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Abstract 

In this paper, a new theory is introduced called orbital systems theory to handle the uncertainty of the natural 

phenomena, the complicated real-world problems, and the human's decision-making process which naturally creates 

the inconstancy and uncertainty in each process it involves. The philosophy of the new theory is established based on 

this hypothesis that every component of the universe is a box that carries the information and each one is constructed 

by the particular information concepts that move along specific orbits. The orbital system is an integral part of the 

new theory. As a restricted numeric system, its core is the concept of reality. An orbital system is developed based on 

five numerical spectra surrounded by four parallel dimensions of reality and certain reality. With considering “time” 

as an element, each dimension adds entropy to the system, and increases/decreases the level of uncertainty.  
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1. Introduction 

As Richard Feynman once said: "When a scientist does not know the answer to a problem, he is ignorant. When he 

has a hunch as to what the result is, he is uncertain. And when he is pretty damn sure of what the result is going to be, 

he is still in some doubt. We have found it of paramount importance that in order to progress, we must recognize our 

ignorance and leave room for doubt. Scientific knowledge is a body of statements of varying degrees of certainty, 

some most unsure, some nearly sure, but none absolutely certain (Feynman & Leighton., 2001).” When people 

investigate systems, due to both the existence of internal and external disturbances and the limitation of our 

understanding, the available information tends to contain various sorts of uncertainty(Liu et al., 2012). In fact, 

uncertainty means that we cannot predict or foresee what will happen when acting or not acting (Aspers., 2018)1. 

Collan suggests another definition for the concept of uncertainty. In Accordance with the definition, uncertainty is 

something that is always present in future-oriented analysis2 (Collan et al., 2016).  

The definition of the uncertainty has been emerged in the various forms; however, a widely accepted taxonomy 

compartmentalizes uncertainty in the two terms of the quantitative and the qualitative. The scientific study of 

uncertainty probably started in 1654 by Pascal and Fermat with the development of probability theory (Masmoudi et 

al., 2016). Liu has indicated incompleteness and inadequacy in the information as two main characteristics of an 

unascertained system (Liu et al., 2012). Stated by Bradley and Drechsler, the concept of uncertainty is intersected as 

the qualitative uncertainty including three different types of ethical uncertainty, option and state-space uncertainty, 

and on the other hand the quantitative uncertainty which includes the state uncertainty and the empirical uncertainty 

(using probability theory and the mathematical statistics). Additionally, Bradley and Drechsler have proposed three 

dimensions to the uncertainty: its nature (the modal uncertainty, empirical uncertainty, and normative uncertainty), 

object (the factual uncertainty and the counterfactual uncertainty), and severity. Yet, there is another categorization 

for the uncertainty studied by (Li et al., 2012). On the word of their work, uncertainty is categorized into the Aleatory 

uncertainty3 and epistemic uncertainty4 origins from the nature and the physical world’s phenomena, and the human’s 

lack of knowledge of the physical world and lack of the ability of measuring and modeling the physical world 

respectively.  

The uncertainty analysis process consists of finding the set of equivalent model parameters that are those compatible 

with the prior information and predict the observed data within the same error bounds (Fernández-Muñiz et al., 2019). 

In order to handle the uncertainty, various theories and methodologies of unascertained systems developed such as 

information-Gap theory (Hipel & Ben-Haim., 1999) which provides a framework for making decisions under severe 

uncertainties that cannot be described by probability theory-based methods5  due to the lack of enough information 

(Zhao et al., 2019), and also it has been employed to assess the robustness of value at risk against Knightian 

uncertainties6 in estimating probability distribution function (Soltani et al., 2018; Ben-Haim., 2005); derived 

uncertainty theory (Liu; 20077, 20108); fuzzy mathematics (see Zimmermann. 2010); grey systems theory, and rough 

set theory (Pawlak. 1982). The probability theory-based methods (comprising Monte Carlo method9, Bayesian 

method10, and Dempster-Shafer evidence theory11) embrace Aleatory uncertainty; whilst, other aforementioned 

methods plus the probabilistic methods are used for dealing with the Epistemic uncertainty. 

                                                             
1 The author also suggests three forms for reducing the uncertainty including: 1. Decision; 2. Valuation; and 3. Contest.  
2 See (Maier et al, 2016). 
3 Also called as the natural variability, objective uncertainty, external uncertainty, random uncertainty, stochastic uncertainty, inherent uncertainty, 

irreducible uncertainty, fundamental uncertainty, real world uncertainty, or primary uncertainty (Li et al., 2012). 
4 Also referred as the knowledge uncertainty, subjective uncertainty, internal uncertainty, incompleteness, functional uncertainty, informative 

uncertainty, or secondary uncertainty (Li et al., 2012). 
5 Probabilistic methods 
6 The non-probabilistic uncertainties (Ben-Gad et al., 2019), introduced by Frank Knight, a distinction between measurable uncertainty, which is 

called “risk,” and “true uncertainty,” which cannot “by any method be reduced to an objective, quantitatively determined probability” (Frydman et 

al., 2019; Knight., 1921). 
7 Uncertainty theory: An Introduction to its Axiomatic Foundations 
8 Uncertainty theory: A Branch of Mathematics for Modeling Human Uncertainty 
9 See (Rey et al., 2019; Gray et al., 2019; Blondeel et al., 2019) 
10 See (Silani et al., 2019) 
11 See (Deng et al., 2019; Abellán et al., 2019) 



As a practical tool for the uncertain and hesitant situations (Mousavi et al., 2018), fuzzy set theory first developed by 

Zadeh in 1965. It is one of the most useful and important method for describing vagueness, imprecision, and 

uncertainty in data (Soleymani et al., 2016). In opposite of the crisp sets, .where an element belongs to only one set, 

in the fuzzy sets theory, the element belongs to a set to a degree (𝑘), where (0 ≤ 𝑘 ≤ 1). Assume (𝑋) is a random 

collection of objects, and (𝐴) is a fuzzy set12, then: 

𝐴 = {(𝑥. 𝜇(𝐴)(𝑥)) ∶ 𝑥 ∈ 𝑋.   𝜇(𝐴)(𝑥): 𝑋 → [0.1]}                     (1) 

Where 𝜇(𝐴)(𝑥) gives the grade of membership of the element to set as is the membership function of (𝐴). The defined 

operations on fuzzy sets are addressed in the following contents.  

𝐴′ = {(𝑥. 1 − 𝜇(𝐴)(𝑥)) : 𝑥 ∈ 𝑋}                                                  (2) 

𝜇(𝐴∪𝐵)𝑥 = 𝑚𝑎𝑥{𝜇(𝐴)𝑥. 𝜇(𝐵)𝑥}                                                       (3) 

Where (𝐴) and (𝐵) are the two fuzzy sets. 

𝜇(𝐴∩𝐵)𝑥 = 𝑚𝑖𝑛{𝜇(𝐴)𝑥. 𝜇(𝐵)𝑥}                                                        (4) 

With focusing on the incomplete information, and emphasizing on the investigation of such objects that process clear 

extension and unclear intension, grey systems theory first introduced by Deng in 1982. It typically demonstrates as a 

numeric interval with the two defined upper and lower bounds which is normally exposed as (⊗ 𝐺 = [𝐺.𝐺]) where 

(⊗ 𝐺) is a grey number, and (𝐺) and (𝐺) describe the lower and upper bound of a grey number respectively (Zakeri 

et al., 2019; Lin et al, 2004).  Due to the low requirement on the amount of data, the grey system theory has been 

widely adopted to estimate the behavior of unknown systems (Wang et al., 2019; Ma et al., 2019). Having said that, 

Sun declared two disadvantages for the grey-based decision models: 1.In grey decision model, it is assumed that all 

the attributes are mutually independent. However, in real decision problems, the interaction often exists among 

attributes which leads to the failure of decision model; 2.The possibility degree equation is unreasonable, and the 

possibility degree matrix is too absolute to meet the reality (Sun et al., 2017). 
By replacing a vogue concept with the two precise concepts named as the lower approximation and upper 

approximation, to deal with the rough concepts and rough non-overlapping class and rough concepts, rough sets theory 

introduced by Zdzislaw Pawlak in 198213. It is employed for quantitatively analysis of the imprecise, inconsistent,  

incomplete information and knowledge which has been actively employed in intelligent information processing fields 

such as pattern recognition, knowledge discovery, uncertainty analysis, and so on (Guo et al., 2019). Drawing 

experience from Pawlak’s work, Zhai first proposed rough numbers (Zhai et al., 2008). In general, a rough number 

consists of the lower limit, upper limit and rough boundary interval and it only depends on the original data (Zhu et 

al., 2015). The basic idea of the rough set theory can be alienated into two segments: the first segment is to form 

concepts and rules through the classification of objects, and the latter is to discovery knowledge through the 

classification of the equivalence relation and classification for the approximation of the target (Loia & Orciuoli; 2019). 

According to the Zhai’s work, the definition of the interval rough number can be found at (Zhu et al., 2015; Zheng et 

al., 2019). A comparison of fuzzy set theory and rough set theory based methods is provided in the following table 
(Zheng et al., 2019): 

Table 1 

Comparison of fuzzy set theory and rough set theory 

Main issues Fuzzy set theory Rough set theory 

Original data 
Linguistic item accordingly with certain 

rating scale 

Linguistic item accordingly with certain 

rating scale 

Importance rating method Fuzzy numbers Rough number and rough boundary interval 

Expression of imprecision Membership function Approximation 

Determination of final importance ratings Fuzzy arithmetic and defuzzification Rough arithmetic 

Determination of imprecision 
Most subjectively by designers based on 

experience 
Objectively computed by inherent data 

                                                             
12 See (Nasseri et al., 2016), Page 263-265. 
13 Also see (Pawlak., 1998) 



Application scope Not suitable for small amount of data Suitable for all size of data 

 

In accordance with Liu’s study, the comparison between three given theories is demonstrated in the (Table 2). 

Table 2 

Comparison of the fuzzy math, grey systems, and the rough sets (Liu et al., 2012) 

Object Fuzzy math Grey systems Rough sets 

Research objects 
Cognitive 

uncertainty 

Poor 

information 
Indiscernibility 

Basic sets Fuzzy sets Grey sets Approximation sets 

Methods mapping Information coverage Approximation sets 

Procedures Cut sets 
Sequence 

operator 

Lower and upper 

approximation 

Data requirements 
Known 

membership 
Any distribution Equivalent relations 

Emphasis Extension Intension Intention 

objects 
Cognitive 

expression 
Laws of reality Concept approximation 

Characteristics Experience Small sample 
Information systems 

(tables) 

 

The abovementioned theories offer a numeric interval with a set of a few numbers which probably are the neighbors 

in the numeric vector, while we believe every "number" (the crisp number) is affected by every possible number given 

in a problem. Moreover, the linguistic variables which are mostly using for the problems that human decision-making 

involved completely affected by the whole offered scales. For instance, for making a choice/decision, when a decision 

maker faces with a linguistic variables scale such as very low (abbreviated to VL), low (l), medium low (ML), medium 

(M), medium high (MH), high (H), and very high (VH), or as another regular scale: very poor (VP), poor (P), medium 

poor (MP), fair (F), medium good (MG), good (G), and very good (VG) to evaluate a specific case,  if s/he decides to 

select "ML", s/he operated not only a process to analyze the case and decided the appropriate scale, but simultaneously, 

s/he evaluated all scales  and selected ML against all other offered/possible options whilst each option made a different 

impact on her/his decision during the decision-making process indeed; in the other words, as a rule of thumb, when a 

decision-maker decides to label a case as "VP", s/he unconsciously imagine the case in the "VG" position and other 

positions unremittingly and compares them immediately. As discussed previously, the above-said methods do not 

predict any solution to handle the uncertainty made by the other numbers of such problems. They only recommend a 

tiny interval of the numbers to analyze the uncertainty, or to cover the hesitancy and inconsistency that occurred in 

the decision-making process; while, as mentioned heretofore, the very complicated and noisy real-world injects 

different sort of complexity and uncertainty to the problems. 

Besides, in both macro and micro scales, every concept which deals with the uncertainty scrimmages with the "time", 

i.e., time changes the level of uncertainty constantly, and passing of time creates inconstancy. What is the three 

methods' answer to the matter of time? The answer goes to the “nothing”. Same as the previous problem, their 

philosophies and math-based algorithms are not capable to offer any solution for the problem of time.   

Considering the fact that human's decision-making naturally causes uncertainty, another problem emerges when a 

process involves with it. Characteristically, decision-making problems entail a number of alternatives analyzed 

through a number of criteria. In the decision-making process, unconsciously, decision maker compares alternatives 

with a set of abstract alternatives (Zakeri. 2018). It means that there are abstract alternatives which impact the final 

decision's results and create the uncertainty while they are not reflected in any of the aforementioned theory. 

Individually, each aforementioned methods recommends their own solution for the human's decision-making process 

as the unique numerical linguistic variables; however, the question is that “Do they consider the abstract parallel 

concepts?” And once again, the answer is “no”. Well, do the parallel concepts need to be considered? Yes, desperately. 

They already affect the principle of the universe. 

In addition to introducing the orbital systems theory, this paper proposes an integrated system for answering all the 

above-mentioned questions simultaneously. The core of the new theory is fabricated around the various dimensions 

of reality. This paper is composed as follows: orbital systems theory has been introduced in the second section, and 

the third section is devoted to the orbital numbers; the fourth section is named as the Life, death, resurrection; the 



prediction of the new theory has been discussed in the fifth section; the sixth section is dedicated to the orbital theory's 

principles, and as the last section, conclusion is exposed in the seventh section of the paper. 

2. Orbital systems theory  
Orbital systems theory has been developed respecting to the Pliny the Elder quote:” The only certainty is that nothing 

is certain”. Based on the new theory’s philosophy, all objects, elements, and concepts of the universe are information14; 

they are connected and have interactions. Indeed, all information is the orbitals made by the mentioned interactions. 

These interactions make entropy, and also make uncertainty subsequently (see Robinson. 2008).The new theory 

embraces two uncertainty categories of Aleatory uncertainty and Epistemic uncertainty. In fact, it tries to explain the 

uncertainty produced by the cause and effect relationship. 

Grey systems theory categorizes information into three grades (Liu and Lin, 2010) including: 1. White (which shows 

the complete information); 2. Grey (which indicates the partially known and partially unknown information); and 3. 

Black (which stands for the unknown information). However, orbital systems theory defines information in a 

framework of reality which is made by a set of the known and unknown information. The philosophy of this 

segmentation is based on the fact that there is no available complete package of information for real-world’s 

phenomena. Whilst, what makes reality as an existing abstract picture is a package of the absolute reality, distorted 

reality, manipulated reality, rehabilitated reality, imported reality, and defunct reality (Fig 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.1. The picture of the reality concept and its composed elements 

The four different types of realities are as the following list. 

1. The absolute reality: This is the accessible complete information of a phenomena. As a part of the whole picture, 

the absolute reality portraits only part of reality which does not represent the whole picture. If an independent existence 

considers for the absolute (pure) reality, its schematic portrait can be found in the following figure: 

 

 

 

 

 

 

 

                                                             
14 Reading the holographic principle is strongly recommended (Beckstein., 2005; Susskind., 1995). 

Absolute Reality 

Rehabilitated 

Reality 

Distorted 

Reality 
Manipulated Reality 

Imported 

Reality 

Defunct 

Reality 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. An abstract image of the absolute (pure) reality 

 

2. The distorted reality: With an intrinsic origin from the system, this is the product of the process of existing concepts 

distortion into the “new concepts” that do not exist externally indeed. Yet, the new concepts are built based on the 

absolute reality’s information (Fig 3). 
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Fig.3. The distorted reality in comparison with the reality 

 

3. The manipulated reality: Using the absolute reality’s elements, it is product of the process of changing existing 

concepts to the new concepts by an external origin. Architecturally, this type still conserves the absolute reality’s 

information. An abstract image of the manipulated reality has been displayed in (Fig 4). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4. An abstract image of manipulated reality vs the reality   

 

4. The defunct reality: This is the part of a system that its information has been transferred to another system, and the 

observer does not have access to it. The following figure shows the defunct reality compared with a "real image". 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5. The comparison between the reality and the defunct reality 
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5. The rehabilitated reality: This is a concept built by the external system(s)’ information. As a portion of the 

manipulated reality, the differentiation between them is their composed information. Compared with the reality, the 

rehabilitated reality has been portrait in (Fig 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.6. An abstract image of the rehabilitated reality 

 

6. The imported reality: This type of reality is erected on the information that does not belong to the system. The 

imported reality enters the system to cover the defunct reality. Over time, the imported reality changes to "the 

rehabilitated reality". The comparison of the imported reality’s data structure and the reality has been pictured in (Fig 

7). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.7. The imported reality’s data structure comparing with the reality 

 

In the orbital systems theory, all systems (numeric systems, natural and human-made systems) is bounded between 

two absolute unattainable concepts, called as “the Singularity” which stands for "0" as the singularity’s value which 

does not denote “nothing” or “empty” concepts while is surrounded by uncertainty and entropy created by other 

systems’ orbitals interactions; “the Crunchity” which stands for "1" in the theory's numeric system, and also two frozen 
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Reality 

Imported Reality 

 



zones called “the Frozones”, which stand for "0.5" in the system. Another concept in the orbital system is "the event 

horizon”. It is a region located on the closest distance to the Crunchity. In an orbital system, information never reaches 

the Crunchity but is transfers from a system to another system through the event horizon as a route. The information 

arrives in the new system through the new system's Singularity and restored in it. The new system is formed by 

different versions of the realities. 

In the new theory, when two orbital systems merge, possibly the Singularity of a system can be the Crunchity of 

another involved system simultaneously, and vice versa. Two orbital systems collision follows the same order either. 

The terms of “singularity” and “Crunchity” are adopted from the big bang and the big crunch theory, and “the Frozone” 

demonstrates the zone where entropy is in minimum mode, while uncertainty is in the maximum level. The fluctuation 

of entropy’s level in an orbital system is displayed in (Fig 8). 

 

 

 

 

 

 

 

 

 
 

 

Fig 8. The entropy of an orbital system 

As illustrated in (Fig 8), discretely, each orbital system consists of five dimensions: a dimension of the certain reality 

which merely comprises the crisp numbers, and on the other hand, the other four dimensions which are parallel realities 

that add uncertainty and entropy to the certain reality. Two parallel dimensions of the reality are related to the 

information, and the other two have the independent existence than the information. There are three possibilities 

related to the parallel realities' existence:  

1. They have the independent existence as the free reality dimensions, which are not bounded by the external system's 

reality, or equivalently they are not in a zone where their potential entropy and uncertainty varies.  

2. They originate from unknown parallel orbital systems (in an ordered integrated system of the orbital systems, the 

existence of empty systems is expected). They make interactions with the next orbital systems and make the impact 

consequently while no numeric system belongs to them. With different contextures, these orbital systems are called 

the “dark systems”. The dark systems may be the manipulated realities, the realities from the past, or the realities of 

the future. 

3. As the third possibility, they are the certain realities of the other orbital systems. It incidents when the collision of 

two orbital systems causes the merge.  

As discussed earlier, with the five dimensions of reality, an independent orbital system is bounded between two zones 

of the Singularity and the Crunchity where three dimensions of the realities separately merge at each of them. The 

orbital system constantly divides itself into the infinite smaller structures. The newborn structures not only construct 

other orbital systems, but also create other new levels of reality. The first layer of sub-orbital systems (the twenty-five 

sub-orbital systems) have been portrayed in (Fig 8, 9). Moreover, each orbital system repeatedly connects to other 

orbital systems of the universe in various levels of interactions. The mentioned engagement adds more uncertainty 

and entropy to the system. The uncertainties of an orbital system are exposed in (Fig 9), wherein in line with the 

entropy levels, the uncertainty of the system is highest in the Frozones, and the system faces with the lowest 

uncertainty in the Singularity and Crunchity zones. 
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Fig 7. The distribution of uncertainty in an orbital system 

Every dimension of the reality changes the entropy level of the system; hereby, they decrease/increase the uncertainty 

of the system. Specifically, two dimensions add/increase entropy whereas the other two reduce it (see Fig 10 where 

(−) and (+) show the incremental and decrescent forces respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig 10. The four dimensions' impact on the entropy of an orbital system  

3. Orbital numbers 
The "orbital number" of an orbital system is a fundamental part of the orbital systems theory and its numeric system.  
As mentioned heretofore, the numeric system of an independent orbital system is restricted between "0" and "1" where 

0 refers to the Singularity zone, and 1 signifies the Crunchity zone. An orbital number is structured on the platform of 

the five dimensions of the reality which is demonstrated as (Z.H.R.A), and one certain reality named as (L). Each 

dimension of the reality is divided into nine parts. The orbital numeric system is illustrated in (Fig 11).  
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Fig 11. A graphical portrait of a numeric orbital system 

Each orbital system comprises five spectrums of numbers where the information is oscillating. In an individual orbital 

system, the information is located in the certain reality dimension and surrounded by the four reality dimensions. The 

first spectrum includes (0, 0.1) as the certain reality, and (0.1, 0.9) as the parallel realities which have the direct impact 

on the entropy and uncertainty of the spectrum. The function of the first spectrum is as (Eq.5): 

𝑓(𝜃) = {(0.0.1]|(0.1.0.9):−(0.1.0.2.0.3.0.4.0.5).+(0.9.0.8.0.7.0.6.0.5):+(0.5.0.6.0.7.0.8.0.9).−(0.1.0.2.0.3.0.4.0.5):0.1}  (5) 

The first spectrum is shown in (Fig 12): 
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Fig 12. The first spectrum of an individual orbital system 

The second spectrum includes (0.1, 0.3) of the certain reality, (0, 0.3) and (0, 0.7) of the parallel realities. Following 

equation shows the function of the second spectrum: 

𝑓(𝜂) = {[0.1.0.3]|(0.3.0.7):−(0.3.0.4.0.5).+(0.7.0.6.0.5):−(0.5.0.6.0.7.0.8.0.9}.+(0.5.0.4.0.3.0.2.0.1):0.1}                   (6) 

The second spectrum of the orbital system is exposed in (Fig 13). The third, fourth, fifth, sixth and seventh functions 

are represented in (Eq.7-11) respectively: 

𝑓(𝜇) = {[0.2.0.5]|(0.2.0.8).(0.5.0.5):−(0.1.0.2).+(1.0.9.0.8):−(0.5.0.6.0.7.0.8.0.9).+(0.5.0.4.0.3.0.2.0.1):0.1}            (7)  

𝑓(𝜋) = {[0.3.0.7]|(0.3.0.7).(0.7.0.3): 0.1}                                                                                                                                                   (8) 

𝑓(𝜈) = {[0.5.0.8]|(0.5.0.5).(0.8.0.2):−(0.5.0.6.0.7.0.8.0.9).+(0.5.0.4.0.3.0.2.0.1):−(0.8.0.9).+(0.3.0.2):0.1}                (9)  

𝑓(𝛾) = {[0.7. 1)|(0.7. 0.3). (1.0):+(0.1.0.2.0.3.0.4.0.5).−(0.5.0.6.0.7.0.8.0.9):−(0.5.0.6).+(0.5.0.4):0.1}                            (10)  

𝑓(𝛲) = {[0.9. 1)|(0.9.1):−(0.8.0.7.0.6.0.5).+(0.2.0.3.0.4.05):+(0.5.0.6.0.7.0.8.0.9).−(0.1.0.2.0.3.0.4.0.5):0.1}                 (11) 
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The portrait of the second, third, fourth, fifth, sixth and seventh spectrums are shown in (Fig 13-18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 13. The second spectrum of an orbital system 
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Fig 14. The third spectrum of an orbital system 
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Fig 15. The fourth spectrum of an orbital system 
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Fig 16. The fifth spectrum of an orbital system 
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Fig 17. The sixth spectrum of an orbital system 
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Fig 18. The seventh spectrum of an orbital system 

As the integral part of the orbital systems, the math operations of the two orbital systems are based on the orbital 

numbers. Each orbital number is located on each aforementioned spectrums in (𝑡0) where (𝑡) stands for the time and 

(𝑡0) expresses the first relative time of an orbital number (S𝕊̃) that it located in the relative 𝕊𝑡ℎ spectrum where 𝕊 =

{𝜃. 𝜂. 𝜇. 𝜋. 𝜈. 𝛾. 𝛲}. By the impact of the (+ −⁄ ) added-entropy made by the realities dimensions, with the changes of 

(𝑡), the location of (S𝕊̃) changes as well. The changes of location forces the information to leave a system, and arrives 

in the other system called "the mirror system". The mirror system plays as the role of parallel system which is 

established with a different structure, and different forces than a regular orbital system. After arriving at the mirror 

system, information moves two times throughout the mirror system, then comes back to an orbital system (which is 

not the initial system but behaves as the rehabilitated orbital system15) with a different contexture (see fourth section 

of the paper). This process is called "metamorphosis". The prediction of a mirror system structure has been portrayed 

in (Fig 19).Two systems collide in the (𝔻) point which is the "constancy value" of the collision.   

                                                             
15 See rehabilitated reality 
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Fig 19. The mirror systems 

As revealed in (Fig 19), in different contexture, two dimensions of the reality (in this case, A and H) duplicate 

themselves to assemble the new parallel system which is called the mirror system. In other words, ceaselessly, each 

mirror system keeps the similarity of an orbital number with the "new orbital number" (with the different contexture 

of information). Thus, the new orbital number and its origin are not absolutely different (they are relatively different). 

As exposed in (Fig 19), equal to the numbers of orbital systems, there are different types of certain realities. 

Furthermore, each orbital system does not have an independent existence, and it is a mirror system of another orbital 

system. Except for the certain reality, weaved in the different versions of "time", each dimension of the reality 

duplicates itself; thus, it remains constant, and its existence conserved throughout the system over time. Hence, the 

new series of information carries the common characteristics and elements, and also their concepts will not be 

completely transformed. Indeed, reminiscent of the reality dimensions, information will not be destroyed.  

The basic operations of the orbital systems perform in (𝑡0). As mentioned in advance, the orbital system is bounded 

between 0 and 1; consequently, all numbers are valued between 0 and 1. In an orbital system, the value of “0” and “1” 

belong to the former and later system. Due to this reason, an orbital number never reaches the “Singularity” and 

“Crunchity” zone, but it crosses through the event horizon and arrives at the mirror system. To transfer a certain (crisp) 

random number to the orbital system, the following equation is employed, where (𝑁𝐷) demonstrates the number of 

digit of each random number, (ℵ) is a random number, and (S̃𝕊̃) stands for a raw orbital number.  

𝑆̃𝕊̃ = ℵ
10𝑁𝐷⁄      𝑆̃𝕊̃ ≠ 0.1;                     (12)   

For instance, with respect to (Eq.12), the corresponding raw orbital number for a random number of “834.5716” is 

“0.8345716”. Therefore, it is located at the spectrum of (𝛾). As conversed beforehand, despite the fact that information 

moves throughout the system for reaching the mirror system, the basic operations perform in (𝑡0) where the 

information fluctuates in a region surrounded by a specific spectrum. This indeed conducts the information to move 

to the other spectrum until entering another system. Hence, the output of (Eq.12) is only the raw material for the 

system’s operations and (𝑡0) is the relative value for the time that various numerical values of the same object belong 

to it. Embedded in the concepts of realities, there are four fundamental forces which make interactions containing:  

1. The positive far force as (Θ+).  

2. The negative far force as (Θ−);  

3. The near positive force as (Φ+). 

4. The near negative force as (Φ−).  
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Fig 20. The abstract image of an orbital system and the four fundamental forces located on the orbitals around the core of information (the orbital number) in 𝑡0 

The positive forces increase the entropy, while the negative forces decrease it. The positive and negative forces stem 

from the parallel realities. These realties and the forces are shown in (Fig 20) where the red lines are the certain reality.  

As argued heretofore, these interactions change the level of uncertainty and entropy of an orbital system. The proposed 

following matrix shows the new possible spectrum (orbital value of “S𝕊̃”) where an orbital number (S𝕊̃) oscillates there 

in (𝑡0). The fundamental orbital matrix-based operations are in accordance with the following hypothesizes.  
{Θ+} ∪ {Φ+} = (𝑎+. 𝑏+. 𝑐+. 𝑑+. 𝑒+. 𝑓+. 𝑔+. ℎ+. 𝑙+. 𝑞+).     {Θ+} ∩ {Φ+} =⊘++                          (13) 

{Θ−} ∪ {Φ−} = (𝑎−. 𝑏−. 𝑐−. 𝑑−. 𝑒−. 𝑓−. 𝑔−. ℎ−. 𝑙−. 𝑞−).     {Θ−} ∩ {Φ−} =⊘−−                          (14) 

where 

⊘++≠⊘−−≠ 0       .            0 <  ⊘++.⊘−− < 0.1                                                                                  (15) 

and 

(𝑎+. 𝑏+. … . 𝑞+). (𝑎−. 𝑏−. … . 𝑞−)  ∈ {0.1.0.2.0.3.… .1}                                                                       (16) 

𝕊̃ ∈ {𝜃. 𝜂. 𝜇. 𝜋. 𝜈. 𝛾. 𝛲}                                                                                                                                (17) 

The aforesaid equation is based on the entropy injected by the (𝑍. 𝐻. 𝑅. 𝐴) dimensions of the reality. Procedure of the 

proposed equation for (S̃𝛾̃ = 0.8345716) has been exposed in (Eq.18-37), where the relative location of the (S̃𝛾̃) 

before the (𝑡0) is displayed in (Fig 21). The term of " before the (𝑡0)" describes a situation that the element of time 

does not affect the system.  

 

 

 

 

 

 

 
Fig 21. the relative location of (S̃𝕊̃ = 0.8345716) in an orbital system  

0.5 

0.5 

Φ− 

Φ+ Φ− 

Φ+ 

Θ+
 

Θ+
 

Θ−
 

Θ−
 

0 

0 1 

1 

0.5 0.5 

0.5 0.5 



As displayed in (Fig 21), (S̃𝕊̃ ∈ 𝛾), then following equations demonstrates the process of finding location of (S𝛾̃) as 

the corresponding orbital number of (S̃𝛾), where: 

 𝕊 ∈  {Θ+ . Φ+}^(Θ+ > Θ−)⋁(Φ+ > Φ−) ∴ 𝑑𝑖𝑗
𝕊 ∈ {

Θ−

Θ+ .
Φ−

Φ+
} 

 

 

𝑋𝑖𝑗 =            

[
 
 
 
 
 
 
 
 
 
 

𝑑11 𝑑12

𝑑21 𝑑22

𝑑31 𝑑32

𝑑41 𝑑42

𝑑51 𝑑52

𝑑61 𝑑62]
 
 
 
 
 
 
 
 
 
 

 .    𝑖 = 1.… .𝑚       𝑗 = 1. … . 𝑛;               (18) 

 

 

𝑑11 = √(𝜃 − 𝛾)22
             𝜃 = {⊕ 1.⊝ 0};                                          (19) 

𝑑21 = √(𝜂 − 𝛾)22
             𝜂 = {0.0.1.0.2.0.3};                                   (20) 

𝑑31 = √(𝜇 − 𝛾)22
             𝜇 = {0.2.0.3.0.4.0.5};                                (21) 

𝑑41 = √(𝜋 − 𝛾)22
             𝜋 = {0.3.0.4.0.5.0.6.0.7};                         (22) 

𝑑61 = √(𝜈 − 𝛾)22
             𝜈 = {0.5.0.6.0.7.0.8};                                (23) 

𝑑71 = √(𝛲 − 𝛾)22
            𝛲 = {⊕ 0.⊖ 1};                                         (24) 

𝑑11 = √(𝜃 − S̃𝛾)
22

             𝜃 = {⊕ 1.⊝ 0};                                        (25) 

𝑑21 = √(𝜂 − S̃𝛾)
22

             𝜂 = {0.0.1.0.2.0.3};                                 (26) 

𝑑31 = √(𝜇 − S̃𝛾)
22

             𝜇 = {0.2.0.3.0.4.0.5};                             (27) 

𝑑41 = √(𝜋 − S̃𝛾)
22

             𝜋 = {0.3.0.4.0.5.0.6.0.7};                      (28) 

𝑑61 = √(𝜈 − S̃𝛾)
22

             𝜈 = {0.5.0.6.0.7.0.8};                               (29) 

𝑑71 = √(𝛲 − S̃𝛾)
22

             𝛲 = {⊕ 0.⊖ 1};                                      (30) 

𝐸𝛾 = −
1

log𝑚
∑ 𝑑𝑖𝑗 log 𝑑𝑖𝑗

𝑚

𝑖=1

   ;     ∀𝑗                                                     (31) 

𝐷𝐷𝑗
𝛾

= 1 − 𝐸𝛾     ;     ∀𝑗                                                                             (32) 

𝐸S̃𝛾̃
= −

1

log𝑚
∑ 𝑑𝑖𝑗

′ log 𝑑𝑖𝑗
′

𝑚

𝑖=1

   ;     ∀𝑗                                                   (33) 

𝐷𝐷
𝑗

S̃𝛾̃
= 1 − 𝐸S̃𝛾̃

    ;     ∀𝑗                                                                          (34) 

𝑈𝑉𝛾 =
𝐷𝐷𝑗

𝛾

(10 ×
𝑚
𝑁𝛾

) (𝐷𝐷𝑗
𝛾
+ 𝐷𝐷

𝑗

S̃𝛾̃)
  ;                                                    (35)  

𝜃 
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𝜋 

𝜈 

𝛲 

𝛾 S̃𝛾 

𝒅𝒊𝒋 𝒅𝒊𝒋
′  



𝑈𝑉S̃𝛾̃
=

𝐷𝐷
𝑗

S̃𝛾̃

(10 ×
𝑚
𝑁𝛾

) (𝐷𝐷𝑗
𝛾
+ 𝐷𝐷

𝑗

S̃𝛾̃)
  ;                                                  (36)  

S𝛾 ∈ {(𝛾 + 𝑈𝑉𝛾). (S̃𝛾 + 𝑈𝑉S̃𝛾̃
)}  ;                                                        (37) 

where 

𝑚 = ∑ 𝑁𝕊  .      𝕊 = {𝜃. 𝜂. 𝜇. 𝜋. 𝜇. 𝜈. 𝛾. Ρ};                                         (38) 

and 

S𝛾 = 𝑓S̃𝛾̃
                                                                                                     (39) 

In the above equations, correspondingly, (𝐷𝐷), (𝑈𝑉), and ( 𝑁𝕊) stand for the "degree of diversification", "uncertainty' 

value", and "𝕊th spectrum's elements (members) numbers". The entropy formula is adapted from Shannon's entropy 

(Shannon; 2001). Over time, information moves from the relative location (the location where is the output of Eq.18-

38) in (𝑡0) till leaves the system, and arrive in the mirror system. The timeline of the information movement from (𝑡0) 

to ( lim
𝒳→∞

𝑡𝒳) is portrayed in (Fig 22), where the coordinate gird does not indicate that information' movement is linear 

and the straight line. 

 

 
 

 

 

 

 

 
 

 

 

Fig 22. The coordinate gird of information' movement in an orbital system 

In addition, the proposed orbital linguistic variables are based on the seven spectrums of the orbital system. The orbital 

linguistic variables are demonstrated in (Table 3). 

Table 3 

The orbital linguistic variable 

Linguistic 

variable 
VP P MP F MH H VH 

𝕊 𝜃 𝜂 𝜇 𝜋 𝜈 𝛾 𝛲 

Orbital number {0} {0.0.1.0.2.0.3} {0.2.0.3.0.4.0.5} {0.3.0.4.0.5.0.6.0.7} {0.5.0.6.0.7.0.8} {0.7.0.8.0.9.1} {1} 

Orbital function 𝑓(𝜃) 𝑓(𝜂) 𝑓(𝜇) 𝑓(𝜋) 𝑓(𝜈) 𝑓(𝛾) 𝑓(𝛲) 

 

By executing orbital functions, the orbital linguistic variables and the orbital scales consider impact of all possible 

number of the system on the decision maker's decision, and also covers the impact of parallel element and alternatives 

on the decision making process via four parallel dimensions of reality.  

4. Life, Death, and Resurrection 

Except for four parallel dimensions of reality, each orbital system comprises a certain reality that is demonstrated with 

the (𝐿) sign where stands for the concept of "Life". As a certain reality, each information enters into the system from 

an external system and begins its life in an orbital system. In addition to the concept of life, (𝐿) characterizes the 

timeline of an information until the moment that leaves the system and enters the mirror system. This process is called 

metamorphosis (see Fig 23), where (𝑑) expresses the distance, and (𝑑 = 0) describes that information moves 

tangentially through the certain reality with touching "∞" number of points on the certain reality. In fact, the certain 

reality is not a continuous line; whereas, as a discrete line, it is built on the (∞) number of points. As another fact that 

is revealed in (Fig 23), once the information arrives at the mirror system, it moves via another version of the certain 

reality which is along the initial certain reality. The new version of the certain reality is shown as (𝐿′) in the following 

figure. 

𝑡 

𝐿 𝑡0 

S𝕊̃ 

𝑡1 

𝐿1 

lim
𝐿→∞

𝑡𝐿 

lim
𝐿→1

𝐿  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 22. The metamorphosis 

For arrival in a mirror system, information needs to pass through (𝔻) region (not a point), which stands for the concept 

of "Death". Due to the different forces of the mirror system and also the different entropies, the contexture of 

information will be changed while still keeps the core elements (metamorphosis), then comes back to the system 
(which is not the initial system) as the resurrection process. 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig 24. The graphical demonstration of (𝔻) region  

As exhibited in (Fig 24), the distance between two event horizons are (𝑑 = 0), i.e., the two event horizon are located on 

a one-dimensional space. To have a better understanding of the (𝔻) region, the two event horizons, and the trajectory 

of information from a system to another system, see (Fig 25), which is supplementary for (Fig 24). 
 

 

 

 

 

 

 

 

 
 

 

 

 

Fig 25. The one-dimensional event horizon plate 

in spite that information enters from another system16, and on the other hand, two dimensions of reality have the 

independent existence17, an orbital system, and its elements and dimensions do not have an independent existence18; 

while, it will be created with the information creation simultaneously; therefore, the birth of a system initiates with 

the beginning of the information's journey through the certain reality, while the aforementioned "dimension of certain 

reality" is descended into the system with the start of the information journey (see Fig 24), then the dimensions mold 
themselves around the information to put information in a relative spectrum of the system.  

 

 

                                                             
16 An external orbital system 
17 Independent from the orbital system existence 
18 They are duplicated dimensions 
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Fig 26. The creation of an orbital number before (𝑡0) 

As exposed in (Fig 26), the creation of an orbital number before (𝑡0) includes four distinct steps. The term of "day" 

refers to the world creation story in the Book of Genesis19. As mentioned, the four steps are before the time arrivals 

to the system. Thus, the order of the steps does not embrace the time.   
As discussed in advance, after arriving in a mirror system, with a different contexture, information comes back for 

leaving the mirror system through the (𝔻) region for arriving in another system which is constructed on the different 

contextures than the first two systems. Perpetually, the cycle continues and information moves in a system then leaves 

it in order to arrive in another system (see Fig 27).  

 

 

 

 

 
 

 

 

Fig 27. The information transaction between orbital systems 

5. Predictions 

As mentioned before, there are three possibilities related to the existence of the two independent dimensions of reality: 

1.They have the independent existence as the free reality dimensions. 

2. They are from unknown parallel orbital systems (dark systems).  

3. They are the certain realities of the other orbital systems.  

As discussed earlier, the "dark systems" have been predicted in an integrated system of orbital systems (Fig 28). With 

different contextures, the darks systems are referred to "the empty systems" that have no numeric systems while they 

make interaction with the next orbital systems and inject entropy and uncertainty to the systems. The term of "empty" 

refers to the unknown contexture of these systems while they are apparently the empty parallel systems where 

information arrived in and left there (see Fig 27). Other possibilities are:  
1. They are the manipulated realities. 

2. They are the realities of the past or the realities of the future.  

 

 

 

 

 

 

 
 

 

                                                             
19 "Pre-creation: Genesis 1:1–2, and six days of Creation: Genesis 1:3–2:3" 
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Fig 28. The abstract prediction of an integrated system of orbital systems  

Each presented color in (Fig 28) demonstrates a distinctive operation which is an element of the integrated system. 

The black-colored systems exhibit the dark systems which affect each operation in the non-black systems and 

create/add entropy and uncertainty.   

6. Principles  

The five laws of orbital systems theory are as follows: 

1. All concepts, phenomena, and objects of the universe have been made by the information (they are the box which 

carries the specific information).  

2. All concepts, phenomena, and objects are connected and have interactions regardless of the time and distance.  

3. Information tends to leave the system to enter the mirror system. 

4. Information has been not created and will not be destroyed but it arrives and leaves the systems. 

5. Each information conserves the core elements; however, through leaving and arriving in the systems, its 

contexture changes. 

6. Once information arrives in a system, time creates consequently. 

7. Like information, the time has a contexture and its contexture changes in every system. 

7. Conclusion 

The orbital systems theory has been introduced to deal with the uncertainty of the complicated and noisy real-world 

phenomena and concepts. The main core of the new theory's philosophy is that all concepts, phenomena, and objects 

of the universe are made by information which is surrounded by the five dimensions of reality. These dimensions not 

only add/create entropy and uncertainty but also formulate bridges that enable systems to have interaction with all the 

systems of the universe. These dimensions perform as the orbitals that circuit around the information. By adding 

entropy to the system, the reality dimensions make information to leave a system and enter in a new system. The 

operated computations in the numeric orbital systems are based on the entropy and the orbital numbers. Currently, we 

are developing orbital mathematics that includes orbital sets, orbital probabilities, and orbital languages. 
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