Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS

Résumé

Approximation of graph edit distance in polynomial time enables us to compare large, arbitrarily labeled graphs for structural pattern recognition. In a recent approximation framework, bipartite graph matching (BP) has been proposed to reduce the problem of edit distance to a cubic-time linear sum assignment problem (LSAP) between local substructures. Following the same line of research, first attempts towards quadratic-time approximation have been made recently, including a lower bound based on Hausdorff matching (Hausdorff Edit Distance) and an upper bound based on greedy assignment (Greedy Edit Distance). In this paper, we compare the two approaches and derive a novel upper bound (BP2) which combines advantages of both. In an experimental evaluation on the IAM graph database repository, we demonstrate that the proposed quadratic-time methods perform equally well or, quite surprisingly, in some cases even better than the cubic-time method.

Détails

Actions