarly to either training, children with high 
amount of MM seemed to improve more after the CIMT + AOT training compared with the CIMT + placebo 
group. Children are divided according to their MM amount (cut-off = 2311.13, derived from the linear mixed 
model) for visualization purposes.
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group did not improve. Sgandurra and colleagues 
recently reported that poorer bimanual perfor-
mance, measured with the AHA, was indicative of 
a more lateralized mirror neuron system in chil-
dren with uCP (toward the non-lesioned hemi-
sphere).47 Given these results, it makes sense that 
the additional AOT intervention for children who 
had poorer bimanual performance was more effec-
tive, as AOT may have facilitated the activation of 
their mirror neuron system through the video-
observation. For those children who showed high 

bimanual performance, it seems plausible that the 
mirror neuron system cannot be further facili-
tated, as this may be intact, and other sensorimo-
tor brain regions would need to be stimulated to 
further increase their motor function, for example 
to facilitate inter-hemisphere connectivity. Also, 
in contrast to other studies, the current study only 
included unimanual tasks to fit the unimanual 
concept of CIMT, although more challenging 
bimanual AOT tasks may be needed to further 
improve UL function in children with initially better 

Figure 6. Interaction between sensory function modalities and improvement in hand dexterity, as measured 
with the Jebsen-Taylor Hand Function test (JTHFT) for the total group. (a) Exteroception (n = 1 absent; n = 5 
impaired; n = 35 normal); (b) Two-point discrimination (n = 22 impaired, n = 18 normal); (c) Touch sensation 
(n = 3 untestable; n = 8 loss of protective sensation; n = 5 diminished protective sensation; n = 0 diminished light 
touch; n = 26 normal). Children with impaired sensory function benefitted more from the training immediately 
after the intervention, although had difficulties in retaining the gains. Data at each time point represents 
the estimated marginal means. Standard errors are not plotted as they are not visible at the current scale 
[exteroception (1.13–2.14 s), two-point discrimination (1.15–1.80 s), touch sensation (1.15–1.56 s)].

Figure 7. Improvement over time according to the neurological characteristics. (a) Type of corticospinal tract 
(CST) wiring pattern and (b) type of the lesion (predominantly grey matter, cortico-subcortical; predominantly 
white matter, periventricular).
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hand function. While this finding is clinically rel-
evant, further studies are clearly needed to con-
firm our results, as well as to define the best 
delivery of AOT.

A second significant influencing factor of treat-
ment outcome between groups following the 
intervention was the amount of MM in the less 
affected hand. Whilst children with few MM 
responded similarly to either training, children 
with a high amount of MM in the less affected 
hand seemed to improve more after the 
CIMT + AOT training. There is evidence for a 
relation between poor bimanual function and a 
high amount of MM.11 Thus, this result is in line 
with the previous result where poor hand function 
influenced treatment outcome. Unfortunately, 
we cannot be certain that these changes are not 
led by concomitant reduction in the amount of 
MM. Additional studies including an evaluation 
of MM before and after intervention are needed 
to further clarify these relationships. Nevertheless, 
this novel finding points toward the importance 
of measuring MM and it is a first step toward the 
delineation of training strategies based on clinical 
characteristics.

What are the effects of CIMT (with or without 
AOT) on UL function?
Our results for the total group showed improve-
ments in grip and muscle strength (ES 0.16–
0.93), JTHFT (ES 5.81) and the instrumented 
pegboard test (ES 0.65–1.57), indicated by their 
large ESs. Moreover, the gains in muscle strength 
and unimanual dexterity were translated to 
bimanual dexterity, measured with the bimanual 
conditions of the instrumented pegboard test (ES 
0.65–1.44). Interestingly, these gains also resulted 
in an increased comfort in using the hand in daily 
activities as confirmed by the improvement in the 
CHEQ-subscale ‘feeling bothered’ with a large 
ES (0.85). Still, this contrasts with the small ES 
found for the AHA (0.18). The ES of the AHA 
reported in previous CIMT studies in a camp 
model varies across studies: larger ESs (around 
1.12) in younger children (18 months–8 years)48,49 
and smaller ESs (0.16–0.28) in children aged 
similar to our study.13,50,51 According to Hung 
and colleagues, the AHA measures the quality of 
the assisting hand while performing bimanual 
movements and misses the spatiotemporal con-
trol of bimanual functioning.52 A measure of spa-
tiotemporal control of bimanual function would 

show the coupling between both hands while per-
forming a bimanual activity. This coupling should 
be effective (accurate in space by having a good 
movement trajectory) and synchronized (accurate 
in time by reaching the target timely with both 
hands). A three-dimensional movement analy-
sis34,52 or placing accelerometers on each hand35 
during the execution of a bimanual task will cap-
ture how coupled the hands are and how effective 
and accurate the executed movements are. 
Integrating other measures of spatiotemporal 
control may help to capture these aspects.

In most measures, we found that the improve-
ments were not only seen immediately after the 
therapy, but also after 6 months, which is in agree-
ment with previous studies.9,13,27,50,51 This mainte-
nance is of clinical relevance, as intensive therapies 
are given in shorter periods. Charles and col-
leagues showed, however, that between 6 months 
and 1 year after the first camp, children typically 
showed a slight functional decline, and a second 
CIMT dose 1 year after resulted in continued 
improvements.53 Boosts of intensive interventions 
with 6-months or 1-year intervals may result in 
long-lasting and clinically relevant effects.

Interestingly, we also found that children with 
impaired sensory function benefitted more from 
the intervention compared with children with 
normal sensory function. To the best of our 
knowledge, this is the first time that sensory func-
tion is investigated as an influencing factor of 
response to CIMT in children with uCP. The 
sensory deficits may lead to a failure to use the 
motor functions and capacities of the more 
affected UL for spontaneous use in daily life. This 
phenomenon is known as developmental disre-
gard.54,55 It is hypothesized that children with 
developmental disregard may respond better to 
CIMT due to the forced use of the more affected 
limb. The positive effects are however partially 
lost at follow-up, potentially due to the lack of 
ongoing stimulation of the more affected limb.

Does the response to CIMT depend on the 
underlying neurological characteristics?
In our study, we found that all children improved 
after a CIMT program, irrespective of their lesion 
type or CST wiring pattern. Interestingly, and add-
ing to the controversy in the literature,13–15,56 hav-
ing an ipsilateral CST wiring pattern did not 
impede improvement after treatment as these 
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children improved almost 5 AHA units after CIMT 
(with or without AOT) (see Figure 7). Staudt and 
colleagues proposed that one neurological factor is 
insufficient to impact treatment response after 
CIMT,57 and a multifactorial model including sev-
eral neurological characteristics may have larger 
influence than any factor alone. Nevertheless, our 
study did not find that the interaction between the 
lesion type and the CST wiring pattern had a larger 
influence on treatment outcome. Our study results 
highlight the variability within each group, suggest-
ing the influence of other factors. We hypothesize 
that functional measures of both sensory and motor 
function, and how these functions are integrated in 
the brain (sensorimotor integration), may be an 
important influencing factor of treatment outcome. 
Further investigations including both clinical and 
neurophysiological measures of the motor and sen-
sory system (motor and sensory evoked potentials), 
as well as of sensorimotor integration (e.g. with the 
short latency afferent inhibition protocol)58 are 
warranted.

Whilst this study was the first to investigate the 
merit of AOT in combination with CIMT in a 
camp model, its limitations should also be 
addressed. Firstly, we included 44 children 
according to the power calculation for the pri-
mary outcome measure.16 This sample size could 
be too low when investigating influencing factors 
of treatment response, particularly for the neuro-
logical characteristics. A larger sample size may 
have also resulted in groups with more homoge-
neous characteristics at baseline. Although base-
line characteristics were not significantly different 
between groups, the groups were not completely 
similar with regard to the type if the lesion (e.g. 5 
children with a periventricular (PV) lesion in the 
CIMT + placebo group versus 12 children with a 
PV lesion in the CIMT + AOT group). A second 
limitation is the lack of a specific outcome meas-
ure that evaluates motor planning as targeted 
with the AOT.7 Future studies investigating the 
added effect of AOT should also include such 
outcome measures, for example the end-posture 
comfort.59,60 Lastly, it remains debatable whether 
a two-week camp can be translated to routine 
clinical practice, as it demands high commitment 
from both the parents and the children during the 
holiday period. In our study, despite a good coop-
eration during the AOT intervention, the children 
generally reported that the AOT sessions were 
monotonous. Hence, we advocate for trainings 
that are engaging and motivating for the children. 

For example, a virtual reality environment61,62 
where the child sees himself as an avatar, could 
serve as a more motivating, engaging, and poten-
tially more effective AOT approach.

In the future, it is crucial that forces between cen-
tres and institutions are joined to coordinate multi-
centre RCTs, which will contribute to fine-tune the 
identification of responders versus non-responders 
through clinical and neurological predictors in a 
statistically powerful study. Furthermore, future 
studies should investigate the neuroplastic changes 
derived from an intensive intervention.

Conclusion
AOT did not show an overall added effect on 
improving UL function in children with uCP 
when combined with CIMT in an intensive 
training approach. Still, AOT seemed to have an 
additional positive value in children with poor 
motor function and high amount of MM, sug-
gesting that the responsiveness to AOT is patient 
specific. Such insights provide a further step 
toward patient-tailored intervention approaches. 
The findings of this study also confirm the effi-
cacy of intensive models of CIMT interventions 
(with or without AOT), with large ESs found in 
unimanual and bimanual dexterity, which seems 
to be more beneficial for children with impaired 
sensory function. The novelty of this study lies 
within the exploration of behavioural and neuro-
logical influencing factors on treatment response, 
which paves the way toward an effective and 
individualized treatment planning for children 
with uCP.
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