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Abstract— The paper provides analytical expressions for the 

electromagnetic fields generated by a lightning return stroke 

characterized by a channel base current with arbitrary time 

waveform, in presence of either a perfectly conducting or a lossy 

ground, assuming the transmission line model for the current 

along the channel. In this second case, a time domain analytical 

expression for the Cooray-Rubinstein formula is presented. The 

main idea that leads to the derivation of analytical formulas 

consists of dividing the channel into intervals in which the distance 

between the field source point and the observation point can be 

approximated with a linear function of the time and of the spatial 

coordinates of both points. In the companion paper, a detailed 

comparison is proposed with the classical (numerical) approach 

highlighting excellent agreement both at close and far distances, 

considering all the values of practical interest for the ground 

conductivity. Moreover, the method guarantees a meaningful 

improvement in the computational performance. 

Index Terms— Lightning electromagnetic fields, Channel base 

current, Engineering models   

I. INTRODUCTION

NDIRECT lightning strikes generate overvoltages that are

among the most frequent causes of damages or interruptions

in distribution systems. Since their computation can be 

complex and very time consuming, having at one’s disposal 

reliable tools that perform fast and accurate indirect overvoltage 

calculations is therefore of great importance while designing 

the lightning protection system. Four models based on the 

transmission line approximation have been successfully 

validated, shown to be complete, and shown to be equivalent to 

each other in the literature: the Taylor et al. model [1], the 

Agrawal et al. [2], the Rachidi model [3], and the modified 

Rusck model [4, 5]1. Different methods have been developed to 

evaluate lightning-induced overvoltages; such methods can be 

essentially divided into two broad categories: analytical [11-15] 

and numerical [16-20]. All of the methods require as inputs 

specific components of the lightning electromagnetic fields that 

have to be computed in a fast but accurate way. To do this, a 

first possibility is to assume that the ground is a perfect 

conductor and the lightning channel is vertical. Under those 

conditions, expressions for the electromagnetic fields involving 

an integral over the channel have been derived both in the 

1 Two early models, the Rusck model [6], [7]  and the Chowduri-Gross 

model [8]. exist but they have been shown to be incomplete [9] [10]. 

frequency and in the time domain [21]. However, it has been 

shown [21]  that the finite conductivity of the ground plays an 

important role, especially in the evaluation of the radial 

component of the electric field that represents the source term 

of the coupling equations in the model of Agrawal et al. The 

exact expressions of the field in the presence of a lossy ground 

involve the so-called Sommerfeld integrals, whose exact 

evaluation, performed in [22-24], is prohibitive from a 

computational point of view. For this reason, an approximate 

approach has been proposed by Cooray and Rubinstein in [25, 

26] in the frequency domain and then some alternative

expressions in the time domain have been presented in [27-30].

However, to evaluate the overvoltages induced by a nearby

lightning strike, it is necessary to calculate the radial component

of the electric field at the points in which the line is discretized,

and the vertical component of the electric field at the line

extremities [2]. Moreover, when one aims at evaluating the

lightning performance of a distribution system, a statistical

analysis has to be conducted, for which thousands of lightning

events have to be randomly generated at different points of

impact and having different channel base current parameters

[19, 20, 31, 32]. It is then apparent that a huge number of field

calculations is required, which makes the computational

performance of such calculations a crucial aspect for this kind

of application. The attempt of providing analytical formulas for

lightning electromagnetic fields is not new. First attempts were

presented in [4, 33-35]. However, these studies are limited to

some specific channel-base current expressions: while [4, 34]

considered only a step-function, the authors of [35] provided a

survey on many different approximations for the radial electric

field in the presence of a lossy ground, where their accuracy

was tested against exact expressions derived in the case of a

double-exponential channel-base current waveform. More

recently, two main solutions have been adopted in the literature:

i) analytical formulas for the electromagnetic fields over a

perfectly conducting ground have been derived in [36]

assuming that the channel base current is trapezoidal, and ii) a

field waveform database [20] containing electromagnetic fields

generated from a current with a specified time domain

waveform with unitary peak at different distances. The field

waveforms required as inputs to the coupling equations are then

calculated interpolating the database elements. According to
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[37], the first approach “is somewhat limited when the presence 

of surge arresters and flashovers occurrence is taken into 

account”. On the other hand, the database approach exploits the 

linear relationship between current peak and electromagnetic 

fields. However, when one aims at accounting for the front time 

effect, the computational convenience of the method fails 

because one database should be constructed for any considered 

value of the front time. To overcome these problems, this paper 

proposes analytical formulas for lightning electromagnetic 

fields generated by an arbitrarily-shaped channel base current 

over either a perfectly conducting or a lossy ground. The idea 

of the method consists of dividing the channel into intervals in 

which the distance between the source and the observation field 

points can be approximated with a linear function of the time 

and of their spatial coordinates. 

The paper is organized as follows. In Section II, we present 

the general idea that supports the analytical derivation. This 

section is aimed at easing the understanding of the analytical 

derivations presented in Sections III and IV. Section III is 

dedicated to the derivation of the fields over an ideal ground. 

Section IV proposes the time domain analytical expression for 

the Cooray Rubinstein formula. Section V proposes a summary 

of the procedure and finally, Section VI is dedicated to 

conclusions. A complete validation of the method is presented 

in the companion paper.  

II. THE GENERAL IDEA OF THE PROPOSED APPROACH

The aim of this section is to present the general idea behind 

the method, making use of a graphical sketch. mathematical 

details will be provided in the following sections. 

Let us consider the situation depicted in Fig. 1 representing 

the lightning channel (H being its height). Assuming a 

perfectly-conducting ground and assuming that the lightning 

current starts propagating from the channel base (z’=0) at t=0, 

and applying the method of images, the azimuthal component 

of the magnetic field produced at the observation point 

( , , )Q r z  is given by [21]: 
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In (1) and (2), c0 and v are the speed of light in vacuum and the 

return stroke speed, respectively, P is the attenuation function 

[38], which can be specified for any given engineering return 

stroke model, ( )1 t is the Heaviside function, 0 ( )i t is the 

channel base current (assumed to be zero for negative time), and 

0i  is its first time derivative. R is the distance between the 

source and the observation point, defined as 

( ) ( )
22' 'R z r z z= + − (3) 

Fig. 1 Geometry of the problem 

It can be shown that, after some algebraic manipulations [39] 

and assuming P(z’)=1 (Transmission Line Model), the magnetic 

field can be written as : 
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The Heaviside function in (4) defines the portion of the channel 

that contributes to the fields at the observation point Q at time 

t, given by solving for z’ in the inequality ( ', ) 0z t  . 

As a consequence, indicating with t* the time required by the 

fields produced by the dipole located at the channel base to 

reach Q, the magnetic field is zero at that point for t<t*, as 

shown in Fig. 2 (a), where the left view is the channel 

representation (the yellow line representing the propagation of 

the current along the channel), while the right view represents 

the time domain waveform of the magnetic field at Q. 

Now, let us divide the channel into segments. Using t1 to 

designate the time at which the fields produced by the last

dipole in the first segment reach point Q, then for t*<t<t1, a 

portion of the first segment (the complete segment is indicated 

by the red curly bracket) contributes to the field at Q. If one 

approximates ( ', )z t as a linear function of z’, then: i) the 

integral appearing in (4) can be solved analytically by 

substitution, and ii) inequality ( ', ) 0z t   can be solved 

analytically allowing the determination of the actual integration 

domain as a function of t (Fig. 2(b)). 

Repeating the same considerations for the second segment (t2 

being the time necessary for the fields of the dipole located at 

the upper end of the second segment to propagate to the 

observation point), one can approximate
( ', )z t

with another 

linear function of z’. This allows the analytical evaluation of the 

magnetic field at Q for t1<t<t2, in which the complete first 

segment and part of the second one contribute to the field (Fig. 

2 (c)). 
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(a) (b) 

(c) (d) 
Fig. 2  Graphical sketches illustrating the time intervals at which the different channel segments contribute to the field at observation point Q:    t<t* in panel 

(a); t*<t<t1 panel (b); t1<t<t2 panel (c); generic t> t2 panel (d) 

Repeating these steps, one can define the following time 

sequence t*<t1<t2<…<tn; as a consequence, comparing the 

generic time instant t with the elements of the sequence, one can 

find the last segment that (fully or partly) contributes to the field 

at Q. Obtaining the linear approximation of 
( ', )z t

 for each 

segment, the corresponding contribution to the field can be 

calculated analytically (Fig. 2 (d)). 

Applying the fundamental theorem of the integral calculus to 

the integral appearing in (4), it is apparent that the magnetic 

field is a linear combination of functions, each of which being 

the channel base current waveform time-shifted by a quantity 

equal to the time necessary for the current to reach the 

beginning of the corresponding interval (details will be 

provided in the following section). The proposed approach 

makes it therefore possible to obtain an analytical expression 

for the lightning magnetic field over a perfectly conducting 

ground assuming the TL model (attenuation function equal to 

unity). On the other hand, no assumptions are made either on 

the channel-base current, which can be of any arbitrary 

waveshape, or on the value of the return stroke speed. 

Once the magnetic field has been evaluated, the vertical and 

radial components of the lightning electric field can be 

evaluated analytically using Maxwell’s equations, starting from 

the magnetic field formula without any further assumptions. 

Finally, to account for the finite ground conductivity, the 

horizontal component of the electric field needs to be corrected 

using the equation proposed by Cooray and Rubinstein [26]. In 

[30], it is shown that, in the time domain, the Cooray-

Rubinstein equation is the sum of two terms: the first one is 

proportional to the magnetic field over a perfectly-conducting 

ground, and the second is the solution of an Ordinary 

Differential Equation (ODE) with constant coefficients and a 

free term equal again to the magnetic field. If one develops the 

channel base current as a sum of exponential functions (see e.g., 

[40]), also the magnetic field can be written as a linear 

combination of exponential functions thanks to the proposed 

approach. This means that the ODE can be solved analytically, 

also resulting in an analytical expression for the horizontal 

electric field over a lossy ground with no other assumptions. 

Note that, even if the method is characterized by the division of 

the channel into segments (which is a typical feature of a 

numerical method), we claim that the formula can be 

considered as analytical for the following reasons: 

1) As will be detailed later on in the paper, a suitable

change of variable allows one to perform the division

of the channel into segments only once. As a

consequence, the extremes of the segments and the

parameters of the piecewise linear function

approximating ( ', )z t are always the same (they are

reported in the companion paper);

2) the coefficients of the linear combination are

analytical functions of the return stroke speed;

3) the coordinates of the observation point appear in the

above-mentioned time sequence in an analytical way;

4) the number of segments into which the channel has to

be divided in order to obtain the desired accuracy is

quite limited (see the analysis appearing in the

companion paper).
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III. LIGHTNING ELECTROMAGNETIC FIELDS OVER AN IDEAL

GROUND 

The present section derives analytical expressions for the 

lightning electromagnetic fields over an ideal ground, starting 

with the magnetic field (subsection A) necessary to evaluate the 

electric field components (subsection B). 

A. Magnetic field

Let us reconsider (4). Introducing 

( ) 2and    1f
z z

r
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Equation (4) becomes: 
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Please note that the superscripts s and i stands, respectively, 

for “source” and “image”. 

Relation (9) is split into two parts, corresponding to positive 

and negative values of the integration variable. This will be 

useful in the following description of the procedure.  

The main problem in solving analytically the integrals in (7) 

and (9) is that f is a nonlinear function of η. If this was not the 

case, one could i) solve analytically the inequalities expressing 

the condition for which the Heaviside function is equal to 1 and 

ii) perform a linear change of variable in the argument of 
0i  for 

the calculation of the integral. The main idea of the method is 

to divide the channel and its image into N+1 intervals. Along 

each interval, f can be approximated by the secant passing 

through its extremes (see the Appendix for the details on the 

definition of a piecewise linear function g that approximates f). 

From here on, we will use the approximate formulas , ,
i
r z t  for 

,0
, ,

i
r z t and , ,

s
r z t for ,0

, ,
s
r z t obtained inserting the piecewise 

linear function g instead of f into (8). Please note that (5) has 

the advantage that the piecewise linear approximation g of the 

function f has to be made just once regardless of the position of 

the observation point. A graphical representation of the 

procedure related to the subdivision of the whole return stroke 

channel is shown in  

Fig. 3, and an illustration of the relation between the function 

f and its piecewise linear approximation g is given in Fig. 7 in 

the Appendix. 

Fig. 3 Definition of the intervals into which the channel is divided. Yellow, red 

and green segments represent the portions of the image and of the source 

channel that contribute to the field at point Q(r,z) at time t. The red (green) part 
corresponds to the domain of the first (second) integral of (9), while the yellow 

part corresponds to the domain of the integral in (7) .The black segments are 

the portions of the channel whose fields have not yet reached the observation 

point Q. 

Let us start with the calculation of the image channel 

contribution to the magnetic field (Eq. (7)). Due to the 

Heaviside function, (7) is not trivial if 
, , ( ) 0i

r z t   , which, at 

fixed r and z, defines the region depicted in Fig. 4. 

First of all, one has to find the interval in which /x z r= −

lies, i.e. find
* {1, , }j N  such that * * 1/j jz r  −−  −  −

(in Fig. 3,
* 3j = ). Please note that x should not be confused with 

the x-coordinate.  Then the time instant *t before which the

fields in Q are zero can be found as follows: 
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Moreover, the time instants i

jt  for which the dipole at point 

j− contributes to the fields in Q are given by: 
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This defines the following sequence of time instants

* *j

i i
Nt t t  . Finally, for a fixed time *t t the portion of

the image that contributes to the fields in Q is given by solving 

the following inequality: 
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where 
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0
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A
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= . At this point, (7) can be split into all 

the intervals that provide a contribution, partly or totally, to the 

fields. 

Fig. 4 View of the region , , ( ) 0i
r z t    for fixed values of r and z when j*=3. 

The linearity of , ,
i
r z t  permits to solve the integral in (7) 

analytically as 

( ) ( ) ( )*

*
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h hj

i i i i
image h

h j
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where the property that 0 ( ) 0i t = for 0t  , has been exploited. 

The physical interpretation of (14) is the following: If *t t , 

the propagation of the current along the channel and of the 

fields along the air is not sufficient to produce a nonzero 

magnetic field at point Q. If **
i

j
t t t  , only part of the first 

interval * * 1,j j  −
 − −
 

 belonging to the image channel 

contributes to it. If 1
i i
j jt t t−   , all the intervals  1,h h  −− −

with  *,..., 1h j j − and part of the interval 1,j j  − − − 

produce a field at point Q. 

Now, let us move to the source contribution in (9), which is 

not trivial if , , ( ) 0s
r z t   . At fixed r and z, this condition 

defines the region depicted in Fig. 5 (in this case, 
* 3j = ). 

As before, the following time sequence can be defined 
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s s s
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0 0
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the field and can be obtained by solving: 
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jt (for *1, , 1j j=  − and 
* 1j 

) and ,2s

jt  (for 1, ,j N=  ), necessary for the fields generated 

at points j− and j to reach point Q, are obtained, 

respectively, by solving: 
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Fig. 5 View of the region , , ( ) 0s
r z t    for fixed values of r and z when j*=3

Hence, for 
,1

* 0
st tt  , only part of the source channel with 

0  contributes to the field at point Q. More precisely, it is 

given by solving the following inequality: 
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Otherwise, if 
,1 ,2

0 0

s st tt  = , all of the source channel with 

0  and part of the source channel with 0   contribute to 

the field at point Q. Therefore, there exists {1,..., }j N  such 

that ,2 ,2

1

s s

j jt t t−   and a portion of the source channel with 

0  that produces a non-zero field at Q is given by solving 

the following inequality: 
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As in the case of the image contribution, the first integral in 

(9), (from now on ,1sourceI ), can be analytically solved as follows 

(recall 0 ( ) 0i t = for 0t  ) 

( )
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The physical interpretation of formula (20) is the following: 

 * ,1{ 0,..., 1 :max  0,.. , }.k

sh j tj k ht  = −=
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If *t t , the propagation of the current along the channel and

of the fields along the air is not sufficient to produce a nonzero 

magnetic field at point Q. If **
,1

1j

st t t
−

  , only part of the 

interval between the ground and the first point at which g is 

sampled contributes to the field at point Q. If ,1 ,
1

1s
j j

st t t −  , with 

*1,..., 1j j= − , all the intervals  1,h h  −− −  with 

 *2,..., 1h j − and part of the interval  1,0− produce fields 

at point Q. Finally, if ,1
0
st t , all of the source channel 

 / ,0z r−  contributes to the magnetic field. 

The second term in (9) (from now on ,2sourceI ), is much easier 

to evaluate because this part of the channel is all in the air and 

all characterized by a positive value of the integral variable η. 

As a consequence, as before, one has: 
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1
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s
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s s s

h

s
h h
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=

= − − − (21)

and its physical interpretation is the same as before.  Here too, 

the property 0 ( ) 0i t =  for 0t   has been used. 

B. Electric field

Maxwell’s equations applied to the geometry of Fig. 1 allow 

to state that the vertical and radial components of the electric 

field can be calculated as [41] 
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(22) 

It is sufficient to derive the magnetic field with respect to 

either r and z and to integrate along the time. The dependence 

on the spatial variables r and z, contained in the definition of 

the time instants (11)-(12), (15)-(16) and (17), is linear. This 

allows us to apply the derivation and integration rules for 

constant functions and to solve analytically the integrals in (22) 

as follows: 
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and 
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Indicating with   the spatial variable ( r   or z  ) 
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The derivatives contained in the above formulas are all 

constant and they can be easily calculated by way of (11)-(12), 

(15)-(16), and (17). 

IV. COORAY-RUBINSTEIN FORMULA

In [30], it was shown that the finite conductivity of the 

ground can be accounted for if the ideal horizontal electric field 

is added to the term: 

1

( , , ) ( ,0, ) ( ) 
RA

N
id

CR k k
k

E r z t H r t r t 
=

= − −  X (28) 

where k is the solution of the linear differential equation: 

1
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(0) 0

 idk k
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d c
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

 


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
 =

X
X

X

(29) 

The coefficients ck and rk appear in Tab. 1 of [30], NRA=12 

and /G  = . The time domain analytical expression for the

Cooray-Rubinstein formula can be obtained if one solves (29). 

Adopting the previously developed formulas to calculate the 

magnetic field at ground level, it readily follows that 

( ) ( ),2,0, ,0,image sourceI r t I r t= and ( ),1 ,0, 0sourceI r t = . Thus: 
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Where, for the sake of simplicity, we define 
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and ,2

| 0j z

st =
is obtained by (15) and (17) evaluated for 0z = , i.e.,  

 
| 0 0| 0
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j j js sj
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r
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The analytical solution of (29) reads: 
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Assuming now that the channel-base current can be 

expressed as the sum of NG exponential terms of the kind: 

0
1

( ) e 1( )
G

h

N
s t

h
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i t q t

=

= (34) 

and inserting (34) into (30), the integral in (33) can be solved 

analytically and one gets: 
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where 
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with 

k
kh h

G

c
F s


= − + (38) 

Please note that (34) is reasonable for the most widely 

adopted expressions for the channel base current. It obviously 

holds true if one uses the Double EXPonential (DEXP [42]) and 

only 9 terms are required to properly represent the Heidler’s 

current [43], by using the Prony’s expansion (see  [40] for 

details). 

V. SUMMARY

This section aims at providing the reader with a summary of the 

method and of the steps that one has to follow in order to 

correctly apply it.   

The step-by-step procedure is presented here. A graphical 

representation can be found in Fig. 6. 

1. Divide the channel according to the method proposed

in the Appendix and evaluate the points j  and the 

coefficients ,j ja b . 

2. Compute the coefficients i
jA , ,1s

jA and ,2s
jA

according to (13), (18) and (19). 

3. Calculate *t using (11), 
i
jt using (12), 

,1 ,2

0 0

s st t= . 

using (15), ,1

j

st  using (16), and ,2

j

st  using (17). 

4. To calculate the magnetic field, apply (14) to evaluate

the integral in (7) and (20)-(21) to evaluate the two

integrals in (9).

5. Derive the magnetic field with respect to r and z and

integrate along the time (equations (22)-(27)) to obtain

the radial electric field and the vertical electric field in

case of a PEC ground.

6. Apply the Prony’s expansions in order to express the

channel-base current as a sum of exponentials with

(34).

7. Insert the result of the previous step into (30) and apply

(35)-(38) and (28) in order to obtain the radial electric

field in the case of a finitely conducting ground.

Fig. 6 Graphical representation of the step-by-step procedure 

VI. CONCLUSIONS

This paper presented analytical formulas to evaluate the 

lightning electromagnetic fields generated by an arbitrary 

channel base current under the hypothesis that the attenuation 

function of the return stroke current model is P(z’)=1 (TL 

model). The vertical electric field and the azimuthal magnetic 

field components are derived under the assumption of a 

perfectly conducting ground. The finite ground conductivity is 

accounted for in the derivation of the horizontal electric field 

using the time-domain Cooray-Rubinstein equation. The main 

idea is based on the division of the channel into segments. For 

each one of them, the distance between the observation point 

and the source point can be approximated with a linear function 

of their coordinates. This allows firstly to obtain an analytical 

expression for the magnetic field and then for the vertical and 

radial components of the electric field over an ideal ground. 

Finally, an analytical expression of the Cooray-Rubinstein 

formula in the time domain is proposed to account for the 

effects of the finite conductivity of the ground.  

Compared to existing analytical formulations, the derived 

formulas have the advantage that no assumptions are made 
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either on the channel-base current which can be of any arbitrary 

waveshape, or on the value of the return stroke speed which can 

take any value. Furthermore, in the derived equations, the finite 

ground conductivity is accounted for in the computation of the 

radial electric field. 

In the companion paper, simulation results will be presented 

that validate the proposed approach against classical numerical 

integration, highlighting very good accuracy and a meaningful 

reduction in the computational effort. 

VII. APPENDIX: PIECEWISE LINEAR APPROXIMATION OF THE

DISTANCE BETWEEN AN ELEMENTARY CHANNEL SEGMENT AND 

THE OBSERVATION POINT 

If 0A  and 2: [0, ] 1 [0, )f A  +  +a , the 

approximation of f by the secant passing through N+1 points 

can be achieved introducing a piecewise linear function g,  

1 1 0 1
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1 1 1
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N N N N

N N N N

a b
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a b

a b
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 +  
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= 
+  

 +  

M
(A1) 

where 0 0 =  and 1N A + = . Imposing ( ) ( )j jf g = for 

any 1, , 1j N=  + , one has 

1

1

( ) ( )
and    ( )j j j

j j
j

j
j

j

f f
a b f a

 
 

 

−

−

−
= = −

−
(A2)

Let us observe that from a practical viewpoint, the parameter 

A should be chosen so that g approximates f along all the portion 

of the channel that contributes to the field in the desired time 

window. Details on the choice of A will be provided in the 

companion paper. A schematic representation of g with respect 

to f is proposed in Fig.2. 

Fig. 7 Schematic plot of the piecewise linear function g and of the function f. 

Please not that f is even, consequently only the positive part is represented. 

Since f  is a convex function, for any 1,..., 1j N= + , it follows 

that ( ) ( )f g   for 1[ , ]j j  − . Then one can prove the 

following two properties: 

Theorem 1: For any 1,..., 1j N= +  

0 1ja  (A3) 

and 

0 0

1 1
0 and    0

j ja a

c v c v
−  +  (A4) 

Proof. Since f  is increasing, the first inequality is obvious. As 

far as the second is concerned, using the definition in (A2) one 

has 
2 2

1 1
1 1

j jj j
   

− −
+ − +  − . Taking the square of both

(positive) members, one gets 
2 2

1 1
1 1 1

j jj j
   

− −
+  + + and

taking again the square, one obtains ( )
2

1
0

jj
 

−
−  , which 

holds true as 1j j −   Moreover, recalling that 0v c , 

inequalities (A4) immediately follow 

Theorem 2: For any 1,..., 1j N= + , the function 

( )( ) ( )jj jaH b f  = + − reaches its maximum value in

1[ , ]jj − at

21

j
j

j

a

a

 =

−
(A5) 

Proof. Note that 1( ) ( ) 0j jj jH H  −= = and 

1

1([ , ])j j jH C  − . The Weierstrass and Rolle theorems 

ensure that the maximum exists and it corresponds to the point 

ηj for which the first derivative of jH is zero. 

The problem one has to face at this point is the following: 

given a number of points N, define a criterion on how to choose 

such points to guarantee the best approximation of function f. 

For each interval 1[ , ]jj − , a way to obtain the best

approximation is to minimize the maximum value of function

jH  (that is to say, to minimize the maximum difference 

between function f and its linear approximation). So, the 

following constrained optimization problem can be set up. Find 

( )1 2, , , N   that minimize 

1

2
1 1

N
j

j

jj

a
H

a

+

=

 
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 
 −
 

 (A6) 

s.t.

1 20 N A      (A7) 

and 

2 2
1

1

1 1j j

j j
ja

 

 

−

−

+ − +
=

−
(A8) 

In the companion paper, a criterion to select N as a 

compromise between numerical effort and accuracy is 

proposed. Moreover, the corresponding values of i will be 

provided.  
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