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Abstract— The paper provides the implementation procedure, the 

validation and some considerations on the computational efforts of 

the developed analytical expressions for the lightning 

electromagnetic fields presented in the companion paper. The 

validation is presented with different configurations in terms of 

channel-base current, ground conductivity and distance to the 

lightning channel, comparing the obtained results with the 

numerical integration of the classical formulas. The comparative 

analysis shows a perfect agreement between the proposed 

analytical approach and reference numerical simulations. 

Moreover, the computational effort of the proposed method is 

discussed, focusing the attention on the choice of the points in 

which the channel has to be divided in order to maximize the CPU 

time savings without losing accuracy. 

Index Terms— Lightning electromagnetic fields, Channel base 

current, Engineering models   

I. INTRODUCTION

ne of the most important causes of damages in

distribution systems are lightning-induced voltages. As

pointed out in Part I, their evaluation has been addressed 

by many researchers in the last years. It is important to note that 

all the proposed models for the computation of induced voltages 

rely on the knowledge of the electromagnetic fields. In the 

literature, their evaluation is usually achieved in two steps: 1) 

the electromagnetic fields in the presence of a perfectly 

conducting ground are computed assuming a vertical lightning 

channel [1-3], and 2) the effect of the ground conductivity is 

taken into account with the Cooray-Rubinstein formula [4, 5].  

 Massimo Brignone, Renato Procopio, Daniele Mestriner, Mansueto Rossi 

and Federico Delfino and are with the Naval ICT and Electrical Engineering 

Department (DITEN), University of Genoa, Via Opera Pia 11a, I-16145 
Genova, Italy (e-mail: massimo.brignone@unige.it, renato.procopio@ unige.it, 

daniele.mestriner@edu.unige.it, mansueto.rossi@unige.it, 

federico.delfino@unige.it). Farhad Rachidi is with the EMC Group, Swiss 
Federal Institute of Technology, EPFL-STI-LRE, Station 11, CH-1015 

Lausanne, Switzerland (email: farhad.rachidi@epfl.ch). Marcos Rubinstein is 

with the University of Applied Sciences Western Switzerland, Yverdon-les-
Bains 1401, Switzerland (e-mail: marcos.rubinstein@heighvd.ch) 

However, when dealing with lightning-induced voltages 

adopting a statistical approach (which is the case of the 

lightning performance evaluation), the solution of the 

aforementioned two-steps approach is not an easy task, 

especially in terms of the high computational effort caused by 

the need of evaluating the fields at many different distances 

from the lightning strike. As noted in Part I, the main solutions 

have been proposed in [6] and [7] relying on either analytical or 

numerical approaches, respectively. However, the analytical 

approach [6] is valid only under some assumptions (perfectly 

conducting ground and trapezoidal channel base current), while 

the numerical one (that builds up a field database and then 

obtains the required fields by means of linear interpolation [7]) 

has the drawback of a high computational effort, especially 

when the effect of the current front time must be accounted for. 

In this context, a new approach has been proposed in Part I. The 

method is based on analytical formulas for lightning 

electromagnetic fields generated by an arbitrarily shaped 

channel base current over a perfectly conducting (for all the 

components of the electric and magnetic fields) or a lossy 

ground (for the radial component of the electric field). This 

paper is mainly divided in three parts: In the first (Section II), a 

step-by-step procedure that can help the reader to implement 

the proposed method is provided. In the second part (Section 

III), the validation of the proposed method against the reference 

numerical approach [1] is presented. In the third part (Section 

IV), some considerations on the computational effort are 

provided, focusing on the best solution in terms of 

computational time and accuracy. Finally, conclusions are 

drawn in Section V. 

II. IMPLEMENTATION OF THE PROPOSED APPROACH

In this section, a step-by-step implementation procedure is 

proposed.  

The main step is to provide a discretized version of the 

function ( ) 21f  = +  via the function g (Eq. (A1) of Part I).

Let us consider the geometry presented in Fig. 1. In order to do 
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that, remembering that ( )' /z z r = − , one has to: 

1. Choose the height z and the distance r from the

lightning strike where the fields have to be computed

(i.e. the coordinates of the observation point Q);

2. Evaluate the quantity

max

H z
A

r


−
= = (1) 

where H is the height of the lightning channel. 

3. Choose the number of intervals N into which the

lightning channel is divided.

4. Evaluate αj, aj and bj (with j=1,…,N+1) according to

the procedure presented in the Appendix of Part I (a

detailed analysis on possible choices for the values of

ηmax and N is proposed in Section V).

Fig. 1 Geometry of the problem 

Once the aforementioned quantities are determined, one can 

calculate the magnetic field 
idH for a perfectly-conducting 

ground according to the following scheme 

1. Find the index 
* {1, , }j N  such that 

* * 1
/

j j
z r 

−
−  −  − (2) 

2. Fix the time 
*t  before that the fields at Q are zero 

* *

*

0 0

j j
b a

t r z
c c

= + (3) 

3. Fix the time instants
i

jt for which the dipole at point

j− contributes to the fields at Q (v is the current 

propagation speed and c0 is the speed of light in

vacuum). 

0

1j jii j

j

a b
t r z

c v v

 + 


 
+ −= (4) 

4. Compute the time instants ,2 ,1

0 0

s st t= at which the 

dipole placed at x=0 starts contributing to the field 

,1 ,2

0 0

0

1 1s st t r z
c v

= += (5) 

5. Compute the time instants 
,1s

jt  (for *1, , 1j j=  − and 

* 1j  ) and 
,2s

jt (for 1, ,j N=  ) necessary for the 

fields generated at points 
j−  and 

j  of the source to 

reach point Q 

,1

0

1s j j j j

j

ba
rt z

c v v

  
= − + 
 

+
(6) 
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
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
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
  (7) 

6. Evaluate the magnetic field according to equations (5),

(6),(13),(19),(20) of Part I.

Once the evaluation of the magnetic field has been 

performed, the electric field components or a perfectly-

conducting ground can be easily calculated according to 

equations (21)-(26) of Part I. 

Finally, the influence of the ground conductivity on the radial 

electric field can be accounted for by using the proposed time 

domain analytical expression of the Cooray-Rubinstein formula 

(equations (29)-(37) in the Part I paper), based on the 

expression of the channel base current as a sum of exponential 

terms (see [8] for details). 

III. VALIDATION OF THE PROPOSED APPROACH

The proposed method will be compared with the results of 

the so-called “numerical method”, corresponding to the 

numerical integration of i) the classical formulas for the ideal 

fields [1-3], and ii) the time domain expression for the Cooray-

Rubinstein formula described in [9] (which is a compromise 

between computational time and accuracy, avoiding a 

numerical convolution but maintaining the approximation error 

always lower than 0.01%)  using a time step of 10 ns [10]. Note 

that, even if it requires a high computational effort, the 

numerical integration [1] has been used as a benchmark because 

other works ([11, 12]) provide closed-form expressions for step 

excitations and require a numerical, time consuming, 

convolution if an arbitrary channel-base expression is taken into 

account and if the fields are computed at heights different from 

z=0.  In the following, the comparison will take into account 

different ground conductivities and different expressions for the 

channel base current (Fig. 2). For each of the proposed 

configurations, the electromagnetic fields will be evaluated at a 

height of 10 m and at three different distances from the channel, 

i.e. 50 m, 200 m and 2000 m. The details of each test are

summarized in TABLE 1.

The height of the return stroke channel is assumed to be 8 

km, while the return stroke propagation velocity is c0/2 (c0 is 

the speed of light in vacuum).  

TABLE 1 Details of the tests. “First (Subsequent)” indicates that the channel 

base current follows the Heidler’s formula with parameters typical of first 
(subsequent) stroke currents; “Measured” means that the channel base current 

used is taken from a set of Lightning Measurements obtained at Mount Säntis 

Station in Switzerland. The ground conductivity is denoted by , and PEC 

stays for Perfect Conducting Ground, as usual.  

Test r [m] Channel base current  [mS/m] 

T1-A 50 first return stroke [13] PEC 

T1-B 200 first return stroke PEC 
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T1-C 2000 first return stroke PEC 

T2-A 50 subsequent return stroke [13, 14] PEC 

T2-B 200 subsequent return stroke PEC 

T2-C 2000 subsequent return stroke PEC 

T3-A 50 measured subsequent stroke [8] PEC 

T3-B 200 measured subsequent stroke PEC 

T3-C 2000 measured subsequent stroke PEC 

T4-A 50 subsequent return stroke 1 

T4-B 200 subsequent return stroke 1 

T4-C 2000 subsequent return stroke 1  

T5-A 50 subsequent return stroke 10  

T5-B 200 subsequent return stroke 10 

T5-C 2000 subsequent return stroke 10 

Fig. 2  Considered current waveforms. (a) Typical first return stroke. (b) 

Typical subsequent return stroke. (c) Measured subsequent return stroke [8] 

Tests T1, T2 and T3 aim at validating the developed 

analytical formulas for ideal fields with different channel base 

currents, while tests T4 and T5 are performed to show the 

accuracy of the proposed expression of the Cooray-Rubinstein 

formula.  

Let us select a number of discretization intervals N=50. We 

will discuss in Section IV the effect of the choice of N. 

Furthermore, the values of h
max

for r=50, 200 and 2000 m are

given by 

max

159.80 50
8000 10

39.95 200

3.99 2000

r m
H z

r m
r r

r m

=
− − 

= = = =
 =

 (8) 

According to the procedure described in the Appendix of Part 

I, the discretization points αj  (with j=1,…,N+1) are presented 

in Fig. 3 for the three selected values of r.  The comparison 

results for the considered test cases are presented in Figs. 4 to 

18. As can be seen from the figures, there is an excellent

agreement between the proposed approach and the numerical

calculation for all the considered cases, with some slight

deviations in the case of a measured current waveform,

probably related to the presence of noise in the current

waveform, even if it has been previously filtered with a low-

pass filter.

Fig. 3  Discretizing points of f for three different values of xmax, corresponding 
to horizontal distances r = 50, 200 and 2000 m. The height of the channel 

is 8 km and the height of the observation point 10 m. 

Fig. 4 Test T1-A. First return stroke (Heidler current). The distance to the 

channel is 50 m and the ground is assumed to be perfectly conducting. 

Fig. 5 Test T1-B. First return stroke (Heidler current). The distance to the 

channel is 200 m and the ground is assumed to be perfectly conducting. 
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Fig. 6 Test T1-C. First return stroke (Heidler current). The distance to the 

channel is 2000 m and the ground is assumed to be perfectly conducting. 

Fig. 7 Test T2-A. Subsequent return stroke current. The distance to the 

channel is 50 m and the ground is assumed to be perfectly conducting. 

Fig. 8 Test T2-B. Subsequent return stroke current. The distance to the 

channel is 200 m and the ground is assumed to be perfectly conducting. 

Fig. 9 Test T2-C. Subsequent return stroke current. The distance to the 

channel is 2000 m and the ground is assumed to be perfectly conducting. 

Fig. 10 Test T3-A. Measured return stroke current. The distance to the 

channel is 50 m and the ground is assumed to be perfectly conducting. 

Fig. 11 Test T3-B. Measured return stroke current. The distance to the channel 

is 200 m and the ground is assumed to be perfectly conducting. 
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Fig. 12 Test T3-C. Measured return stroke current. The distance to the channel 

is 2000 m and the ground is assumed to be perfectly conducting. 

Fig. 13 Test T4-A. Subsequent return stroke. The distance to the channel is 50 

m and the ground is assumed to have a 1 mS/m conductivity. 

Fig. 14 Test T4-B. Subsequent return stroke. The distance to the channel is 200 

m and the ground is assumed to have a 1 mS/m conductivity. 

Fig. 15 Test T4-C. Subsequent return stroke. The distance to the channel is 2000 

m and the ground is assumed to have a 1 mS/m conductivity. 

Fig. 16 Test T5-A. Subsequent return stroke. The distance to the channel is 50 

m and the ground is assumed to have a 10 mS/m conductivity. 

Fig. 17 Test T5-B. Subsequent return stroke. The distance to the channel is 200 

m and the ground is assumed to have a 10 mS/m conductivity. 
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Fig. 18 Test T5-C. Subsequent return stroke. The distance to the channel is 2000 

m and the ground is assumed to have a 10 mS/m conductivity. 

IV. COMPUTATIONAL EFFORT OF THE PROPOSED METHOD

In this section, some considerations on the computational 

effort of the proposed method are given. It is important to notice 

that the computational effort is strictly related to the 

discretization of the function f. As highlighted in Section II, two 

main factors can affect it: the choice of the maximum value xmax 

and the number N of intervals into which the function is 

discretized. 

In the first part of this section (subsection A), the focus will 

be on the choice of ηmax, while in subsection B, the results of the 

proposed method for different values of N will be analyzed and 

discussed, showing the strength of the proposed method in 

terms of reduction of the computational time.  

A. The choice of ηmax

As highlighted in Section II, the value of ηmax changes

according to the coordinates of point Q. This means that, in 

principle, the discretization of f changes according to r and z. 

This represents a disadvantage, especially when dealing with 

multiple field calculations (e.g., in any field-to-line coupling 

problem) because it would imply solving an optimization 

problem for each horizontal distance and height.  

This problem can be overcome by setting ηmax to the 

maximum value it can assume in the domain of interest of the 

observation point Q. From (1) it is easy to notice that, for an 

assigned return stroke channel height H, it corresponds to the 

minimum horizontal distance rmin and to the minimum height 

zmin. In the case of induced effects of lightning on power lines, 

usually a distance from the striking point closer than rmin=20 m 

is never considered because this would lead to a direct event 

and the height of a power line is never lower than zmin =5 m. 

With this choice, for all the other observation points, ηmax 

corresponds to a point beyond the channel height, which is of 

no use for the field calculations. This means that, in principle, 

for all the other observation points, the points j do not optimize 

the objective function defined in the companion paper. 

However, in what follows, it is shown that such error has a 

negligible impact on the final result. 

Let us reconsider Fig. 3. Despite the different values of ηmax 

(i.e., 159.80, 39.95 and 3.99), it can be noticed that, in each 

case, the optimization procedure sets the majority of the 

discretizing points close to η=0. This can be well explained by 

the graph of f (Fig. 19), which exhibits the maximum rate of 

change of its first derivative in the neighborhood of the origin, 

requiring there a higher number of secants to obtain a proper 

fitting with linear functions.   

Fig. 19 Graph of the function f 

To give further evidence of this concept, let us set

( )max min min/ 399.75H z r = − = . The optimization procedure

leads to the discretizing points plotted with the purple dots in 

Fig. 20, which are not so different from the other ones, 

confirming the aforementioned considerations.  

Fig. 20 Discretizing points for N=50 and different values of ηmax, corresponding 

to horizontal distances r = 20, 50, 200 and 2000 m. The height of the channel is 

8 km and the height of the observation point 10 m. 

Finally, the impact of ηmax on the fields is shown in Fig. 21, 

which is relevant to Test T1-A considering N=50 and the 

following two values:  

max
min

min

159.80

399.75

H z

r

H z

r



−
=


=  −
 =


(9) 

As shown, this different choice does not affect at all the final 

solution.  
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Fig. 21 Test T1-A Comparison with different values of ηmax 

B. The choice of N

The computational effort is strictly related to the choice of N

since it represents the number of intervals into which the 

function f is discretized. The bigger N, the better the accuracy 

of the proposed approach, but also the higher the computational 

effort. An appropriate trade-off between accuracy and 

computational time has to be found.  

In order to determine N, the “distance” between f and its 

piecewise linear approximation g can be computed, minimizing 

(A6) introduced in the Appendix of Part I. This way, the 

following function of N is defined 

( )1

1

,...,

2 2

1

2 21

1 1

1 1

2 1 1

( ) min

1
N

j j
N

j jj j

j

j

E N H
+

=

−

− −

+ − +

+ +

=

 
 
 
 − −
 


 

 

   

(10) 

with 1 2 max0 N       . The behavior of E, as

displayed in Fig. 22 is monotonically decreasing. Hence, once 

a desired threshold for E is introduced, the value of N is 

automatically fixed. 

Fig. 22 Behavior of E in (10) as a function of N. For a threshold of 0.025, the 

corresponding value of N is 30. 

C. Computational effort of the proposed method

In the following, attention is focused on the influence of N

on the computational effort and on the accuracy of the method. 

For each field component (Hφ, Er, Ez), the deviation eψ between 

the proposed approach and the numerical integration is 

computed as follows: 

( ) ( )
( )

* *

*
100

p n

n

t t
e

t

 





 



−
= (11) 

where ψp and ψn are the generic field calculated with the 

proposed and the numerical approaches, respectively; tend is the 

end of the time window and  * 0, endt t   is the time instant s.t. 

( ) ( )p nt t − reaches its maximum value. 

The computational gain G
with respect to the numerical 

solution is computed as the ratio between the CPU time τnumerical 

required by the numerical method and the time τproposed required 

by the proposed approach: 

numerical

proposed

G




= (12) 

Gτ represents how fast the proposed approach is with respect to 

the numerical solution. 

Let us consider Test T2-A and Test T4-A (these two cases 

have been chosen to account both for a perfect ground 

conductivity and a finite ground conductivity). TABLE 2/Fig. 

22 and TABLE 3/Fig. 23 express eψ of each field and Gτ as a 

function of N. In the following, it has been chosen to decrease 

N until one of the fields deviations exceeds 1%. 

TABLE 2 Deviation and computational gain as a function of N – Test T2-A  

N
Ere [%]

Eze [%] He 
[%] G

50 0.075 0.079 0.003 2540 

40 0.080 0.123 0.004 3005 

30 0.081 0.202 0.005 4113 

20 0.085 0.411 0.052 5248 

10 0.120 1.121 0.142 8931 

Fig. 23 Deviation and computational gain as a function of N – Test T2-A 

TABLE 3 Deviation and computational gain as a function of N – Test T4-A 

N
Ere [%]

Eze [%] He  [%] G

50 0.084 0.079 0.003 208 

40 0.087 0.123 0.004 224 

30 0.089 0.202 0.005 243 

20 0.099 0.411 0.052 257 

10 0.125 1.121 0.142 271 
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Fig. 24 Deviation and computational gain as a function of N – Test T4-A 

As can be noticed, N can be strongly reduced without causing 

a high increase in the deviation. Moreover, the last columns of 

TABLE 2 and Fig. 23 underline that even with high values of 

N, the computational time is reduced by a factor of more than 

200, which represents a really impactful advantage of the 

proposed method. A stronger reduction of the computational 

time can be obtained in the case of a perfect ground conductor. 

In order to provide a comprehensive approach for the reader 

who wants to evaluate the electromagnetic fields with the 

approach proposed in this paper, the discretizing points αi and 

the coefficients ai, bi, necessary for the implementation of the 

proposed procedure, are provided in TABLE 4 with N=30, 

which represents a good compromise between the accuracy and 

the computational effort gain (note that ηmax is chosen as in Sub-

section A). 

TABLE 4 Discretizing points αi and coefficients ai, bi with N=30 

i αi ai bi 

1 0.0815 0.0407 1 

2 0.1639 0.1217 0.9933 

3 0.2479 0.2015 0.9803 

4 0.3344 0.2793 0.9610 

5 0.4245 0.3545 0.9358 

6 0.5191 0.4263 0.9053 

7 0.6196 0.4944 0.8700 

8 0.7273 0.5582 0.8305 

9 0.8440 0.6174 0.7874 

10 0.9717 0.6717 0.7415 

11 1.1129 0.7211 0.6935 

12 1.2707 0.7656 0.6440 

13 1.4490 0.8052 0.5937 

14 1.6528 0.8400 0.5433 

15 1.8884 0.8703 0.4932 

16 2.1643 0.8964 0.4440 

17 2.4918 0.9185 0.3961 

18 2.8863 0.9370 0.3501 

19 3.3690 0.9522 0.3061 

20 3.9704 0.9646 0.2645 

21 4.7350 0.9744 0.2255 

22 5.7300 0.9820 0.1893 

23 7.0614 0.9878 0.1561 

24 8.9026 0.9921 0.1259 

25 11.5559 0.9951 0.0989 

26 15.5829 0.9972 0.0751 

27 22.1294 0.9985 0.0545 

28 33.8382 0.9993 0.0373 

29 58.0277 0.9997 0.0233 

30 = N 121.7485 0.9999 0.0127 

31 = N+1 399.750 0.9999 0.0053 

V. CONCLUSIONS

The paper presented the validation of the new approach for 

the computation of lightning electromagnetic fields generated 

by an arbitrary channel base current over an ideal and a lossy 

ground proposed in the companion paper.  

In the first part, a step-by-step procedure for the 

implementation of the method described in the companion 

paper was proposed. In the second part, the validation of the 

method against the well-known numerical method was shown 

considering different channel base currents, different ground 

conductivities and different distances from the stroke location. 

Finally, the computational effort of the proposed method was 

analyzed and discussed, underlining the gain in terms of 

computational time with respect to the traditional numerical 

method.  
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