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ABSTRACT Plant growth-promoting rhizobacteria (PGPR) include species in the
genera Bacillus, Paenibacillus, and Pseudomonas. We report here the draft genome
sequences of the strains Pseudomonas koreensis UASWS1668 and Bacillus megaterium
UASWS1667, isolated from a horse chestnut tree, and Paenibacillus sp. strain
UASWS1643, isolated from a tomato stem. Auxin production and phosphate solubili-
zation were biochemically confirmed.

Pseudomonas koreensis strain UASWS1668 and Bacillus megaterium strain UASWS1667,
isolated from a horse chestnut tree, and Paenibacillus sp. strain UASWS1643, isolated

from a tomato stem, were identified by 16S rRNA gene sequencing and later confirmed
by whole 16S rRNA gene sequences extracted from their genome assemblies. A
whole-genome sequencing strategy was chosen to confirm the potential of these
bacteria as biostimulants. Paenibacillus sp. strain UASWS1643 showed 97.52% shared
identity with the closest NCBI-referenced strain, Paenibacillus xylanexedens strain PAMC
22703 (1). P. koreensis has shown antifungal activities and plant growth-promoting
rhizobacterium (PGPR) properties (2), particularly in heavy metal-contaminated soils (3)
and under high-salt conditions (4–6), increasing plant fresh weight and root develop-
ment. Bacillus megaterium is known for plant growth induction (7, 8), its antifungal
properties, its resistance to heavy metals (8, 9), and adaption to acidic stress (10). The
genus Paenibacillus, widely present in the soils and rhizospheres of many plants,
commonly hosts PGPR species (11, 12), with nitrogen fixation, phosphate solubilization,
auxin production, and siderophore secretion ability (11, 12).

Bacteria were isolated from the diseased tissues of horse chestnut or tomato according
to a published method (13). DNA was extracted from pure cultures grown exponentially
from a single colony in LB broth, with a modified cetyltrimethylammonium bromide
protocol (14). Sequenced 16S amplicons produced with primers 27F and 1482 R (15) were
identified by BLAST (16). Sequencing libraries were produced with the TruSeq Nano DNA
library preparation kit (Illumina, USA). Whole-genome sequencing was performed with a
MiniSeq high-output kit, in one Illumina MiniSeq run in 2 � 151-bp paired-end read format.
The read quality was controlled with FastQC version 0.11.5 (17). Genome assemblies were
computed with the SPAdes version 3.13.0 genome assembler (18), set to “paired-end”
assembly and “careful” mode. The resulting contigs were ordered with BioEdit version 7.0.5
(19) and analyzed with QUAST version 4.6.3 (20), with the setting “QUAST: skip contigs
shorter than 200 bp.” Automated gene annotations were carried out by the Prokaryotic
Genome Annotation Pipeline (PGAP) version 4.1 (21) and RAST version 2.0 (22), with the
ClassicRAST annotation scheme. Indole-3-acetic acid (IAA) production and phosphate sol-
ubilization were estimated according to published protocols (23, 24).
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The sequence details are given in Table 1. Using PlasmidFinder version 1.3 (25) and
plasmidSPAdes (26), with default settings, no plasmids were found in Pseudomonas
koreensis UASWS1668 or Paenibacillus sp. strain UASWS1643, while Bacillus megaterium
UASWS1667 displayed 7 plasmids. No complete transposons or phages were found in
Bacillus megaterium UASWS1667, whereas Paenibacillus sp. strain UASWS1643 harbored
1 phage on contig 116, and Pseudomonas koreensis UASWS1668 had 2 phages in
contigs 68 and 70. Toxins and superantigens as well as virulence and disease genes
were absent from all 3 strains, allowing these bacteria to be considered for agronomical
use. All strains were predicted to synthesize antibiotics of the bacitracin type and to
resist antibiotics and heavy metals, with 54 genes for Pseudomonas koreensis
UASWS1668, 37 genes for Bacillus megaterium UASWS1667, and 47 genes for Paeniba-
cillus sp. strain UASWS1643. Biochemical tests confirmed that the three strains produce
auxin and solubilize phosphate, as predicted by the genome sequences.

Data availability. This genome sequencing project has been deposited in the NCBI
Sequence Read Archive (SRA) and genome databases. The genome, SRA, BioProject,
and BioSample accession numbers and statistics for the three individual strains are
given in Table 1.
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Characteristic

Data for strain:

Paenibacillus sp.
UASWS1643

Bacillus megaterium
UASWS1667

Pseudomonas koreensis
UASWS1668

Total length (bp) 7,354,805 5,171,380 6,177,111
GC content (%) 45.88 38.04 60.27
No. of CDSsa (PGAP) 6,422 5,232 5,660
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No. of rRNAs 18 13 6
No. of phages 1 0 2
No. of plasmids 0 7 0
No. of auxin genes 4 4 4
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No. of nitrogen metabolism genes 34 12 14
Sequencing yield (Mbp) 445.96 550.32 574.37
Final coverage (�) 60.6 106.4 93
SRA accession no. for raw reads SRX6863606 SRX6863642 SRX6863625
No. of reads 2,953,376 3,644,512 3,803,796
No. of scaffolds 117 113 70
Scaffold N50 (bp) 253,767 1,095,828 663,749
GenBank accession no. for assembled genome VXKZ01000000 VXLA01000000 VXLB01000000
BioProject accession no. PRJNA543413 PRJNA543415 PRJNA543411
BioSample accession no. SAMN11658785 SAMN11658787 SAMN11658786
a CDSs, coding DNA sequences.
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