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A B S T R A C T

Deep learning explainability is often reached by gradient-based approaches that attribute the network output
to perturbations of the input pixels. However, the relevance of input pixels may be difficult to relate to relevant
image features in some applications, e.g. diagnostic measures in medical imaging. The framework described
in this paper shifts the attribution focus from pixel values to user-defined concepts. By checking if certain
diagnostic measures are present in the learned representations, experts can explain and entrust the network
output. Being post-hoc, our method does not alter the network training and can be easily plugged into the
latest state-of-the-art convolutional networks. This paper presents the main components of the framework for
attribution to concepts, in addition to the introduction of a spatial pooling operation on top of the feature
maps to obtain a solid interpretability analysis. Furthermore, regularized regression is analyzed as a solution
to the regression overfitting in high-dimensionality latent spaces. The versatility of the proposed approach is
shown by experiments on two medical applications, namely histopathology and retinopathy, and on one non-
medical task, the task of handwritten digit classification. The obtained explanations are in line with clinicians’
guidelines and complementary to widely used visualization tools such as saliency maps.

1. Introduction

Deep Neural Networks (DNNs) operate on raw input values and
internal neural activations that appear rather incomprehensible to hu-
mans [1]. The black-box decision-making process of DNNs is a limiting
factor for their deployment in high-risk daily practices, where end-users
are not necessarily familiar with deep learning [2–5]. For example, a
DNN outputting a strong medical diagnosis can motivate the need for
more aggressive treatment, highly impacting the life of the patient.
While physicians can provide the reasons for a decision in clinical
terms, the network output can only be explained in terms of its internal
status. The values of weights, internal layer activations (latents) and
input pixels are, however, far from the semantics of the physicians, who
focus on affected region size, shape and aspect. Can we align the two
representations? Can we find the representation of a concept inside the
CNN and use it to interpret its relationship to the network output?

Numerous explainability techniques were developed to generate
heatmaps of salient regions [6,7]. Most of these are obtained from
the backpropagation of the gradients, for instance, by checking how
individual pixel perturbations affect the decision. In medical imaging,
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however, perturbations of biomarkers are more meaningful than those
of individual pixels. How would the decision change if there was less
stroma in the tissue? What if the nuclei appeared larger and with less
regular texture? Some of these questions were shown as useful to the
clinicians using the image retrieval system in [8]. The hallmark of
concept attribution, compared to existing explainability tools [1,9–
11], is that clinically relevant measures are directly used to produce
explanations that match the semantics of the end-users. CNN decisions
are explained by directly relating to well-known prognostic factors and
clinical guidelines. This promotes a more intuitive interaction between
the physicians and black-box systems aiding the diagnosis, with a
consequent increase of confidence in automated support tools [8].
Besides, concept attribution is a complementary technique to saliency
heatmaps [6,10,11], giving concept-based explanations rather than
pixel-based ones.

As a concrete example, one of the applications in this paper focuses
on finding tumorous tissue in histopathology slides, a tedious operation
to perform manually [12,13]. Clinicians alternate several zoom-in and
zoom-out phases to identify prognostic factors such as those in the
Nottingham system (NHG), namely a low degree of tubular formation,

https://doi.org/10.1016/j.compbiomed.2020.103865
Received 13 January 2020; Received in revised form 12 June 2020; Accepted 13 June 2020

http://www.elsevier.com/locate/compbiomed
http://www.elsevier.com/locate/compbiomed
mailto:mara.graziani@hevs.ch
https://maragraziani.github.io/
https://doi.org/10.1016/j.compbiomed.2020.103865
https://doi.org/10.1016/j.compbiomed.2020.103865
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2020.103865&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers in Biology and Medicine 123 (2020) 103865

2

Graziani M. et al.

Fig. 1. Example of concept attribution for a breast cancer classifier. In phase 1, visual
concepts are modeled on the basis of well-established guidelines for cancer diagnosis. In
phase 2, this knowledge is used to explain the CNN trained to automatically diagnose
a tumor.

alterations in the nuclei morphology and high mitotic activity [14].
Convolutional Neural Networks (CNNs) aid the detection process by
suggesting tumorous regions, but are they relying on the same criteria
to distinguish the tissue abnormalities? This can be investigated by
concept attribution as in Fig. 1.

In the first step, indicators of nuclei pleomorphism are modeled as
numeric features (top row in Fig. 1). For these features, called concept
measures, a relevance score is computed that explains their importance
in the network output.

Since the explanations are sought only in a post-training phase, our
method can potentially be applied to any network without the need
of retraining. The interpretability analysis can be applied to the latest
state-of-the-art models, without impacting the network performance.
Introducing the concept-based explanations in a computer-assisted tu-
mor localization pipeline can improve the interaction between clini-
cians and the CNN model, for example by explaining why a certain
area was highlighted as tumorous (see Fig. 5 in Section 3.5). Moreover,
this framework can be helpful in a variety of application fields beyond
medicine, as suggested by our experiments on handwritten digits.
Other applications are, for example, highlighting the causes of eventual
faults in assisted driving or robotic systems. Our primary focus in this
paper, however, is the application in the medical context.

The main contribution of this paper is the formulation of a frame-
work for concept-based attribution that generates explanations for
CNNs decisions. Besides, we address important limitations of previous
works on concept-based explainability [1,15,16]. Our contributions can
be summarized as follows:

1. The framework of concept attribution is defined for multiclass
classification tasks in Section 3.5.

2. The learning of concepts in the CNN is improved by remov-
ing spatial dependencies of the convolutional feature maps and
introducing regularization. Experimental results show more ac-
curate RCVs in Section 4.4.1.

3. The well-known dataset of handwritten digits is added to the
analysis, broadening the applicative focus. The experiments in
Section 4.3 show that the network outcome can be explained by
characteristics such as digit shape and extension.

Besides, we test the computational complexity of interpreting the net-
work with RCVs and we present an in-depth discussion about the
potential of concept-based explanations for automated diagnosis sys-
tems.

2. Related work

2.1. Attribution to features

Several efforts have been made to unify the definition of deep learn-
ing interpretability [2,3]. Clear distinctions were made between models

that introduce interpretability as a built-in additional task [4,17–21]
and post-hoc methods. While the former may result in decreased perfor-
mance on the main task due to the interpretability constraint, the latter
can explain any machine learning algorithm (including better-than-
human networks [1,3,5]) without altering the original performance.
Several post-hoc techniques [6,9–11] highlight the most influential set
of features in the input space, a technique known as attribution to
features [22]. Given a CNN with decision function 𝑓 ∶ R𝑛 ←←→ [0, 1]
and an input image 𝐱 = (𝑥1,… , 𝑥𝑛) ∈ R𝑛, each 𝑎𝑖 in the attribution
vector 𝐴𝑓 (𝐱, 𝐱′) = (𝑎1,… , 𝑎𝑛) ∈ R𝑛 explains the contribution of each
pixel 𝑥𝑖 to 𝑓 (𝐱), 𝑖 = 1,… , 𝑛. Such contribution is computed with respect
to a baseline input 𝐱′ with neutral predictions, for example a black
image [22]. The attribution method identifies the pixels responsible
for the classification of the input image, which is then overlayed with
a heatmap. This was successfully applied to the medical field, for
example highlighting the contours of colorectal polyps in [23]. The
explanations generated by feature attribution are only true for a single
input and may change for another data point of the same class. Such
point-wise explanations are called local explanations [3]. This paper
proposes concept-attribution as a complementary technique to feature
attribution. Besides, concept-based interpretations that hold true for
all inputs of the same class can describe global relationships between
input and outputs known as global explanations.

2.2. Learning concepts inside CNNs

An important step in concept attribution is the learning of concepts
in the internal activations of CNNs. Concept learning can be traced
back to machine learning theory. Formally, it is defined as the binary
classification problem of inferring a Boolean-valued function from input
examples of the concept and the relative model output [24]. This was
implemented by Concept Activation Vectors (CAV) to interpret the
activations of CNNs. The main purpose of CAVs was, in fact, to verify
the presence of human-friendly binary concepts (e.g. striped texture)
inside CNNs [1]. Linear classifiers were also used as probes to interpret
neural activations, being inherently interpretable and thus constituting
a baseline of the linear interpretability of deep networks [1,15,16,25].
The performance of the linear classifier is indicative of how well the
concept is learned in the network representation. Regression Concept
Vectors (RCVs) [15] extended CAVs to model not only the presence or
absence of a concept, but also continuous-valued measures. These are
important in the medical domain since often the diagnosis is made on
the basis of observed measurements, such as tumor growth or patient
history, e.g. patient age. The applicability of RCVs to tasks with more
than two classes is missing in their original formulation [15,16]. This
prevents many future applications, for example on other histological
types or medical tasks, e.g. the five-grades Gleason system for prostate
cancer. Among others, this important limitation is addressed by the
framework presented in this paper.

3. Methods

3.1. Notation

We first clarify the notation adopted in the paper. We consider a
neural network of 𝐿 layers. The function 𝑓 (𝐱) is the network output for
an input image 𝐱. The activation of layer 𝑙 is 𝛷𝑙(𝐱). For convolutional
layers, 𝛷𝑙(𝐱) ∈ R𝑤×ℎ×𝑝, where 𝑤 is the width, ℎ the height and 𝑝 the
number of channels. The dataset used to train the network on the main
task is 𝑋𝑡𝑎𝑠𝑘, which is split into training (𝑋𝑡𝑟𝑎𝑖𝑛

𝑡𝑎𝑠𝑘 ) and testing (𝑋𝑡𝑒𝑠𝑡
𝑡𝑎𝑠𝑘). Note

that |𝑋𝑡𝑎𝑠𝑘| = 𝑁 . The set of class labels 𝑌𝑡𝑎𝑠𝑘 is available. In binary
classification problems, 𝑦 ∈ {0, 1} and 𝑓 (𝐱) ∈ [0, 1]. In classification
problems with classes 𝑘 = 1,… , 𝐾, 𝑦 is a 𝐾-dimensional one-hot
encoding of the class label, and 𝑓 (𝐱) is a 𝐾-dimensional vector of the
predicted class probabilities. A set of 𝑀 images 𝑋𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠, from which
it is possible to extract measures of the concepts, is used to learn the
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Fig. 2. Concept measure selection workflow. End-users such as experts with knowledge
in the application domain are asked to provide a set of questions that determine
the focus of the interpretability analysis. Similarly, domain-knowledge can be used to
identify potential concepts. If a potential concept is measurable from the images, then
this is kept in the analysis. If the concept is not measurable, CAVs or other approaches
can be adopted.

continuous-valued concepts in the activation space. The set 𝑋𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠
can be either disjoint or overlap with 𝑋𝑡𝑎𝑠𝑘. A list of 𝑄 concepts
is considered for the analysis, e.g. {‘‘area’’, ‘‘contrast’’, ‘‘ASM’’}. The
function 𝑐𝑖(𝐱) ∈ R measures the value of the 𝑖th concept in the list on
the input image 𝐱. Thus, in the list of functions {𝑐1(⋅),… , 𝑐𝑄(⋅)}, each
item corresponds to a different concept, e.g. 𝑐1 = ‘‘area’’.

3.2. From expert knowledge to continuous concepts

The starting point for the concept attribution analysis is the formu-
lation of concepts of interest as measurable attributes. This can be done
by directly interacting with experts or by referring to the literature. The
interaction between ophthalmologists and developers, for example, led
to the use of pre-existent handcrafted features describing the appear-
ance of retinal vessels in [16]. In addition to this, the existent guidelines
for decision-making are based on many years of study and joint efforts
by many experts to develop well-established practices, e.g. the TNM
and the Nottingham grading system (NGH) in breast histopathology,
the Gleason score in prostate cancer grading or RECIST for tumor
grading in radiology. Besides, handcrafted visual features are success-
fully employed as image descriptors in radiomics [26,27], eye fundus
analysis [28] and digital pathology [29]. Our framework exploits this
kind of prior information to delimit the focus of the interpretability
method, defining a list of 𝑄 measurable concepts that should be part
of the interpretability analysis. Concepts are chosen so that specific
questions can be addressed, for instance by following the workflow
in Fig. 2. They can be formulated to verify that domain-knowledge
is reflected in the layer activations of the network. In our example
for breast histopathology in Fig. 3, the analysis focus is on validating
whether the network decisions are in line with the guidelines of clinical
practice. A question of interest could be "Is the nuclei shape relevant to
the automatic classification as tumor?" . Prior expectations on the network
behavior can also be validated (e.g. "Changes in color appearance do not
influence the classification"). The concept measures are computed on a
small set of visual examples (i.e. around 30 images or more) that is
𝑋𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠. For nuclei area and texture, that are representative of the
NGH nuclear pleomorphism, the segmentation of the nuclei instances
in the image can be obtained by either manual annotations [15] or by
automatic segmentation [30]. Nuclei area is expressed as the sum of
pixels in the nuclei contours, whereas the nuclei texture is described by
Haralick’s descriptors such as Angular Second Moment (ASM), contrast
and correlation [31].

Some concepts can be chosen to allow cross-application analy-
sis, as the general concept of area in handwritten digit recognition
(Section 4.3) and in histopathology (Section 4.4). General concepts
describing the image such as texture descriptors can be applied in
several imaging applications [32]. Other concepts are specific to the
type of data being analyzed, as undefined for some data types. RGB
color measures, for instance, are undefined for single-channel image
modalities, e.g. computed tomography (CT) scans [32]. In addition,
the exhaustive evaluation of all possible concepts is unfeasible. For this
reason, the selection of concepts is an iterative process that starts from

the more general concepts of texture and appearance and that is then
updated with specific requests by the interaction with experts, as shown
by the feedback branch in Fig. 2. Once extracted, the concept measures
are used to explain the network decisions by CAVs or RCVs.

3.3. Attribution to concepts

The feature attribution problem described in Section 2.1 is changed
into the problem of evaluating the relevance of each concept to the
deep learning classification task. The interpretability analysis is a post-
hoc step that does not need the retraining of the network parameters.
The network being analyzed is therefore unchanged and it can be
replaced at any time by newer architectures with better performance.
A vector 𝐯𝑐 representative of the presence or increase of a concept
measure is found in the activation space of a layer. The attribution
is changed into 𝐴𝑓 (𝛷𝑙(𝐱), {𝐯𝑐𝑖}

𝑄
𝑖=1) = (𝑎1,… , 𝑎𝑄) where each 𝑎𝑖 is the

relevance of concept 𝑐𝑖 to 𝑓 (𝐱).3

3.4. Regression concept vectors

RCVs are computed using the output of a CNN layer as input to a
regression problem, as illustrated in Fig. 4. We consider the space of
the activations of layer 𝑙, 𝛷𝑙(𝐱). We extract 𝛷𝑙(𝐱) for 𝐱 ∈ 𝑋𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠. We
seek the linear regression that can model the concept 𝑐(𝐱) as:

𝑐(𝐱) = 𝐯𝑐 ⋅𝛷𝑙(𝐱) + 𝑒𝑟𝑟𝑜𝑟 (1)

where 𝐯𝑐 is the RCV for concept 𝑐. The RCV components can be found
by applying linear least squares (LLS) estimation to 𝑋𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠. If 𝑙 is a
dense layer, 𝐯𝑐 is a 𝑝-dimensional vector in the space of its activations.
If 𝑙 is a convolutional layer the output of 𝛷𝑙(𝐱) has spatial and channel
dimensions (height, width, channels) represented as 𝑤 × ℎ × 𝑝. The
simplest way of solving LLS in this space is to flatten 𝛷𝑙(𝐱) to a
one-dimensional array of 𝑤ℎ𝑝 elements as in [1,15]. The number of
dimensions of the unrolled convolutional maps may, however, easily
grow to millions. Moreover, the 2D structure of the space is broken
by assigning neighboring features to independent dimensions. In this
paper, we apply spatial aggregation, i.e. global pooling, along the
(height, width) of each feature map to obtain a representation of 𝛷𝑙(𝐱)
as a one-dimensional array of 𝑝 elements. This solution, only briefly
mentioned in [25], actually improves the quality of the regression fit
by considering the spatial dependencies in the representations.

A further solution proposed in this paper involves a regularization
term that is added to the optimization:

𝐯𝑟𝑖𝑑𝑔𝑒𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐯𝑐 (‖𝑐(𝐱) − 𝐯𝑐𝛷𝑙(𝐱)‖22 + 𝜆‖𝐯𝑐‖22) (2)

The penalty term 𝜆 controls the strength of the regularization. The
larger the 𝜆, the stronger the regularization. The experimental results
in this paper compare the two solutions in Eq. (1) and Eq. (2). The
RCV represents the direction of the strongest increase of the concept
measures for the concept 𝑐 and it is normalized to obtain a unit vector
𝐯𝑐 .

3.5. Sensitivity to a concept

The conceptual sensitivity4 𝑆𝑐 represents how much the concept
measure affects the network’s output for the input image 𝐱 ∈ 𝑋𝑡𝑎𝑠𝑘.
The sensitivity to a concept was defined for binary concepts in [1].
The same formula is applied to continuous concepts by projecting the
derivative on the RCV direction rather than on the CAV direction. For
a binary classification task, 𝑆𝑙

𝑐 (𝐱) ∈ R is defined as the directional

3 In the following sections, we drop the subscript 𝑖 for simplicity and we
refer to the vector 𝐯𝑐 as the RCV for a concept 𝑐.

4 Note that the term conceptual sensitivity was defined in [1] and it does
not refer to the output classification sensitivity commonly known as recall.
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Fig. 3. Concept list derived for the breast histopathology application and how to compute the measures.

Fig. 4. The output of the CNN internal layer is used to find the RCVs. This does not require the retraining of the CNN parameters. In this two-dimensional example, the RCV is
the direction represented by the regression plane. In higher dimensions, unwanted pixel dependencies are removed by an aggregating operation of the internal layer representation.

derivative of the network output 𝑓 (𝐱) over the RCV direction 𝐯𝑐 ,
computed as a scalar product (see Eq. (3)).

𝑆𝑙
𝑐 (𝐱) = 𝐯𝑐 ⋅

𝜕𝑓 (𝐱)
𝜕𝛷𝑙(𝐱)

(3)

𝑆𝑙
𝑐 (𝐱) represents the network responsiveness to changes in the input

along the direction of the increasing values of the concept measures.
The sign of 𝑆𝑙

𝑐 (𝐱) represents the direction of change, while its mag-
nitude represents the rate of change. When moving along the RCV
direction, the output 𝑓 (𝐱) may either increase (positive conceptual
sensitivity), decrease (negative conceptual sensitivity) or remain un-
changed (conceptual sensitivity equals zero). In a binary classification
network with a single neuron in the decision layer, the decision func-
tion is a logistic regression over the activations of the penultimate layer.
A positive value of the sensitivity to a concept can be interpreted as an
increase of 𝑝(𝑦 = 1|𝐱) when the representation 𝛷𝑙(𝐱) is moved towards
the direction of the increasing values of the concept. Negative concep-
tual sensitivity can be interpreted as an increase in 𝑝(𝑦 = 0|𝐱) when
the same shift in the representation is applied. Conceptual sensitivities
scores are informative about the concept influence on the decision
for the single input image (as shown, for example, in Fig. 5). These
scores are gathered for all inputs of a class by the relevance scores in
Section 3.6.

The derivation of the scores for multiclass classification tasks is
straightforward. Given the class label 𝑘, we consider the corresponding
𝑘th neuron in layer 𝐿. The neuron activation before softmax, 𝛷𝐿,𝑘(𝐱), is
a vector of real numbers representing the raw prediction values. These
values are then squashed by the softmax into a probability distribution,
namely the probability of the label 𝑘 to be assigned to the input data
point 𝐱. The conceptual sensitivity score for class 𝑘 is computed as:

𝑆𝑙,𝑘
𝑐 (𝐱) = 𝐯𝑐 ⋅

𝜕𝛷𝐿,𝑘(𝐱)
𝜕𝛷𝑙(𝐱)

(4)

The sensitivity scores can be computed for each class 𝑘, thus obtaining
a vector of 𝐾 elements. Large absolute values of the conceptual sensi-
tivity for a single class correspond to a strong impact in the decision
function when the activations are shifted along the direction of the
RCV. In both Eqs. (3) and (4) the derivative of the decision function can
be obtained by stopping gradient backpropagation at the 𝑙th layer of the
network. The computational complexity for a single input data point is
therefore given by the complexity of the backpropagation operation. In
case the backpropagation is done on (𝐿 − 𝑙) fully connected layers of
input size 𝑝 and output size 𝑑, the complexity is 𝑂((𝐿 − 𝑙)𝑑𝑝).

3.6. Relevance scores

3.6.1. TCAV score
The global relevance of a concept can be computed from the individ-

ual sensitivity scores. Previous work on CAVs [1] proposed the TCAV
score as the fraction of k-class inputs for which the activation vector
of layer 𝑙 was positively influenced by concept 𝐶5:

TCAV =
|{𝐱 ∈ 𝑋𝑘 ∶ 𝑆𝑙,𝑘

𝑐 (𝐱) > 0}|
|𝑋𝑘|

(5)

where 𝑋𝑘 ⊂ 𝑋𝑡𝑎𝑠𝑘 is the set of inputs with label 𝑘. The TCAV score
is bounded between zero and one. If there are no images influencing
the decision with a positive gradient, TCAV is zero. The TCAV score
(computed from the concept sensitivities as in Eq. (5)) is used as a base-
line for comparison with the proposed Br scores in our experiments.
In the original paper, however, TCAV was only defined for binary
concepts [1].

5 The TCAV score for concept 𝑐 is TCAV𝑐 . For simplicity, we drop the
subscript 𝑐 in the rest of the paper for both TCAV and 𝐵𝑟.
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Fig. 5. Integration of patch-wise concept-based explanations in the system for assisted diagnosis of breast cancer. The explanations are the concept sensitivities scores for the
individual input images. This visualization can help physicians to understand the reasons for a certain classification rather than another. Similarly, developers can inspect and
debug the model by looking at misclassification errors and edge-cases.

3.6.2. Bidirectional scores
Bidirectional relevance (𝐵𝑟) scores were proposed for computing

the relevance of concept measures in a binary classification task of
histopathology tissue in [15]. 𝐵𝑟 scores are defined as:

𝐵𝑟 = 𝑅2 ×
(

�̂�
�̂�

)

(6)

The coefficient of determination 𝑅2 ≤ 1 indicates how well the RCV
represents the concept in the internal CNN activations. It measures
whether the concept vector is actually representative of the concept by
evaluating their predictive performance on unseen data. The coefficient
of variation �̂�∕�̂� is the standard deviation of the scores over their
average. It describes their relative variation around the mean. Note that
𝑅2 evaluates how a concept is present in the internal activations in
the form of a linear correlation between the features and the concept
values. This, however, is not linked to the final prediction as it does
not quantify the influence of the concept for a specific decision. This
information is given by the mean average of the concept sensitivity
scores 𝜇 in Eq. (6). 𝐵𝑟 is large when two conditions are met, namely
𝑅2 is 1 and the coefficient of variation is small (the values of the
sensitivity scores lie closely concentrated near their sample mean). 𝐵𝑟
explodes, for instance, to infinite if �̂� = 0. After computing 𝐵𝑟 for
multiple concepts, we scale the scores to the range [−1, 1] by dividing
by the maximum absolute value. Such scaling permits a fair comparison
among concepts since these are represented by different RCVs. With the
set of analyzed concepts being reasonably large, a score close to the
absolute value of one can be considered as large. This means that the
concept has a considerable impact on the increase (in case of positive
sign) of the outcome probability.

Bidirectional scores were not defined in the previous work on RCVs
for multi-class classification tasks. We present their extension in the
following. Given a concept 𝑐, the mean and the standard deviation of
the sensitivities are computed on the set of inputs belonging to the 𝑘th
class, 𝑋𝑘. In multiclass classification, the vector of sensitivities has a
value for neuron 𝑚 = 1,… , 𝐾 in the decision layer. We use the notation
𝐵𝑟𝑚𝑘 to indicate the bidirectional relevance at the 𝑚th neuron of the
decision layer, for inputs belonging to class 𝑘. Therefore, given the set
of k-class inputs 𝑋𝑘 = {𝐱𝑖}

|𝑋𝑘|
𝑖=1 we define the mean �̂�𝑚

𝑘 and standard
deviation �̂�𝑚𝑘 of the sensitivities of the 𝑚th neuron as in Eqs. (7) and
(8).

�̂�𝑚
𝑘 = 1

|𝑋𝑘|

|𝑋𝑘|
∑

𝑖=1
𝑆𝑙,𝑚
𝑐 (𝐱𝑖) (7)

�̂�𝑚𝑘 =

√

√

√

√

∑
|𝑋𝑘|
𝑖=1 (𝑆𝑙,𝑚

𝑐 (𝐱𝑖) − �̂�𝑚
𝑘 )

2

|𝑋𝑘| − 1
(8)

𝐵𝑟𝑚𝑘 is then computed as:

𝐵𝑟𝑚𝑘 = 𝑅2 ×
( �̂�𝑚

𝑘
�̂�𝑚𝑘

)

(9)

Given a concept measure, 𝐵𝑟𝑚𝑘 represents its relevance in the classifica-
tion of inputs belonging to class 𝑘 with respect to the 𝑚− 𝑡ℎ neuron of

the decision layer. We can organize the 𝐵𝑟 scores in a square matrix 𝐵
of dimensions 𝐾 ×𝐾:

𝐵 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐵𝑟11 … 𝐵𝑟1𝐾
⋱

⋮ 𝐵𝑟𝑘𝑘 ⋮
⋱

𝐵𝑟𝐾1 … 𝐵𝑟𝐾𝐾

⎤

⎥

⎥

⎥

⎥

⎥

⎦

In the 𝐵 matrix, the rows correspond to the 𝑚th neuron in the decision
layer. The columns correspond to computing the input classes (inputs
belonging to the 𝑘th class). The elements on the diagonal (𝐵𝑟𝑘𝑘) explain
the relevance of the concept measures on test inputs of class 𝑘 with
respect to the neuron responsible for the classification of this same
class.

These can be interpreted as the relevance of the concept to the
correct classification of each class. The off-diagonal elements measure
the relevance of the concept to the softmax output of the neurons
that are not responsible for the classification of the true input class 𝑘.
These values can be interpreted as the impact on misclassification of
increasing the values of the concept measures. Similarly to the scalar
𝐵𝑟 for binary classification, the 𝐵 matrix can be computed for multiple
concept measures. The individual matrices can then be concatenated on
a third axis to form a tensor with three axes: (neuron, class, concept).
To allow a proper comparison between the scores for multiple concepts,
the third axis can be scaled in the range [−1, 1].6 The computational
complexity of the 𝐵𝑟, as for TCAV, is a function of the number of
samples used to evaluate the sensitivity scores. If only the testing split
is used, the complexity is 𝑂(|𝑋𝑡𝑒𝑠𝑡

𝑡𝑎𝑠𝑘|), which has to be multiplied by the
complexity of computing the sensitivity scores of each point. Hence the
final complexity, for a network with 𝐿 fully-connected layers of input
size 𝑝 and output size 𝑑, is 𝑂(|𝑋𝑡𝑒𝑠𝑡

𝑡𝑎𝑠𝑘|(𝐿 − 𝑙)𝑑𝑝).

3.6.3. Alternative scores
TCAV and 𝐵𝑟 evaluate the influence of a concept on the model’s

decision for all images of an input class, gathering the information
given by the individual conceptual sensitivity scores. The global con-
cept influence cannot be explained by the 𝑅2, as this evaluates only
the predictive performance of the RCV on test data, giving a measure
of how the RCV is representative of the concept. The TCAV and 𝐵𝑟 score
add information to the analysis, by considering different properties of
the sensitivity values. TCAV estimates whether the concept increases
the probability of a class in the decision function. This is done by
counting the number of positive directional derivatives for inputs of
class 𝑘 and a given concept. 𝐵𝑟 scores introduce information about
the magnitude and variation of the influence of the concept measures.
Besides, Br scores are informative on the influence of a concept to the
direction of the decision, namely by showing if the increase of a concept
measure results in an increase or decrease in the likelihood of a specific
class.

6 The scaling is performed as a division of the 𝐵𝑟 for one concept over the
maximum value of the scores for all concepts.
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Different scores can explore other characteristics of the gradients
such as the largest variation of the gradient (i.e. with a max operation
on the directional derivatives) or the ratio between positive and neg-
ative derivatives. One example is the layer-agnostic metric proposed
in [27], which allows comparing scores across all the network layers.

4. Experiments and results

4.1. Architectures

We use the following architectures in the experiments:

• A multilayer perceptron (MLP) with one hidden layer of 512
nodes is used to introduce the methodology on binary and multi-
class classification tasks. For the former model, logistic regression
and binary cross-entropy loss are used. For the latter, we intro-
duce an additional hidden layer of 512 nodes and use softmax
and categorical cross-entropy.

• For the breast cancer histopathology application, we use a
ResNet101 pretrained on ImageNet [33]. The last layer of the
network is replaced by a single node with a sigmoid activation
for binary classification. High-resolution patches of tumor regions
are distinguished from patches of nontumor regions.7

• For the retinopathy application, the last layer of InceptionV1
(pretrained on ImageNet) is replaced with a dense layer with
softmax activation, which is fine-tuned for the classification of
three classes, namely normal, pre-plus and plus [34].8

4.2. Datasets

We report the datasets used for the experiments. We first introduce
the method on the classification of handwritten digits as a very simple
example to explain the concepts. We then extend the experiments on
two medical applications, namely the classification of tumor patches in
histopathology images and the classification of the plus disease in ROP
images.

4.2.1. Handwritten digits
The MLP was trained on the dataset of handwritten digits MNIST

[35]. The concept measures are automatically extracted from the digit
images that are binarized by applying a threshold of 0.5. From the
resulting binary maps, we extract concept measures describing the
shape of the digit, such as eccentricity (deviation of a curve from
circularity), perimeter (length of the digit contour) and area (number
of pixels in the digit). The input images to the network are the original
images and not the binary masks.

4.2.2. Breast histopathology
Three datasets are used for the breast histopathology experiments.

Two of them, namely Camelyon16 and Camelyon179 are used to fine-
tune the decision layer of ResNet101. More than 40,000 patches at
the highest resolution level are extracted from random locations of
the Whole Slide Images (WSIs) in Camelyon16 and 17 and used as
𝑋𝑡𝑎𝑠𝑘. We use only the WSIs for which the annotation of the tumor
area is given. Staining normalization and online data augmentation
(random flipping, brightness, saturation and hue perturbation) are used
to reduce the domain shift between the different centers. A dataset
with manual segmentation of the nuclei [36]10 is used to extract the
concept measures and learn the regression. This dataset contains WSIs

7 We refer to the first convolutional layer as conv1 and to the merge layers
at the end of residual blocks of increasing depth as res2a, res2b, etc.

8 We refer to the first convolutional layer as conv1, and to the filter
concatenation layers of increasing depth as Mixed3b, Mixed4b, etc.

9 Downloadable at https://camelyon17.grand-challenge.org/.
10 Dataset available at https://monuseg.grand-challenge.org/Data/.

of several organs with more than 21,000 annotated nuclei boundaries.
From this data, we select the WSIs of breast tissue, from which we
extract 300 patches which constitute the 𝑋𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠. Concept measures
describing the morphology of the nuclei are extracted from the manual
segmentation of the nuclei. For these patches, the labels of tumor or
non-tumor regions are not available.

4.2.3. Retinopathy of prematurity
Images from a private dataset of 4800 de-identified posterior retinal

images constitute the 𝑋𝑡𝑎𝑠𝑘 for the application on Retinopathy of Pre-
maturity (ROP). A commercially available camera was used to capture
the images (namely RetCam; Natus Medical Incorporated, Pleasanton,
CA). A total of 3024 images (1084 for normal; 1074 for pre-plus; 1080
for plus) were used as the training split 𝑋𝑡𝑟𝑎𝑖𝑛

𝑡𝑎𝑠𝑘 . The testing split 𝑋𝑡𝑒𝑠𝑡
𝑡𝑎𝑠𝑘

contains 985 samples (817 for normal; 148 for pre-plus; 20 for plus).
The high class imbalance between plus and normal cases is due to
the fact that ROP is a disease with a low prevalence (only 3%). The
preprocessing pipeline of the images is as in Brown et al. [37].11 A
CNN is used to segment the retinal vasculature. After segmentation,
the images are resized to 224 x 224 pixels and data augmentation is
applied, i.e. right-angle rotations and horizontal and vertical flipping.
𝑋𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠 is built by gathering the samples of class plus and normal from
𝑋𝑡𝑟𝑎𝑖𝑛

𝑡𝑎𝑠𝑘 . Samples of class pre-plus represent the transition from normal to
plus and can be excluded from 𝑋𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠 to keep the size of this dataset
smaller than 𝑋𝑡𝑟𝑎𝑖𝑛

𝑡𝑎𝑠𝑘 . The interpretability analysis is performed on 𝑋𝑡𝑒𝑠𝑡
𝑡𝑎𝑠𝑘.

4.3. Experiments on MNIST digits

Experiments on MNIST were performed because it is a widely
studied dataset in computer vision that can be used as a well-controlled
problem to evaluate the principles of our method and to verify that
expected results are obtained. In the first part of this section, we
consider the binary classification of zero and one digits, a trivial task
to show the application of concept attribution on networks with a
single decision node. In the second part, we extend the application
to all classes, showing the application of multiclass scores and the
comparison with the TCAV baseline. We select two concept measures
that are complementary to each other by construction, such as count of
black pixels (𝑛𝑏𝑙𝑎𝑐𝑘) and count of white pixels (𝑛𝑤ℎ𝑖𝑡𝑒). These measures are
perfectly linearly correlated since their summation is equal to the total
number of pixels in the image. Hence, in such a controlled experiment
we expect to find two parallel RCVs that point in opposite directions.
As expected, the angle between the two RCVs is indeed 180 degrees.

We expand the analysis with concept measures of digit area, perime-
ter, eccentricity. The distribution of the concept measures between the
zero and ones classes is shown in Fig. 6. In Fig. 7, we visualize the t-
Distributed Stochastic Neighbor Embedding (t-SNE) projection of the
representations of the two classes with the corresponding values of
the concept measures for the concept eccentricity [38]. Measures of
eccentricity are larger for inputs of class one. Pearsons’ correlation
coefficient between eccentricity and network output is 0.84 while, for
perimeter, it is −0.96 (𝑝-value < 0.0001 for both). The RCVs of eccentricity
and perimeter form an angle of 174 degrees. The 𝑅2 of the RCVs are
0.91 for eccentricity, 0.91 for perimeter and 0.95 for area. By contrast,
the regression of an irrelevant concept such as random values of the
concept measures returns non-positive or zero values of the 𝑅2.

The 𝐵𝑟 scores (second row in Table 1) show that an increase in the
eccentricity shifts the prediction towards the one class, while an increase
in the perimeter or area shifts the decision towards the zero class. The
TCAV scores only identify eccentricity as a relevant concept.

The next experiments show the extension from binary to multiclass
classification, with all digit classes being considered. The Pearsons’
correlation coefficient between the network neurons and the concept

11 Source code: https://github.com/QTIM-Lab/qtim_ROP.

https://camelyon17.grand-challenge.org/
https://monuseg.grand-challenge.org/Data/
https://github.com/QTIM-Lab/qtim_ROP
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Fig. 6. Distribution plots of the concept measures area, and eccentricity for the zero and one MNIST digits. Concept measures of perimeter show a close distribution to the one for
area.

Fig. 7. t-SNE projection of the concept measures for eccentricity on zero and one inputs
from MNIST digits. Best seen in color.

Fig. 8. Pearsons’ correlation coefficient of the concept measures area, eccentricity and
perimeter and the network logits (𝑝-value < 0.0001). Best seen in color.

Table 1
𝑅2 and 𝐵𝑟 scores for the binary classification of handwritten zeros and ones.

Concept Area Eccentricity Perimeter

𝑅2 0.95 0.91 0.91
𝐵𝑟 −1.0 0.92 −0.92
TCAV 0 1.0 0

measures is shown in Fig. 8. The 𝑅2 are 0.86, 0.88, and 0.95 for
the RCVs of respectively eccentricity, perimeter and area. Relevance
scores are computed for the concept eccentricity on a test set of 30
samples. The B matrix is compared to the confusion matrix in Fig. 9. A
comparison with the TCAV baseline is in Fig. 10.

4.4. Experiments on medical data

We report the experiments on breast cancer histopathology and
ROP. This analysis presents additional experiments on: (1) applying
global pooling to 𝛷𝑙(𝐱); (2) evaluating the RCVs with 𝑅2

𝑎𝑑𝑗 , and (3)
using ridge regression. These experiments address the technical limi-
tations of the method in [15]. Moreover, they prove the applicability
of RCVs to multiple architectures, datasets and tasks.

Fig. 9. Confusion matrix and 𝐵 matrix comparison for the multiclass classification
of MNIST digits. In the 𝐵 matrix each cell is 𝐵𝑟𝑚𝑘 . The rows correspond to the 𝑚th
neuronal activation and the columns to input of class 𝑘. Best seen in color.

The accuracy of ResNet101 is close to the state-of-the-art of the chal-
lenge, at 92%. More details on the network training and performance
are described in [15]. Six concept measures, namely area, eccentricity,
Euler number, contrast, Angular Second Moment (ASM) and correlation,
are extracted from patches for which manual segmentations of the
nuclei are available (more details in [15]). The concepts are selected
in order to mirror aspects that are considered by the grading system
conventions for breast cancer. The first four rows in Table 2 show the
𝑅2 of the RCVs for the best performing concepts, namely area, contrast,
ASM and correlation. The concepts eccentricity and Euler are excluded
from the remaining analysis because they are not learned successfully in
the activation space, as shown in [15]. These concepts were, in fact, not
appropriate to the task. Our method, however, highlights non-robust
concepts by the evaluation of the RCVs. For instance, both eccentricity
and Euler had low 𝑅2 over multiple repetitions on validation data, with
broad confidence intervals. The comparison between 𝐵𝑟 scores and the
TCAV baseline is shown in Table 3.

For the ROP application, the input images of the network are
binary masks of the segmentation of the vessels in the retina, obtained
following the pipeline in [39]. Handcrafted visual features used in state-
of-the-art machine learning approaches for ROP classification [28] are
used as concepts. Six concept measures are selected from 143 hand-
crafted features of vessel curvature, tortuosity and dilation, namely
curvature mean (mnCURV), curvature median (mdCURV), avg point di-
ameter mean (mnAPD), avg segment diameter median (mnASD), cti mean
(mnCTI) and cti median (mdCTI) (more details in [16]). In our previous
work [16], we compute the 𝑅2 of the RCVs at different layers in the
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Fig. 10. TCAV baseline and 𝐵𝑟 scores for each class in MNIST digits (represented as numbers), giving an outlook of the influence of eccentricity on the CNN. Best seen in color.

Table 2
Impact of global pooling on the 𝑅2 of the RCVs for breast histopathology. The pooling
strategy is on the top left of each block. The labels in the other columns refer to the
CNN layers, as in the Keras implementation of ResNet50.

no pooling conv1 res2a res2b res2c res3a res4a res5a

Area 0.32 0.32 0.36 0.36 0.43 0.47 0.46
Contrast 0.37 0.36 0.37 0.34 0.37 0.45 0.43
ASM 0.28 0.29 0.31 0.26 0.38 0.44 0.50
Correlation 0.33 0.35 0.32 0.35 0.41 0.42 0.48

max pool conv1 res2a res2b res2c res3a res4a res5a

Area 0.34 0.00 0.10 0.06 0.46 0.60 0.60
Contrast 0.24 0.0 0.27 0.21 0.33 0.52 0.63
ASM 0.49 0.24 0.28 0.24 0.52 0.65 0.70
Correlation 0.43 0.19 0.53 0.54 0.58 0.65 0.64

avg pool conv1 res2a res2b res2c res3a res4a res5a

Area 0.0 0.0 0.15 0.24 0.03 0.32 0.52
Contrast 0.0 0.0 0.34 0.18 0.02 0.42 0.57
ASM 0.0 0.0 0.18 0.39 0.28 0.52 0.62
Correlation 0.0 0.0 0.35 0.34 0.18 0.54 0.62

Table 3
𝐵𝑟 and TCAV scores for breast histopathology.

Area Contrast ASM Correlation

TCAV 0.34 0.72 0.05 0.01
𝐵𝑟 0.10 0.27 −0.53 −1

network only with examples of one single class at a time. The results
for the classes plus and normal are provided in [16]. In this paper, we
combine the images of class normal and plus in a single set of examples
𝑋𝑐𝑜𝑛𝑐𝑒𝑝𝑡, from which we regress the concept measures. The class pre-plus
was excluded to keep the size of 𝑋𝑐𝑜𝑛𝑐𝑒𝑝𝑡 to a smaller size than the whole
training set 𝑋𝑡𝑎𝑠𝑘. The 𝑅2 is shown in Fig. 11 (on the left).

In the following, we report the experimental results obtained by
extending the original framework.

4.4.1. Global pooling of the features
We compare the results of the aggregation of the features at the

spatial level at different layers. For the histopathology application, the
results of the regression on the flattened feature vectors are shown
in the first four rows of Table 2 and compared to the results with
average-pooling and max-pooling (last eight rows).

For the ROP application, the results of max- and average-pooling
are compared to the results without pooling in Table 5 and Fig. 11.

4.4.2. Adjusted 𝑅2

The 𝑅2 is compared to 𝑅2
𝑎𝑑𝑗 , which penalizes unnecessary variables.

The latter shows how much variation is explained by more than one
independent variable in the regression model. Table 4 shows the 𝑅2

𝑎𝑑𝑗
of the RCVs computed on the pooled features of the first convolutional
layer (conv1) for the histopathology application (with 300 samples
and 64-dimensional data). For the other layers of the network, the
dimensionality of 𝛷𝑙(𝐱) is much larger than the number of samples used
to learn the RCV and it is not possible to consider 𝑅2

𝑎𝑑𝑗 a valid statistic.
Table 5 shows the values of 𝑅2

𝑎𝑑𝑗 of the RCVs for the ROP application.
Global pooling was applied to the convolutional filters (max-pooling is
shown in the top rows, average-pooling in the bottom rows).

Table 4
𝑅2 and 𝑅2

𝑎𝑑𝑗 for breast histopathology (conv1).

max pool Area Contrast ASM Correlation

𝑅2 0.34 0.24 0.49 0.43
𝑅2

𝑎𝑑𝑗 0.16 0.04 0.35 0.28

Table 5
Comparison of 𝑅2 and 𝑅𝑎𝑑𝑗2 for the ROP concepts in [16]. The pooling strategy is
on the top left of each block. The labels of the other columns refer to the layers of
Inception V1 [34].

max pool conv1 Mixed3b Mixed4b Mixed4c Mixed5c

mdCTI 𝑅2 0.59 0.66 0.64 0.63 0.67
mdCTI 𝑅2

𝑎𝑑𝑗 0.58 0.66 0.63 0.63 0.66
mnCTI𝑅2 0.49 0.56 0.50 0.47 0.56
mnCTI 𝑅2

𝑎𝑑𝑗 0.48 0.56 0.49 0.46 0.56
mdCURV𝑅2 0.65 0.72 0.69 0.67 0.71
mdCURV𝑅2

𝑎𝑑𝑗 0.64 0.72 0.69 0.67 0.71
mnCURV𝑅2 0.65 0.70 0.61 0.57 0.72
mnCURV𝑅2

𝑎𝑑𝑗 0.64 0.70 0.61 0.57 0.71
mnASD𝑅2 0.55 0.66 0.58 0.56 0.64
mnASD 𝑅2

𝑎𝑑𝑗 0.54 0.65 0.57 0.56 0.64
mdAPD𝑅2 0.69 0.76 0.69 0.66 0.76
mnASD 𝑅2

𝑎𝑑𝑗 0.68 0.76 0.69 0.65 0.76

avg pool conv1 Mixed3b Mixed4b Mixed4c Mixed5c

mdCTI 𝑅2 0.68 0.75 0.70 0.72 0.72
mdCTI 𝑅2

𝑎𝑑𝑗 0.67 0.75 0.71 0.70 0.69
mnCTI𝑅2 0.56 0.63 0.54 0.55 0.56
mnCTI𝑅2

𝑎𝑑𝑗 0.55 0.62 0.53 0.55 0.56
mdCURV 𝑅2 0.62 0.73 0.75 0.76 0.71
mdCURV 𝑅2

𝑎𝑑𝑗 0.61 0.73 0.75 0.76 0.71
mnCURV 𝑅2 0.65 0.74 0.68 0.69 0.71
mnCURV 𝑅2

𝑎𝑑𝑗 0.64 0.74 0.68 0.69 0.71
mdASD 𝑅2 0.69 0.74 0.67 0.67 0.64
mdASD 𝑅2

𝑎𝑑𝑗 0.68 0.73 0.67 0.67 0.64
mnAPD 𝑅2 0.72 0.80 0.76 0.77 0.76
mnAPD 𝑅2

𝑎𝑑𝑗 0.71 0.80 0.76 0.77 0.76

4.4.3. Regularized regression
We introduce the regularization of the L2 norm of the RCV by

using ridge regression. Tables 6 and 7 show the 𝑅2 of 𝐯𝑟𝑖𝑑𝑔𝑒𝐶 for the
histopathology and ROP applications. The regularization term 𝜆 is
tuned with grid-search over the range [0, 106], as shown in Fig. 12.

5. Discussion

The experiments show the versatility of concept attribution in han-
dling different tasks. The first experiment in Section 4.3 analyzes the
RCVs in a controlled setting, i.e. the binary classification of zero and
one handwritten digits. As expected, the RCVs for the complementary
pixel counts (when 𝑛𝑏𝑙𝑎𝑐𝑘 increases, 𝑛𝑤ℎ𝑖𝑡𝑒 decreases) are parallel with
opposite pointing directions, forming an angle of 174 degrees.

This result reflects the organization of eccentricity measures in Fig. 6,
which is also kept in the latent space as shown in Fig. 7. RCVs, however,
seem to more intuitively represent the direction of increase of the
concept measures than the direct visualization of the latents.
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Fig. 11. 𝑅2 of the RCVs for the regression of concepts of curvature (mdCURV and mnCURV), dilation (mdASD, mnAPD) and tortuosity (mdCTI and mnCTI) in ROP images of class
normal and plus. The lines for each clinical factor are specifically representing the mean (mn-) and median values (md-). Best seen in color.

Fig. 12. Impact of 𝜆 on the ridge regression with (on the left) and without (on the right) global average pooling for the ROP concepts as in [16]. The pooling operation reduces
the need for regularization and leads to higher values of 𝑅2. The lines represent respectively dilation (blue and orange lines) and tortuosity (green line). For clarity reasons, only
a subset of ROP concepts is shown, representing dilation (mnAPD and mdASD) and tortuosity (mnCTI) as in [16]. Best seen in color.

Table 6
Comparison of unregularized and ridge regression for mnAPD and mdASD on ROP. 𝜆
is set to 104 for unpooled features and to 1 for pooled features.

Mixed3b, mnAPD Unregularized L2

no pooling 0.54 0.63
avg pooling 0.73 0.81

Mixed3b, mdASD Unregularized L2

no pooling 0.56 0.59
avg pooling 0.65 0.75

Table 7
𝑅2 of ridge regression on histopathology application with global pooling (𝜆 = 102).
Each column refers to the layers of ResNet50.

res3a res4a res5a

ASM 0.64 0.66 0.71
Correlation 0.64 0.67 0.68

Fig. 10 compares 𝐵𝑟 and TCAV scores for the concept eccentricity
in the classification of the ten digit classes. This is an additional
contribution to [15], where only binary classification problems were
considered. The 𝐵𝑟 scores on the diagonal of the 𝐵 matrix in Fig. 9 show
the relevance of the concept eccentricity for the output node matching
the input class, while the off-diagonal values consider the nodes that
are different from the input class. These scores can help developers to
analyze the influence of a concept to misclassification errors.

The concept eccentricity, for example, influences the misclassifi-
cation of the inputs of class three. An image of an eccentric three,
i.e. stretched along the vertical axis, is more likely to be misclassified
by the model as a nine, a seven or a five. This insight can be used
to reduce the importance of eccentricity when classifying this digit,
for example by learning adversarial representations to the concept
eccentricity. Future applications in medical imaging could use this to
introduce concept-based adversarial learning to remove the influence
of the domain-shifts in medical imaging data.

Besides, the extensions to the work in [15,16] improve the quality
of the RCVs on both medical applications, as shown by Tables 2 and
5 and Fig. 11. The pooling operation leads to more robust RCVs for
all concepts, reducing also the need for regularization (see Table 6 and
Fig. 12). Ridge regression further improves the 𝑅2 in both applications.
The adjusted determination coefficients in (Table 4) shows that corre-
lated variables in the regression should be removed by an additional
dimensionality reduction, further motivating our pooling of the feature
maps. The large size of the ROP dataset, however, seems to lead to
smaller difference between the 𝑅2

𝑎𝑑𝑗 .
Concept attribution can give multiple benefits to automated deci-

sion support tools. Nor the model accuracy nor the AUC can explain
why the CNNs predicts certain region as cancerous and not another,
for example. Conceptual sensitivity scores can explain, without any
need of model retraining, why the CNN assigns an input image to a
certain class. Br scores, moreover, give a global picture of the influence
of clinically relevant factors on the model decisions. This can reduce
the black-box perception of CNN and promote their integration in
daily practice. The concept-based explanations of different CNNs could
be compared by their 𝐵𝑟 scores to see if diagnostic factors have the
same relevance in different architectures or parameter initializations.
Physicians could use concept-based explanations to verify whether the
correct prognostic factors are used for the decision and to inspect if
cause–effect links are maintained in the CNN. Finally, a list of clinical
concepts that the CNN should prioritize can be used in future work
to introduce concept learning as an extra-task. This could improve the
model performance and generalization on unseen data.

6. Conclusions

This paper presents an in-depth analysis of the interpretability
framework of concept attribution for deep learning, which is com-
plementary to the widely used heatmaps of salient pixels. Differently
from previous works [1,15,22], concept-based explanations are used
to quantify the contribution of features of interest to the network’s
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decision-making. Physicians can use this tool to compare their proce-
dures and guidelines to the network’s internal process and evaluate
whether factors that are generally relevant in their practice are also
used to influence the network decision. Explanations in terms of pre-
existing guidelines in the applicative field can help to reduce the gap
between the representation of the task in the deep network and in the
mind of domain experts. This method lays at the frontier of medical
sciences and computer scientists, aiming at bridging two different
worlds with the purpose of making the automated solutions of deep
learning more understandable and less intimidating for physicians. Our
framework can be plugged-in on top of an existent network to verify
that prior beliefs are mirrored by the network decisions. Undesired
behavior can be spotted and new hypotheses can be tested. For exam-
ple, this method could highlight if the presence of watermarks and text
annotations, often present in medical images, is affecting the network
decision and thus corrupting the learning process. This, among others,
could be an important check before deploying a CNN for daily practice.
Future developments can automatically extract concepts, following the
line of work of [40,41]. The optimization function, moreover, can be
further modified to amplify or reduce the attention given to particular
concepts.

Adversarial training can be used to discard information about un-
wanted concepts, for example. In addition, a user-evaluation analysis
can be performed to measure the impact of the generated explanations
in the clinical daily-routine.
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