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Abstract

Neural networks typically need huge amounts of data to train in order to get reasonable
generalizable results. A common approach is to artificially generate samples by using prior
knowledge of the data properties or other relevant domain knowledge. However, if the
assumptions on the data properties are not accurate or the domain knowledge is irrelevant
to the task at hand, one may end up degenerating learning performance by using such
augmented data in comparison to simply training on the limited available dataset. We
propose a critical data augmentation method using feature side-information, which is ob-
tained from domain knowledge and provides detailed information about features’ intrinsic
properties. Most importantly, we introduce an instance wise quality checking procedure
on the augmented data. It filters out irrelevant or harmful augmented data prior to en-
tering the model. We validated this approach on both synthetic and real-world datasets,
specifically in a scenario where the data augmentation is done based on a task independent,
unreliable source of information. The experiments show that the introduced critical data
augmentation scheme helps avoid performance degeneration resulting from incorporating
wrong augmented data.

1. Introduction

Data augmentation is often used in image recognition problems as an implicit way to protect
from overfitting by increasing the dataset size. It is typically done using transformations,
such as altering the intensities of RGB channels, cropping, rotation, flipping etc (Krizhevsky
et al., 2012), which we know from domain knowledge that do not change the label of the
instances generated by the augmentation.

In problems other than imaging it can be considerably more challenging to establish label
preserving transformations. For example, in molecule datasets, used for pharmaceutical
drug discovery, it is unclear what, if any, transformation can be applied to compounds,
such that their molecular properties remain intact. Most of the work in data augmentation
has taken place within imaging application and does not transfer in other domains. The
transformations that are used are global transformation that are applied on all the training
data. However there can be class preserving transformations that are instance dependent.
In addition it is not obvious that the resulting augmented data follow the distribution from
which the training data are sampled, (Zhang et al., 2017), and can thus introduce significant
bias which would harm learning.
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In this paper we develop data augmentation methods which do not introduce spurious
artefacts and instances that deviate from the training data distribution. In addition we
explore local, instance dependent, transformations for augmentation instead of the fixed
universal ones typically used. We consider learning problems in which to a certain extend
we have available domain knowledge in the form of what we call feature side-information.
Feature side-information can describe either feature properties and/or feature relations.
Feature side-information has been used in recommendation systems (Rao et al., 2015), to
describe users; in drug efficiency prediction problems, providing physico-chemical molecule
properties; in imaging problems providing additional information about the pixels (Krupka
and Tishby, 2007); as well as in text classification problems describing additional properties
of the words (Mollaysa et al., 2017). We will adopt the framework of Mollaysa et al. (2017)
in which feature-side information comes in the form of vectorial descriptions of additional
feature properties which are then used to define feature similarities. Their framework as-
sumes that features that are similar, according to the domain knowledge, should have a
similar effect on the model output. This allows to generate, hopefully, label-preserving in-
stances and improve the predictive performance. However, the available domain knowledge
might be of poor quality, incomplete, irrelevant, or simply wrong. As a result the gener-
ated instances instead of providing useful additional training instances, provide information
that is detrimental to learning. We will show how we can learn to qualify the augmented
instances and filter them out if their are detrimental to learning, learning along the way
how to do safe data augmentation.

2. Related Work

Data augmentation enlarges the dataset using label preserving transformations in order
to improve the learning performance (Baird, 1992). Many of the existing approaches are
restricted to imaging problems and rely on the application of geometric and/or color aug-
mentation which are known by domain not to affect the class label (Krizhevsky et al., 2012;
Perez and Wang, 2017). An alternative and generic approach, which does not use domain
knowledge, is the addition of small amounts of noise to stabilise the learned model in small
neighborhoods around the training instances (Bishop, 1995).

Hauberg et al. (2015) proposed a model that learns the data augmentation transforma-
tion instead of providing it explicitly. They use a generative model to learn a distribution
of transformations per class, under the assumption that spatial transformations between
images belong to a large class of diffeomorphisms. They then sample an image from the
training data and a transformation from the learned distribution to generate a new within-
class image. AutoAugment (Cubuk et al., 2018) learns a data augmentation policy that
produces sequences of operations by solving a discrete search problem, using as reward the
performance on a validation set. While learning to augment has shown great potential, so
far it has been mostly restricted to imaging problems, is computationally expensive, and
operates in a global manner by applying the same augmentation scheme to all instances
in a batch. Instead, an instance-specific transformation has the potential to bring useful
diversity in the training data.

Generative models such as VAEs (Kingma and Welling, 2013) and GANs (Goodfellow
et al., 2014) can be used to synthesize more data. To gain more fine level control over
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the generated samples many alternatives have been prosposed which enable us to generate
within class samples, such as the Conditional GANs (Mirza and Osindero, 2014), Render
GANs (Sixt et al., 2016), CycleGANs (Zhu et al., 2017a), Conditional VAEs, and their
combinations e.g. CVAE-GAN (Bao et al., 2017). Antoniou et al. (2017) use a GAN to
augment data to generate within class images without requiring label information. Instead
of conditioning on the label as CGAN does, they condition both the discriminator and
the generator on an image itself from an identical class. Such conditioning eliminates the
need for feeding the label to the model, and enables them to generate samples from unseen
classes. Zhu et al. (2017b) used CylceGANs to generate samples for the minority classes
to solve the class imbalance problem in classification tasks.

Lemley et al. (2017) do safe data augmentation, they use two networks, where a first
network learns the best data augmentation to train second network for a downstream classi-
fication task. The loss of the latter network is used to guide the former in learning the data
augmentation. The approach is tied to the classification and it is not clear how to extend
it beyond that. The quality of the augmented data is not considered as long as they cap-
ture the most discriminative features features that can help the downstream classification
network with its task.

Learning the data augmentation, is related to the semi-supervised setting in which we
try to learn the labels for the unlabeled data. Li and Zhou (2010) and Li and Zhou (2015)
learn labels for the unlabeled data such that there is no performance deterioration compared
to an inductive SVM. Data augmentation is also related to adversarial training where the
adversarial examples are added to the model to improve its robustness against such attacks.
(Miyato et al., 2017) seek to identify the adversarial directions in a small neighborhood
around the input data and smooth out the model output along those directions.

The above approaches either use a known label preserving transformation or start from
a zero prior and learn the transformation from the data. Instead, we focus on the case
that we have domain knowledge, that can be incomplete or non-reliable, which we wish to
exploit in order to guide data augmentation process, while aleviating the detrimental effects
that can be introduced due to its non-reliability.

3. Critical data augmentation

We consider a supervised learning setting in which we are given a set of input-output pairs
D = {(xn,yn) ∈ (X × Y),X ⊆ Rd,Y ⊆ Rm, n ∈ Nn}, sampled i.i.d. according to some
unknown probability distribution p. In addition we are also given a matrix Z : d × c, the
ith row of which, zi, contains a description of the ith feature and is provided by domain
knowledge. We call Z the feature side-information matrix. We want to learn a function
φ : X → Y which minimizes the expected loss E[L(φ(x),y)], by using both the input-
output data D and the feature side-information matrix Z, figure 1. We do so by using
Z to augment the training data following Mollaysa et al. (2017). Unlike (Mollaysa et al.,
2017) where are all augmented instances are used in training we construct an instance based
quality control mechanism which learns to reject augmented instances that are produced
from non-relevant or non-reliable information. We call this quality control mechanism
Critical Data Augmentation (CDA). In the next two sections we describe how we use the
side-information for data augmentation and how to learn the quality control mechanism.
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Figure 1: Input instance matrix x and feature side information matrix z. Each column of
z describes the properties of the one of the feature.

3.1. Data Augmentation with Feature Side-information

We leverage the information provided by Z to do data augmentation and improve the
generalization performance. Given two features i, j, with side-information vectors zi, zj , we
define a similarity matrix S which provides the pairwise similarity of the different features.
The sij element of S gives the similarity of the i and j features and is computed with some
similarity function, e.g. sij = exp(−‖zi − zj‖2). To do data augmentation we follow the
assumption introduced in Mollaysa et al. (2017) which states that if two features are similar
then they should affect the model output in the same manner. We use this assumption to
define an output preserving transformation T : x→ x̂, which takes a real training instance
x ∈ X and produces x̂ by modifying the values of similar feature pairs. We define T as:

T (x, sij , λ) = x̂ = x− λei + λej , x ∈ X , sij ∈ S, λ ∈ Ω, (1)

where ei, ej , are the d-dimensional unit vectors with the ith and jth dimensions respectively
equal to one. λ is a scalar representing the size of the augmentation and Ω is computed
from the data distribution and gives the range of the augmentation size.

Given T we define Xc
n, the set of augmented instances the originate from xn, as:

Xc
n = {x̂n|xn − λei + λej , λ ∈ Ω, sij ≥ c}, (2)

c is a similarity threshold which determines the level of similarity above which why can
apply the perturbation. Perturbing the values of features that have a high similarity should
produce an augmented instance the output of which should be similar to the original in-
stance:

φ(xn − λei + λej) ≈ yn. (3)

Such a transformation T when applied on feature pairs with high similarity results in output-
preserving data augmentation, i.e., all generated x̂ ∈ Xc

n have the same output yn. We can
thus exploit in learning both the original and the augmented data, with the latter having
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a stabilization effect on changes of values of similar feature pairs, through the following
learning problem:

min
∑

(xn,yn)∈D

[L(φ(xn),yn) + γ
∑

x̂l
n∈Xc

n

L(φ(x̂ln),yn)]. (4)

γ is a regularization hyper-parameter controlling the importance of data augmentation.
So far we guide data augmentation by the feature similarity. The only constraint that

we impose above is that the feature similarity should be higher than the c threshold in order
to perform data augmentation for a given feature pair. However there is a risk here that
we introduce augmentations that are detrimental to learning when the domain knowledge
is partial or of low quality. The similarity matrix might not reflect correctly the feature
similarities for the learning task at hand, some of the feature similarities might be wrong
or simply irrelevant. Even if the similarities are correct the size of the augmentation can
vary within the input space; depending on the landscape of the true model we can have
regions in the input space that can afford large augmentation size (the true model is flat
in these regions) or regions in which it is very sensitive, thus allowing only very small
augmentations. These observations point to the need to redefine data augmentation as a
local transformation in the input space. Learning local, output-preserving, transformations
is equivalent to learning a probability distribution of p(x|yi) for every yi in the training
set, which we can use subsequently to sample augmented instances x̂ ∼ p(x|yi). When we
have limited training data this is not possible. Thus instead of learning the distribution, we
will use the feature side-information to propose augmented samples and learn to filter those
that do not align with the underlying data distribution. In the next section we describe
how we will perform the filtering.

3.2. Filtered data augmentation

In imaging problems it is relatively easy to asses the quality of data augmentation strategies,
such as rotation and translation, simply by visual inspection. Obviously in the setting that
we consider this is not possible. If we had access to the true model, let us denote it by
φ∗(x), we could use it to control which augmentations are correct. For example given a pair
of features with very high similarity and an appropriate augmentation size the following
approximate equality would hold:

φ∗(x) ≈ φ∗(x + λei − λej), (5)

We do not have access to φ∗(x) but we can use the training data to get an approximation
φ̃ of it:

φ̃ = argmin
φ

∑
(xn,yn)∈D

L(φ(xn),yn) + γR(φ), (6)

where γ ∈ R≥0 is the regularization hyper-parameter and R : φ→ R≥0 is a regularizer such
as L2. We can use φ̃ to control how the model reacts to perturbations of similar features.
If the two features are truly similar, and the augmentation size is correct, then the model
should have similar response on the original and augmented data. Therefore, we can use the
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φ̃(x) to control the quality of the augmented data. Intuitively if the difference of the model
output between the original instance and its augmentation, difference which we define as

d = ||φ̃(x)− φ̃(x + λei − λej)||, (7)

is smaller than some threshold parameter ε then we can accept this augmentation. If on
the other hand the distance is larger than ε then this implies that the two features i and j
affect the model in a different manner and we should reject the augmentation.

We proceed by generating for each training instance (xn,yn) ∈ D, the set of its aug-
mentations {(x̂kn, yn)|x̂kn ∈ Xc

n, k := 1, 2, 3 . . .K}. We denote by dkn = ||φ̃(xn)− φ̃(x̂kn)|| the
model’s output difference between the original instance xn and its x̂kn augmentation. We
need to establish a mechanism that will exclude x̂kn from the learning if dkn > ε and retain it
otherwise. We do so by using the ReLu(ε− dkn) function which will act as a gate, returning
0 when ε ≤ dkn a fact that we will use to exclude x̂kn from the learning. Concretely we define
the following learning problem:

min
φ

∑
(xn,yn)∈D

[L(φ(xn),yn) + γ
∑

x̂k
n∈Xc

n

1

ε− dkn
ReLu(ε− dkn)L(φ(x̂kn),yn)], (8)

The first term in the outer sum is the loss on the original instance while the second term is
the loss over its set of augmentations. Note how ReLu(ε− dkn) together with 1

ε−dkn
controls

whether the xkn augmented instance will contribute to the loss, dkn ≤ ε, or will be ignored,
dkn > ε. As a result, we train the model using the original training data and a part of the
augmented, by rejecting the wrong augmentations. We treat ε as a hyper-parameter to
tune; we determine its range of values through the distribution of dkn = ||φ̃(xn) − φ̃(x̂kn)||
in the validation. Note that if the selected value of ε is ε = inf , this means that all
augmentations are correct and we include them in the training. This also means that the
S matrix is reliable and the size of augmentation is correct. In this case the equations (8)
and (4) are equivalent. If on the other hand the optimal ε is 0 this means that there is no
valid augmentation and we can only train with the real data i.e. eq (6).

4. Optimization

The model we described above can be used both for classification and regression. We use
a standard feed-forward neural network to learn φ. We first train the network with the
existing training data with an early stopping step to get φ̃. We then initialize our network
with φ̃ in the eq (8) and start training using both real and and augmented data. We do
the data augmentation on the fly. We augment each instance xn in the mini batch by
uniformly picking a pair of similar features and applying the T transformation and let the
ReLu determine which augmented instances will be filtered as described above. We can also
update the function approximator φ̃ during training with the newly learned φ. We tested
both using a fixed φ̃ during the full training of the main objective eq (8) as well as using
the previous update of φ as the new φ̃ at each update of main objective (8). The latter
performs better, we thus used it in all our experiments.

In regression problems φ(xn) is the network output with identity activation on the
last layer. Therefore the objective function of eq (8) using an L2 loss is enough to learn

178



Critical Data Augmentation

nearly identical outputs for both the original instance and its augmentations by minimizing
‖yn − φ(xn)‖2 + γ‖yn − φ(x̂n)‖2.

In classification problems φ is given by the last layer’s pre-activation units. These are fol-
lowed by a softmax activation. As we augment by perturbing two features at a time once we
apply the softmax cross entropy loss, we observe that the difference between Lφ(φ(xn),yn)
and Lφ(φ(x̂n),yn) becomes very small. This makes the optimization harder to guide the
model to learn to output similar outputs for both original xn and its augmentation x̂n.
Therefore we also add the constraint ‖φ(xn) − φ(x̂n)‖2 in the objective. Thus the second
term of the objective function given in eq (8) now becomes:∑

x̂k
n∈Xc

n

1

ε− dkn
ReLu(ε− dkn)(γ1L(φ(x̂kn),yn) + γ2‖φ(xn)− φ(x̂kn)‖2). (9)

5. Experimental setup

We compare our method, Critical Data Augmentation (CDA), against two baselines. We
train the first baseline only on real training data using no augmentation, this corresponds
to setting ε = 0 in the objective function of eq (8); we denote this baseline as NN. We
train the second baseline using the real training data and their respective augmentations
with no rejection, i.e. setting ε = inf in the objective function of eq (8), this is essentially
the method introduced in (Mollaysa et al., 2017). We denote this latter baseline as Data
Augmentation (DA). All network architectures are the same. We perform experiments on
synthetic data that we designed specificly, Fashion MNIST and real world data. The code1

for the models are developed in Tensorflow and can be found here.

5.1. Experiments on synthetic data

We want to evaluate how critical data augmentation performs in the presence of noisy
domain knowledge. We design the datasets so that groups of features give rise to latent
factors which determine the output value. The feature side information provides information
on which group a feature belongs to and gives rise to a respective binary similarity matrix.
We then distort the similarty matrix with different levels of noise and experiment with the
different methods.

More precisely we generate the synthetic data as follows. We uniformly sample instances
from Rd and generate the instance matrix X ∈ RN×d. We cluster features to p clusters
(p < d). We use the clusters to define a latent space; each cluster gives rise to a latent
feature. The value of a latent feature is the sum of the values of the features that belong to
its cluster. On the latent space we apply a linear transformation that projects to a space
of lower dimensionality m. On this space we apply an element-wise sigmoid and the final
class assignment is given by the index of the maximum sigmoid value. This generates us
output matrix Y ∈ Rn×m. As already mentioned the feature cluster membership gives rise
to the similarity matrix S; the similarity Sij of the i, j features is one if they are in the same

1. https://anonymous.4open.science/r/c4538ad2-89d7-4c2b-aef9-d32f9b5021be/
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cluster and zero otherwise. We randomly corrupt zero entries and set them to one, thus
wrongly indicating two features as similar while in reality they are not. We only do this
single direction perturbatio because by construction our method can only learn to reject
augmentations over features which are wrongly indicated as similar, but it cannot uncover
similarities that are wrongly missed. We set n = 5000, d = 3000, p = 600 and m = 5, which
produce a similarity matrix S with 0.19% of nonzero elements. We randomly corrupt 0.10%
and 0.20% of the zero entries of the similarity matrix. The pairwise data augmentation
we provide is only one type of augmentation we can consider. The rejection mechanism is
generic and does depend on it. We thus also experiment with a simpler data augmentation
strategy in which we simply add Gaussian noise on the inputs, i.e. x̂n = xn + η where
η ∼ N (0, σ). We apply such perturbation on every intances in the artificially generated
instances matrix X to generate the augmented version x̂i for xi ∈ X.

The goal of this experiment is to check if the rejection mechanism can kick in and learn
to filter out some of these random augmentations. We tune σ in the set {0.01, 0.02, . . . , 0.10}
and the best value is obtained at σ = 0.02. To learn φ we use a three layer network, with
100 and 50 hidden units in the first and second layer. We use ReLU on the hidden layers as
the activation function, followed by batch normalization (Ioffe and Szegedy, 2015). We use
the softmax cross-entropy as the loss function and Adam (Kingma and Ba, 2014) for the
gradient update. We set the maximum number of epochs to 2000 and do early stopping.

We tune the filtering parameter ε on a set of values obtained from the histogram of
d = ‖φ̃(x)−φ̃(x̂)‖2 which we establish on the validation set. We also include zero and infinity
in these values in order to check if the model reduces to one of the two baselines by choosing
to reject all augmentations, i.e. ε = 0, or accepting all of them, i.e. ε = ∞. We provide
the values2 from which we tune ε in the code. We tune the regularizer parameters γ1, γ2
in {0.01, 0.1, 0, 10, 100}. We split the data to a train, validation, and test set, respectively
with 60%, 20%, 20% of the total instances. We tune all hyperparameters based on the
performance on the validation set. We report the test set accuracy of the different methods
in table 1. The best result of the hyper-parameters are obtained at when γ1 = 1, γ2 = 100,
ε = 0.025 for the first two dataset in tabel 1 and γ1 = 1, γ2 = 100, ε = 0.01, σ = 0.02 for
the last dataset. We establish the statistical significance of the results using a McNemar’s
test with a p-value of 0.05.

As it is obvious from the results in table 1, the use of a rejection mechanism that qualifies
the utility of the augmentations brings a statistical significant performance improvement
with respect to the baseline that unconditionally accepts all augmentation, as well as with
respect to the baseline that does no augmentation. As expected the performance gap
increases in favor of CDA with the noise level in the similarity matrix. In addition the
rejection mechanism kicks in with both types of augmentation, i.e. whether we are doing
similarity based pairwise augmentation or whether we are injecting random noise on the
inputs.

The ε parameter controls the level of rejection of augmentation, ε = 0 rejects all aug-
mentation collapsing the model to the standard NN baseline and ε =∞ accepts all augmen-
tations collapsing the method to the DA baseline. In order to get a better understanding of

2. This values are chosen according to the histogram of d = ‖φ̃(x) − φ̃(x̂)‖2. For artificial dataset, we set
the set where we chose ε as {0, 0.0001, 0.001, 0.01, 0.012, 0.013, 0.014, 0.015, 0.016, 0.017, 0.018, 0.019,
0.02, 0.025, 0.023, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.070, 0.075, 1, 10, 100, 10000}
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Dataset CDA DA NN

S-noise level 0.10% 56.4+/+ 56.1 + 50.4

S-noise level 0.20% 55.2 +/+ 54.4+ 50.4

x̂n = xn + η η ∼ N (0, σ) 52.7+/+ 51.8+ 50.4

Table 1: Classification accuracy and performance comparisons on synthetic problems.
CDA: training with filtered augmentations. DA: training with all augmentations.
NN: training with no augmentations. The +,− and = signs give the McNemar’s
statistical significance test results of the comparison of the performance of a given
model to those on its right. +/=/- refer to significantly better/equal/worse.

the performance of CDA as a function of ε we plot in figure 2 the validation set accuracy
as a function of ε. As we clearly see there is an optimal rejection threshold, which typically
will be a function of the dataset, and affects the performance in a significant manner.

Figure 2: Validation set accuracy for different values of ε, S-noise level=10%. When ε = 0,
the model is equivalent to training using onle the real instances. When ε = ∞,
the model accepts all augmentations and trains on both the real and augmented
data.

5.2. Text document classification

To evaluate the performance of the different methods on a set of real world datasets we use
the collection of document classification datasets provided in (Kusner et al., 2015). The
datasets are: BBC sports articles (BBCSPORT) labeled as one of athletics, cricket, football,
rugby, tennis; tweets labeled with sentiments‘positive’, ‘negative’, or ‘neutral’ (TWITTR);
recipes labeled by their region of origin (RECIPE); of medical abstracts labeled by different
cardiovascular disease groups (OHSUMED); sentences from academic papers labeled by
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Date set n d Unique words(avg) m

BBCsport 590 9759 80.9 5

Twitter 2486 4076 6 3

Classic 5675 7628 34.5 4

Amazon 6400 4502 28.8 4

20NEWS 11293 6859 51.7 20

Recipe 3496 4992 44.7 15

Ohsumed 3999 7643 50 10

Reuter 5485 5939 33 8

Table 2: Dataset description

publisher name (CLASSIC); Amazon reviews labeled by product category (AMAZON);
news dataset labeled by the news topics (REUTER); news articles classified into 20 different
categories (20NEWS). We removed all the words in the SMART stop word list (Salton and
Buckley, 1988). To speed up training, we removed words that appear but a few times over
all the documents of a dataset. Concretely, in 20NEWS we reduced the dictionary size by
removing words with a frequency less or equal to three. In the OHSUMED and CLASSIC
datasets, we removed words with frequency one and in the REUTER dataset words with a
frequency equal or less than two. In table 2 we give a description of the final datasets on
which we experiment including the number of classes m and the average number of unique
words per document.

We represent documents as bag-of-words, where obviously the features are the words.
We use the word2vec representations of the words, (Mikolov et al., 2013), as the feature side-
information. The word2vec representations reflect a word’s semantic and syntactic meaning.
If two words are semantically similar, their word2vec representations will be also similar each
other. We apply a heat kernel on the word2vec representation to obtain the feature similarity
matrix S, i.e. Sij = exp(− 1

2σ2 (zi − zj)
T (zi − zj)), zi, zj are the word2vec representations.

We set σ = 1.15 and c = 0.5. This means that we only consider two features, i, j, as similar
when sij ≥ 0.5. We tune ε from the set {0, 0.05, 0.3, 0.7, 1, 1.5, 2, 2.5, 10, 10000} and the
regularisation parameters γ1, γ2, from the set {0.01, 0.1, 0, 10, 100}.

We divide the datasets in train, validation, test sets with the same 60%, 20%, 20%
proportion as in the synthetic datasts, except the 20NEWS, OHSUMED, RECIPE datasets
that come with their predefined train-test separation. We use the same optimization and
parameter tuning setting as the one in the synethetic experiments. With respect to the
network architectures we changed the network hidden layer size to 500 and 100 hidden
units in the first and second hidden layer respectively.

We provide the performance results in Table 3. The tuned best values of the hyper-
parameters that are used to generate the results are given in Table 4. CDA is significantly
better than DA in five out of the eight datasets, significantly worse in two and equivalent
once. In addition it also outperforms NN in a statistically significant manner in five out of
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Date set CDA DA NN

BBCsport 99.32+/= 97.97- 99.32

Twitter 74.43+/+ 73.15- 73.47

Classic 96.96+/+ 96.82= 96.82

Amazon 94.18 +/- 93.06 + 934.25

20NEWS 80.12+/= 79.76= 79.63

Recipe 64.18 +/+ 63.38= 63.15

Ohsumed 65.26-/+ 65.45+ 65.04

Reuter 96.93+/= 96.71- 96.98

Table 3: Classification accuracy and performance comparisons on document datasets. In-
terpretation of column names and +/ = / = is the same as in table 1.

Date set ε γ1 γ2 Date set ε γ1 γ2

BBCsport 0.7 10 10 20NEWS 0.7 100 100

Twitter 2.5 100 10 Recipe 0.7 0.1 1

Classic 1.5 1 0.1 Ohsumed 0.3 10 10

Amazon 0.7 10 10 Reuter 0.7 1 0.1

Table 4: The best hyperparameter values that are used to generate results in Table 3.

the eight datasets, for the remaining three there is no performance difference. The results
provide clear evidence that qualifying the quality of augmentations, instead of uncriticically
accepting all of them, can bring important performance improvements.

A possible explanation for this phenomena is the fact that the text data is quite sparse.
Furthermore, it is constrained by the definition of T and the fact that feature values in
this particular dataset can’t be negative. This means that critical data augmentation is
restricted to feature pairs where at least one of them is none zero. Furthermore, when we
do the augmentation we only consider most similar feature pairs where sij ≥ 0.5 (around
30%) according to the similarity matrix. The word2vec representation is rather stable
and gives global semantic and synthetic similarity of the words. Therefore, the similarity
measure is given by the similarity matrix rather correct and there is very little probability
that the similarity matrix actually contains totally wrong information.

5.3. Fashion-MNIST

To further investigate the effect of the proposed data augmentation scheme, we tested
on Fashion MNIST (Xiao et al., 2017). This dataset includes 60k training and 10k test
instances. We further separated the training data so that we have 50k, 10k, 10k number
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Dataset CDA DA NN

Similar feature pairs augmentation 87.63=/+ 87.37+ 84.35

Gaussian noise perturbation η ∼ N (0, σ) 88.24+/+ 86.73+ 84.35

Table 5: Classification accuracy and performance comparisons on Fashion MNIST. The
interpretation of column names and +/ = / = is identical to Table 1.

of instances in the training, validation, and test set respectively. Two different types of
transformations are considered. In the first type of transformation, we consider X-coordinate
and Y-coordinate of each pixel as the feature side-information. In Fashion MNIST, each
image is 28 pixels in height and 28 pixels in width, for a total of 784 pixels. This gives us
a feature side-information matrix Z784×2, whose each element zi = (xi, yi) represents the
xi and yi coordinate of the i th pixel. The similarity matrix is then calculated according
to the Euclidean distance of the pixels’ coordinates. Two pixels that have a Euclidean
distance ‖zi − zj‖ ≤ 8 are considered to be similar, i.e., sij = 1 while the rest is considered
dissimilar, i.e., sij = 0. We augment each image in the mini batch during training by
randomly selecting a feature pair and do the transformation defined in eq (1). In the original
dataset, the pixel values are between 0 and 255. Prior to training, we normalize the input
data to follow a standard normal distribution. As the pixel values can be negative, when
we do the augmentation, we let the subtracted value λ from pixel i to be its current value.
To increase the effect of augmentation, during training, for each instance, we augmented 5
similar feature pairs, that are randomly selected from the similarity matrix, instead of only
one pair. The filtering parameter ε is tuned from a set {0.02, 0.06, 0.1, 0.3, 0.5, 0.8, 1, 100}.
The best value is obtained at ε = 0.3

For the second type of transformation, we consider Gaussian additive noise, where the
parameter σ is tuned from a set {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and ε is from
{0, 0.3, 0.6, 1, 1.5, 2, 3, 100}. As our focus is not to find the best network architecture, but the
effect of the augmentation scheme, we take the most simple feed forward network with one
hidden layer of size 128 to see if the augmentations improve the generalization performance
over the baseline model. Note that for the vanilla data augmentation (model DA), where
we do not apply the filtering process, but take all the augmentation in during training.
The best hyper parameter for the Gaussian additive noise is archived at σ = 0.2. On the
other hand, for the critical data augmentation model, CDA, the best parameter is chosen
as σ = 0.4, ε = 3. The result is displayed in Table 5. What we observe is that both
data augmentation schemes significantly improve the generalization performance compared
to training with only existing data. Critical data augmentation has a significant impact
on the Gaussian additive noise distortion such that it allows us to augment with higher
variance noise compared to the DA model.
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6. Conclusion and future works

Data augmentation provides and effective and easy way to increase the training sample size
and hopefully, if done correctly, lead to better performing models. In domain other then
imaging where it is straightforward to define valid augmentations defining what a proper
augmentation is, is far from obvious. Typically potential data augmentations are defined
on the basis of domain knowledge. However, very often such knowledge is incomplete or
even wrong. Uncritically accepting augmentations based on such domain knowledge can
have detrimental effects on the predictive performance instead of improving it as the goal
is. The alternative approach that relies on generative models is not only computational
expensive but practically impossible when the available training data are limited.

In this paper we presented a method that we call critical data augmentation. The
method exploits available domain knowledge to do instance augmentation. Unlike previous
methods, it learns to critically qualify the produced augmentations and learns to reject
them from being used as a part of the learning data. We evaluated our method both on
synthetic datasets, exploring various levels of defective domain knowledge as well as on real
world datasets. The results clearly show that critical data augmentation brings performance
improvements compared to baselines that either, uncritically, use all augmentations or do
no augmentation at all.
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