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Abstract
Many SDR systems make effective use of FPGAs
for data acquisition and heavy lifting DSP pro-
cessing. This has resulted in several dedicated
frameworks being developed, RFNoC being the
most renowned. Even though FPGAs fabrics are,
by their nature, reconfigurable, SDR systems of-
ten fail in exploiting this interesting opportunity
at run-time. In this paper, we show how it is pos-
sible to make effective use of the Partial Recon-
figuration capabilities of modern FPGA devices,
extending the range of applications RFNoC can
be applied to. In particular, it allows the live
reconfiguration of signal processing chains, for
instance to switch between wireless standards.
This results in a better use of the limited FPGA
resources by time-sharing them between process-
ing blocks. Unfortunately, support for Partial
Reconfiguration is not yet available in the soft-
ware stack of commercially-available SDR de-
vices. Our work thus aims at encouraging its in-
tegration.

1. Introduction
Most of the Software Defined Radio (SDR) devices cur-
rently available on the market have an FPGA between the
General-Purpose Processor (GPP) and the RF module. For
instance, this is the case for all the SDR devices from Ettus
Research (N. Pandeya, N. Temple, 2016b) generally known
as USRPs (Universal Software Radio Peripherals). The
FPGA of these SDR platforms is, out of the box, only used
to configure the RF module and to handle data transfers and
rate conversion, while all the base-band signal processing
is done on the GPP.

SDR frameworks, such as GNU Radio (gnu), simplify the
development of signal processing applications on the GPP
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in a highly modular, flowgraph-oriented fashion. Some of
these signal processing operations, such as FIR filters and
FFT, require high computational power and would be per-
fectly suited for deployment in the FPGA. FPGA devel-
opment is, unfortunately, difficult and time-consuming, so
frameworks like the RFNoC (Radio Frequency Network on
Chip) (M. Braun, J. Pendlum, M. Ettus, 2016) are used
to foster FPGA adoption in USRP devices. The RFNoC
framework takes care of all the tasks that are not directly
related to the DSP processing, such as clocking and data
transfers. Thus significantly eases the integration of cus-
tom signal processing components in a modular fashion,
and can be used alone or seamlessly integrated within GNU
Radio flow graphs. From GNU Radio it is then possible to
decide which blocks of the graph will run on the GPP and
which blocks will be executed on the FPGA (although with
some limitations).

Modern FPGAs are configured by loading a configuration
file, the bitstream, into their configuration memory. Partial
Reconfiguration (PR) is the modification of one or more
portions of the FPGA logic while keeping the remaining
portions unaltered (Xilinx, 2017c). If Partial Reconfigura-
tion occurs while the FPGA is in running state, is it called
dynamic PR. Dynamic PR saves area and power by time-
multiplexing hardware resources that are mutually exclu-
sive, and reduces the reconfiguration time compared with a
full configuration. However, PR is not without shortcom-
ings: PR works on die regions of fixed size, hence PR tools
reserve an area big enough to contain the largest block that
has to be mapped. When blocks whose size is smaller than
the partition are instantiated, FPGA resources are wasted:
a compromise should thus be found. Furthermore, FPGA
tools are notoriously complex and PR adds more steps to
the bitstream generation process.

Partial Reconfiguration is particularly useful in an SDR ap-
plication requiring, for instance, the reconfiguration of one
signal processing chain while maintaining the communica-
tion link (T. Kazaz, C. Van Praet, M. Kulin, P. Willemen, I.
Moerman, 2017). However, PR is not yet exploited in SDR
devices, even though most of them contain a PR-capable
FPGA (M. Braun, J. Pendlum, 2017). The objective of our
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work is to demonstrate the feasibility of Partial Reconfigu-
ration in SDR devices, thus encouraging the developers to
integrate support for this feature. To demonstrate our ideas,
we have used the RFNoC framework on a USRP E310 de-
vice (Ettus Research, a) together with the UHD driver and
its user-space API (Ettus Research, c) to control the device.
In Section 2 we explain the structure of RFNoC blocks and
how we could apply Partial Reconfiguration to them. In
Section 3 we show how to do a Partial Reconfiguration de-
sign on the E310 platform, using a simple RFNoC custom
block, and how to test it using UHD utilities and a C++
application. In Section 4 we apply Partial Reconfiguration
design to RFNoC library blocks, and we test this PR de-
sign using UHD utilities and GNU Radio. Section 5 draws
conclusions and future work ideas.

2. RFNoC blocks and Partial Reconfiguration
RFNoC (M. Braun, J. Pendlum, M. Ettus, 2016) is an open
source framework used to simplify the deployment of sig-
nal processing algorithms in the FPGA of Ettus Research
SDR devices. An RFNoC design consists of a network of
blocks connected via a crossbar that routes streams of data
packed in accordance with the compressed header (CHDR)
format. Figure 1 shows the internal structure of an RFNoC
block, which consists of two main parts: the NoC-Shell,
which is the same for all the blocks, and the actual user
IP, which implements the signal processing algorithm, and
is connected to the Noc-Shell via an AXI-Stream interface
(Xilinx, 2017a). Each RFNoC block exposes the same in-
terface, also AXI-stream based, to the crossbar.

In an RFNoC design blocks can be either available in the
UHD library (Ettus Research, b) or custom. Custom blocks
are created using the rfnocmodtool (M. Braun, N. Cuervo,
2016) command which generates an empty block in which
the user can instantiate her own IP. Several RFNoC blocks
can be combined in an FPGA configuration bitstream using
the uhd image builder command. Generating the FPGA
bitstream fixes the number and type of available blocks (M.
Braun, J. Pendlum, 2017). Though by using the UHD API,
the crossbar connections between these blocks can be mod-
ified arbitrarily at run-time. However, there is no provision
to add new blocks or swap them out at run-time. Further-
more, the number of RFNoC blocks that we can instanti-
ate in a bitstream is quickly limited by the FPGA avail-
able resources (see Section 4). Even though having multi-
ple FPGA bitstreams ready for loading and re-program the
entire bitstream at run-time is possible, this is slow and the
FPGA must be stopped, interfering with the current opera-
tion of the SDR device. So adding this dynamic dimension
to RFNoC is the main contribution of our work.

Indeed, Partial Reconfiguration (Xilinx, 2017c) can be used
to circumvent these shortcomings, allowing the modifica-

tion of an operating FPGA without stopping it completely.
After configuring the FPGA with a full (static) bitstream, a
partial bitstream (.bit file), is used to modify one or more
PR partitions in the FPGA, as shown in Figure 2. This
can be achieved without modifying the rest of the FPGA
configuration. One of the main limitations of Partial Re-
configuration usage in traditional HDL designs is that the
reconfigurable block should have exactly the same interface
signals connected to the static design when we replace one
reconfigurable module by another. However in our case,
as all the RFNoC blocks expose the same interface to the
crossbar (Figure 1) they can be well combined with Partial
Reconfiguration. From a practical stance, we instantiate an
RFNoC block in the full design, defining it as a reconfig-
urable module associated with a PR partition and we gener-
ate the full (static) bitstream. We then add the other RFNoC
blocks to the design, as reconfigurable modules associated
with the same PR partition, and generate a different partial
bitstream for each of the alternative RFNoC blocks. These
partial bitstreams can be loaded at run-time, allowing the
switching among RFNoC blocks.

Figure 1. Internal structure of an RFNoC block, from (M. Braun,
N. Cuervo, 2016).

Figure 2. Partial Reconfiguration procedure, from (Xilinx,
2017c).
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3. Partial Reconfiguration on the USRP E310
SDR Platform

As demonstration platform, we chose to use a USRP E310
(Ettus Research, a). This SDR platform is based on a Xilinx
Zynq 7020 chip, which contains a dual-core ARM9 proces-
sor running an embedded Linux distribution and an Artix-
7 FPGA, connected using a standard AXI interface. The
Zynq 7020 device is particularly suitable for Partial Re-
configuration in an SDR application, because the complex
signal processing tasks can be done in the FPGA while the
ARM processor is controlling the overall system, deciding
when to perform the Partial Reconfiguration, and perform-
ing it by delivering the partial bitstream to the FPGA.

We have proved the feasibility of Partial Reconfiguration
on the USRP E310 SDR platform using a simple RFNoC
custom block, and tested it using UHD utilities and a C++
application. This work was carried out under the SDR
Makerspace initiative (Libre-Space Foundation), funded by
the European Space Agency (ESA). The project Wiki (A.
Convers, S. Grassi, 2020) contains a step-by-step proce-
dure that can be used for replicating this work, and that we
summarize below.

We installed the necessary tools to do RFNoC develop-
ment, on both the host PC, running Ubuntu 18.04, and
the target E310 platform, as explained in (Ettus Research,
2017). These tools are: (1) UHD 3.14, driver and API
for application development on USRP SDR platforms. (2)
GNU Radio: a framework to implement signal processing
in software radios. It contains gr-uhd, enabling control and
data transfer with the E310. (3) gr-ettus: out-of-tree mod-
ule that extends gr-uhd adding support for RFNoC within
GNU Radio.

Using rfnocmodtool we created two custom RFNoC blocks
Gain1 and Gain2, which multiply the input signal by a
different gain factor, 1 and 2, respectively. Then, using
uhd image builder, we created a bitstream that contains the
custom block Gain1, and we used the option −g to open
the Vivado GUI (Xilinx, a) during the FPGA building pro-
cess. We saved this design as a Vivado project. Then, we
added to the project the custom block Gain2, and we ap-
plied Partial Reconfiguration 1 generating static and partial
bitstreams for the Gain1 and Gain2 modules. We tested
these bitstreams using UHD utilities and a C++ application
(see Section 3.3). The first tests failed. Only after finding a
means to freeze the outputs of the RFNoC block while we
are reconfiguring it (see Section 3.1) we tested our design
successfully. Finally, we added support for PR from the
ARM processor to the FPGA of the E310 (see Section 3.2).

1A good reference for this process is the Xilinx tutorial for
Partial Reconfiguration (Xilinx, 2017b)

3.1. Freezing the output of the RFNoC block while
writing the partial bitstream

To avoid glitches at the output during the Partial Reconfigu-
ration of an RFNoC block, we added a freeze input signal to
the design that disables all the outputs of an RFNoC block.
In our example this signal is connected to a pin (GPIO54)
that is controlled by the ARM processor of the Zynq 7020
device. From the embedded Linux, we can thus first export
and initialize the pin, using the commands:

# echo 54 > /sys/class/gpio/export

# echo out > /sys/class/gpio/gpio54/
direction

Then, we can freeze and unfreeze the output of the RFNoC
block by using, respectively, the commands:

# echo 1 > /sys/class/gpio/gpio54/value

# echo 0 > /sys/class/gpio/gpio54/value

Other approaches may be possible, but this approach suits
our demonstration purposes.

Figure 3. Writing the bitstreams to the FPGA of the E310 using a
JTAG connector.

3.2. Writing the bitstream

At first we used a JTAG probe to configure the FPGA with
static and partial bitstreams (see Figure 3). This approach
requires that the user opens the SDR case and buys, or
builds, a non-standard cable. We thus found a means to
write the bitstreams using the FPGA manager drivers in
Linux (version 3.14.2-xilinx). We first freeze the output of
the RFNoC block (see Section 3.1). Then, we write the PR
bitstream using the UHD utility uhd image loader. Finally,
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we unfreeze the output of the RFNoC block. As we are us-
ing a partial bitstream, we should inform the FPGA driver
of the embedded Linux distribution before writing the bit-
stream with uhd image loader. We can enable this option
by using the command:

# echo 1 > /sys/devices/amba.5/f8007000.ps7
-dev-cfg/is_partial_bitstream

We found out that, depending on the Linux kernel ver-
sion, there are some limitations in the driver used to
manage the FPGA. With UHD 3.14 and Linux 3.14.2-
xilinx, both the xilinx devcfg driver and the device file
/sys/devices/amba.5/f8007000.ps7-dev-cfg/ are available.
We could send the full and partial bitstream through the
processor as explained above. Unfortunately, with UHD
3.15 there is a newer Linux kernel, 4.18.33.yocto.standard,
that has a new FPGA manager driver that does not support
the writing of partial bitstreams yet (Xilinx, b). We hope
that this support will be added in a near future.

3.3. Testing the Partial Reconfiguration design

We tested the Partial Reconfiguration design using the
UHD utility program uhd usrp probe to list the RFNoC
blocks that were available in the FPGA, with the option --
args=no reload fpga to avoid overwriting the FPGA con-
figuration with the default bitstream. For example, we used
uhd image loader to load the static bitstream containing
the Gain1 block, we then used uhd usrp probe to list the
blocks and verified that the Gain1 block was present in the
FPGA. We loaded finally the partial bitstream of the Gain2
block and listed again the blocks, observing that the Gain2
block was present, and the Gain1 block was not present
anymore.

We wrote a C++ program using the UHD API (N.
Pandeya, N. Temple, 2016a), derived from the example
code rfnoc rx to file.cpp, which receives radio data, passes
it through an RFNoC block, and streams the results to a
file. We modified this program to add PR. The program
loads a static bitstream (given with the input option --fpga-
path) and starts streaming data through the RFNoC block
(Gain1 in our test). Data received are stored in a file. Then
the first partial bitstream (input parameter --fpga-path-pr1,
containing Gain2) is loaded and output data recorded in a
second file. Finally, the second partial bitstream (input pa-
rameter --fpga path-pr2, again Gain1 here) is loaded and
data streamed to a third file. The content of the three out-
put files is plotted in Figure 4. We observe that after loading
the partial bitstream for Gain2, the magnitude of the com-
plex I-Q data doubles. After loading the partial bitstream
for Gain1, the magnitude of the data halves. These results
validate the right functioning of the PR RFNoC blocks.

Figure 4. Testing the Partial Reconfiguration design with RFNoC
Gain blocks in run-time. Gain1 block in the upper figure, Gain2
in the middle figure, Gain1 in the lower figure.

4. Partial Reconfiguration of RFNoC blocks
from the UHD library

In the previous section, we have shown that FPGA PR is
possible on the E310 platform, using very simple RFNoC
custom blocks. Here we demonstrate PR on more complex
signal processing blocks, using five RFNoC blocks found
in the library delivered with UHD: DDC, FFT, FIFO, FIR,
and SigGen.

Using uhd image loader we created four different FPGA
bitstreams, each with different combinations of the five
RFNoC blocks, as shown in Table 1. We also report the
resource utilization for each bitstream. We observe that
the number of RFNoC blocks that we can instantiate in a
bitstream is quickly limited by the available resources in
the FPGA. For instance, we cannot generate the static bit-
stream containing the four blocks (DDC + FFT + FIR +
FIFO) because it exceeds the resources of the Zynq 7020
device. This could be circumvented using PR if the blocks
can be time-multiplexed.

We did a PR design, as explained in Section 3, generating
static and partial bitstreams for three blocks: FFT, FIR and
SigGen. We tested the PR design using the UHD utilities
uhd image loader and uhd usrp probe (see Section 3.3).
Loading first the static bitstream and then loading in turn
PR bitstream for the FIR, the FFT, and the SigGen blocks,
and observing that they are mutually exclusive (see Fig-
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Table 1. Resource utilization for the four different FPGA bitstreams, containing different combinations of five RFNoC blocks from the
UHD library: DDC, FIFO, FFT, FIR, and SigGen.

ure 5 and Figure 6).

Figure 5. List of RFNoC blocks on E310 board with PR FIR
block.

Figure 6. List of RFNoC blocks on E310 board with PR FFT
block.

To demonstrate the fact that other logic in the FPGA con-
tinues to work without disruption during the dynamic PR
swap, we ran another test. With UHD API we configured
and enabled the RFNoC radio block to produce a signal on
the output, and we visualized it on an oscilloscope. While
the design was running, we loaded a PR bitstream: no in-
terruption has been observed on the generated signal.

During our tests on the E310 platform, we measured the

time elapsed to load a static bitstream and a PR bitstream.
A full configuration, from the ARM processor, last around
143 ms; only 33 ms are required for a PR bitstream. This
means that in our case, PR is four time faster than a full
configuration.

To test the PR design with GNU radio we built, using GNU
radio companion, a flow graph containing the FFT block
(Figure 7) and a flow graph containing the SigGen block
(Figure 8). Before running the first flow graph, on the
target E310, we loaded the static bitstream containing the
FIR, followed by the partial bitstream with the FFT. Sim-
ilarly, before running the flow graph for the SigGen, we
loaded the static bitstream, followed by the SigGen partial
bitstream. In all cases, we ran the GNU radio flow graphs
and verified that the output corresponded to the expected
processing. This step validates the use of PR with real-
world RFNoC blocks.

5. Conclusion and Future Work
We have shown that FPGA Partial Reconfiguration (PR) is
feasible in SDR devices, and we have set up a procedure
to do PR on the USRP E310 SDR device. Using UHD
to control the device, and the RFNoC framework to de-
ploy the signal processing components on the FPGA, PR
integrates nicely with existing design methodologies. We
have used simple custom RFNoC blocks to produce a first
PR design, and we have then applied PR to more complex
RFNoC blocks from the UHD library, confirming the gen-
erality of the approach. Finally, we have successfully tested
these PR designs using: (1) UHD utilities, (2) a C++ pro-
gram directly using UHD, and (3) GNU Radio flow graphs.

Partial Reconfiguration is particularly useful in an SDR ap-
plication requiring, for instance, the reconfiguration of the
signal processing chains or swapping wireless standards at
run-time. It also allows a better use of the limited FPGA re-
sources by time-sharing hardware resources between pro-
cessing blocks that are mutually exclusive, avoiding the in-



FPGA Partial Reconfiguration in Software Defined Radio Devices

Figure 7. GNU Radio graph for the FFT block, target side.

Figure 8. GNU Radio graph for the SigGen block, target side.

crease in costs and power consumption that a bigger FPGA
would entail.

However, support for Partial Configuration is not main-
stream yet. For instance, it is unavailable in the software of
the currently available commercial SDR platforms, such as
the USRP devices from Ettus Research, even though they
contain an FPGA that support this feature. The objective
of our work was to encourage the integration of PR sup-
port into the software of these platforms. For instance, the
support for writing partial bitstreams could be integrated in
UHD, and the freezing of the output of an RFNoC block
could be integrated in the controls of the NoC-Shell.
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