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Abstract— We study the problem of charging an arbitrary
number of plug-in electric vehicles (PEV) under a real-time
electricity tariff that depends on the instantaneous grid load,
with the addition of a stochastic process that affects the non-
PEV demand. Each PEV is subjected to individual and cou-
pling constraints. Formally, we are facing a Generalized Nash
Equilibrium (GNE) seeking problem for stochastic aggregative
games. The stochastic dynamics is modelized as an event tree
and included according to the S-adapted information structure,
which is suitable to describe stochastic processes that are inde-
pendent of the players’ control. The equilibrium is calculated by
employing a decentralized scheme. We observe that the valley-
filling behavior, which has been observed in previous studies
concerning the PEV problem, can be significantly altered by
the stochastic dynamics.

I. INTRODUCTION
In the last years, plug-in electric vehicles (PEVs) have

been subject to increasing market penetration, and are ex-
pected to achieve greater importance in the future [1]. A
significative PEV share among the population raises new
problems in the electrical grid management. Indeed, a new
demand peak is expected to emerge during evening or by
night, requiring additional electricity generation and grid
capacity [2], [3]. The idea of modifying the users’ behavior
to obtain a shift in the PEV charging intervals, with the aim
of reducing the grid load, plays a central role in the demand-
side management for smart grids (see, for instance, [4], [5]).
In the last decade, noncooperative game theory, that had
previously mainly focused on supply-side management (see
[6] for an example concerning electricity markets), has been
employed in an increasing number of studies for regulating
electricity demand. In particular, Ma, Callaway and Hiskens
[7] proposed a game-theoretic, decentralized scheme based
on a real-time electricity tariff depending on the instanta-
neous demand of electricity. Their approach converges to an
unique Nash equilibrium in the large-population limit, and
has been later extended to describe additional features, such
as battery degradation [8] and grid overloads [9].

The PEV charging problem formulated by [7] falls within
the class of aggregative games (see e.g. [10], [11]), ac-
cording to which each player’s cost function only depends
on the other players’ strategies through the sum of their
respective controls. In the last years, decentralized and semi-
decentralized methods to find Nash [12] or ε-Nash equilibria
[13], [14], [15] in deterministic aggregative games with
individual constraints have intensively been studied.
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Some attention has been further devoted to the study of
Generalized Nash Equilibria (GNE), where players are also
subjected to coupling constraints. The concept of GNE was
firstly introduced in [16] and developed, to cite some of
the main contributions, by [17], [18], [19]. Decentralized
or semi-decentralized methods have been proposed to reach
GNE equilibria for deterministic aggregative games [20],
[21], [22] or aggregative equilibria, that correspond to GNEs
in the large-population limit [23].

Among the above references, some variants of the PEV
problem were discussed in [14], [15], [20], [23]. In this
paper, we focus on the PEV problem as it is formulated
in [7], but consider in addition a coupling constraint that
imposes an upper limit to the aggregate PEV demand [20],
[23]. Furthermore, we do not require the PEV population to
be large, and are therefore concerned with a GNE problem
similar to [20], with the difference that the price function
we employ is convex but not necessarily linear. As a main
contribution of this paper, we add a discrete-state stochastic
dynamics that influences the non-PEV demand curve. To
this purpose, we formulate the game according to the S-
adapted information structure, a formalism introduced by
Haurie, Zaccour and Smeers [24], and successively studied,
to cite a few examples, in [25], [26], [27], [28], [29]. It
is intended for games subject to an exogenous stochastic
process that does not depend on the player’s actions. During
the game evolution, players are not allowed to observe the
other players’ actual controls, but can nevertheless inspect,
at each time step, the realization of the exogenous stochastic
process, and accordingly react by choosing a suitable control.
We model the stochastic process by a decision tree and
show that the extended game reformulation proposed by
[20] can be generalized to our situation. We calculate a
solution of the extended GNE problem by employing an
extragradient algorithm [30] that solves the corresponding
variational inequality.

We remark that some studies already exist concerning
stochastic Nash equilibria seeking in aggregative games.
Stochastic ε-Nash equilibria for unconstrained games, that
converge towards Nash equilibria in the large population
limit, are treated in [31], while different methods to cal-
culate stochastic Nash equilibria are discussed in [32], [33].
Furthermore, [34] provides a distributed scheme to compute
GNE in stochastic games, where they employ a penalty-
based scheme to enforce the constraints to be satisfied. These
references differ from our case in that they sample data to
make inferences on the random distribution. In our model,
by contrast, players are assumed to know in advance the
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properties of the underlying stochastic process. Moreover,
as an important difference with respect to our paper, the
above references are not concerned with the modelization of
explicit time dynamics and nonanticipative behavior. Finally,
we notice that our model presents some similarities with [35],
which employ a model predictive control scheme to account
for sudden deviations of the non-PEV demand curve. In this
case, however, uncertainty is not modelled as an event tree:
rather, the optimal control is recalculated at each period on
the basis of new observation, by assuming a deterministic
future evolution of the non-PEV demand curve.

This paper is organized as follows: in Section II, we
introduce the basic model for the deterministic case, and
review the main concepts concerning GNEs and variational
inequalities. In Section III, we discuss the S-adapted infor-
mation structure, add the stochastic dynamics, and formulate
the problem as an extended variational inequality for N +
1 players to allow the equilibrium to be calculated in a
decentralized way. Finally, Section IV applies the developed
formalism to a simple numerical example.

Notation: We use boldface to denote vectors, and calli-
graphic style to denote sets. To collect scalars or vectors
into a larger vector we use a notation of the type u :=
(un; n ∈ {1, ..., N}) := (u1, ...,un), where u ∈ RNT

and un ∈ RT . For a scalar function J(x,y), where
x ∈ RT , the gradient ∇xJ(x,y) is defined as the vector
(∂xt

J(x,y); t ∈ {1, ..., T}) ∈ RT . The Euclidean scalar
product is denoted by 〈·, ·〉.

II. THE DETERMINISTIC PEV PROBLEM

A. Basic model

In this section, the PEV problem is formulated by closely
following the formalism employed in [7]. We consider a
population of N PEV’s that must achieve a full battery
charge before the end of a given time horizon. The whole
time interval is divided into a set T := {1, ..., T} of periods.
During each period t, the n-th PEV applies a constant control

un,t ≥ 0, (1)

which describes the power according to which the battery
is charged. The state-of-charge xn,t of PEV n at period t
is a real number ranging between 0 (out of charge) and
1 (full charge). Starting from an initial state xn,1 < 1, its
dynamics is governed by the equation xn,t+1 = xn,t +
(αn/βn)un,t, t ∈ T , where 0 < αn ≤ 1 and βn > 0 denote
the charging efficiency and the battery size, respectively. In
order to achieve a full charge, the controls must be chosen
so that, at the end of the charging horizon,

xn,T+1 = 1, ∀n ∈ N . (2)

We define a strategy for PEV n as the vector un :=
(un,t; t ∈ T ) ∈ RT , and accordingly introduce the set Un :=
{un ∈ RT : un,t ≥ 0 ∀ t ∈ T , xn,T+1 = 1} of all strategies
that fulfill the local constraints (1) and (2). Furthermore,
we consider the aggregate quantity ūt := N−1

∑N
n=1 un,t

describing the average control during each period. Unlike in
[7], we require that the coupling constraint

ūt ≤ Ct ∀ t ∈ T , where Ct > 0, (3)

must hold (see e.g. [20], [23]). This constraint imposes an
upper bound to the power that can be delivered to the grid
for charging PEVs. Denoting by u := (un;n ∈ N ) ∈ RNT

the collection of strategies for the entire PEV population,
we finally define the set U := {u ∈ RNT : ūt ≤ Ct ∀ t ∈
T , un ∈ Un ∀n ∈ N} of feasible collections of strategies,
to which we will simply refer as the set of feasible controls.

Proposition 1: For Ct large enough, the set U of feasible
controls is nonempty, compact and convex. For T > 1,
it further satisfies Slater’s constraint qualification, i.e., its
relative interior contains points for which un,t > 0 and
ūt < Ct.
The PEV problem can be formulated as a game by associat-
ing each PEV to a player, and by considering appropriate cost
functions that players wish to minimize. The approach in [7]
is that of employing a real-time electricity tariff depending on
the total instantaneous electricity demand, and to introduce
functions representing the cost for charging each PEV. We
consider cost functions of the form

Jn(u) :=
∑
t∈T

p

(
1

c
(dt + ūt)

)
un,t, (4)

(see [7], [20]) where the functional p(·) describes the real-
time electricity tariff, and takes as an argument the ratio
between total average demand dt + ūt, where dt ≥ 0
denotes the average non-PEV demand per single player at
period t, and average generation capacity c > 0 per single
player. The above choice of the cost function is made for
simplicity, although, in practice, the real-time pricing does
not depend on the instantaneous demand, but is rather defined
by auctions in the day-ahead or intra-day energy markets.
We furthermore make the following standard assumption
concerning the price function.

Assumption 1: The price function p(·) is convex, strictly
increasing and twice differentiable.

The convexity assumption is realistic in electricity mar-
kets, where generation capacities are fixed in the short
term, and where marginal costs are increasing. Notice that
Assumption 1 is slightly stronger than the assumption made
by Ma, Callaway and Hiskens [7], which employ con-
tinuously differentiable, strictly increasing price functions.
Future research may be devoted to clarify whether the twice
differentiability assumption can be relaxed to continuous
differentiability.

B. Generalized Nash Equilibria and Variational Inequalities

In order to bring into evidence the controls of player
n, let us reformulate the notation for the collection u
of strategies according to (un,u−n), where u−n :=
(um;m ∈ N , m 6= n) represents the collection of strategies
of all players other than n. We are now in the position to
define Generalized Nash Equilibria.



Definition 1: A collection u∗ ∈ U of strategies is a
Generalized Nash Equilibrium (GNE) if, ∀n ∈ N ,

Jn (u∗) ≤ Jn
(
un,u

∗
−n
)

(5)

for any strategy un satisfying
(
un,u

∗
−n
)
∈ U .

As shown by Rosen [17] (see also the more recent work
of Facchinei and Kanzow [36]), the vector u∗ is a GNE if it
solves the variational inequality VI(Fr,U), which is given
by

〈Fr(u∗),u− u∗〉 ≥ 0, ∀u ∈ U , (6)

where Fr(u) :=
(
rn∇un

Jn(u); n ∈ N
)
∈ RNT is

a pseudogradient vector defined in terms of N parameters
rn > 0. A GNE of this type is called a normalized equi-
librium. Notice that the above relation does not hold in the
opposite direction: there may exist GNEs that do not solve
the variational equality for any rn > 0. Rosen also showed
that a normalized equilibrium exists if the cost functions are
convex in each variable and continuously differentiable, and
if the set U of feasible controls satisfies the properties verified
by Proposition 1. Moreover, for any choice of parameters
rn > 0, the corresponding normalized equilibrium is unique
if the pseudogradient Fr is strictly monotone, i.e., if

〈Fr(u)− Fr(u′),u− u′〉 > 0, ∀u,u′ ∈ U . (7)

Proposition 2: Suppose that Assumption 1 holds. Then,
the pseudogradient Fr(u) of the cost functions defined in
(4) is strictly monotone on U .

Proof: Let Gr(u) ∈ RNT×NT be the Jacobian of
the pseudogradient Fr(u). As proven in [17], Theorem 6,
showing that Gr(u) + G>r (u) is positive definite on U is
sufficient to ensure that Fr(u) is strictly monotone. Since
p′(rt) > 0 and p′′(rt) ≥ 0 (Assumption 1), and since
controls are nonnegative (1), it is easy to verify that all
elements of Gr(u) are strictly positive. From this fact, we
conclude that Gr(u) +G>r (u) is positive definite on U , and
therefore Fr(u) is strictly monotone.
From the aforementioned results of Rosen [17], Assump-
tion 1, together with Proposition 1 and 2, guarantees ex-
istence and uniqueness of a normalized equilibrium of the
PEV problem for every choice of parameters rn > 0. In
this paper, we focus on the normalized equilibrium defined
by rn = 1 ∀n ∈ N . For this peculiar case, we omit the
subscript r and simply denote the pseudogradient by F (u).

III. THE STOCHASTIC CASE

A. The S-adapted information structure

In this section, we will redefine the quantities un, u,
Un, U , J(un,u−n), and F (u) by generalizing them to a
stochastic case. Let (Ω,F,P) be a probability space. We
introduce a discrete-time, discrete-state stochastic process ξ :
Ω×T → S , where S = {1, ..., S} denotes the set of possible
states. By convention, the initial state is fixed according to
ξ(ω, 1) ≡ 1 ∀ω ∈ Ω. Let {∅,Ω} ≡ F1 ⊆ F2... ⊆ FT , with

FT ⊆ F, be the natural filtration of the σ-algebra F induced
by the stochastic process ξ.

Definition 2: Given an ω ∈ Ω, the functional ξt(ω, ·) :
{1, ..., t} → S , defined by ξt(ω, t

′) := ξ(ω, t′), is called a
sample path of the stochastic process up to period t ∈ T . A
sample path ξT (ω, ·) up to the last period T is also called,
in short, a sample path.
We represent all sample paths by an event tree with T periods
and K nodes. Let K := {1, ...,K} be the set of all nodes,
and K(t) ⊂ K the set of all nodes at period t. We denote by
kt an element of K(t), and by A(kt) the set composed by
kt and by all of its ancestors.

To each node kt, it corresponds a realization ξ(kt) ∈ S of
the random variable. We assume that the state ξ(kt) affects
the exogenous, non-PEV demand dt, and accordingly denote
by d(kt) the non-PEV demand at node kt. For each player n,
a control un(kt) is associated to node kt, and we accordingly
define the control vectors un :=

(
un(kt); kt ∈ K

)
∈ RK .
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Fig. 1. An event tree with S = 3, T = 3 and K = 13. It holds, as an
example, that K(2) = {2, 3, 4}, A(5) = {1, 2, 5}, ξ(2) = 1, ξ(3) = 2,
and ξ(4) = 3.

According to the S-adapted information structure, in order
to reflect nonanticipativity, the control un,t chosen by player
n at period t must be Ft-measurable; in other words, it can
only depend on t and on the sample path ξt(ω, ·) of the
stochastic process up to period t. It is easy to understand that
an event tree offers a natural way to represent this structure
(we refer to [37] for more details about event trees in the
S-adapted information structure). Since each node kt has an
unique set of ancestors, there is indeed an unique sample path
ξt(ω, ·) up to period t leading to node kt. We may identify
this sample path with the vector ξ(A(kt)) := (ξ(kt′); kt′ ∈
A(kt)). We accordingly call the above-defined vector un of
controls un(kt) ∀ kt ∈ K an S-adapted strategy for player n.
Analogously as before, the collection of S-adapted strategies
will be denoted by u ∈ RNK . The set of feasible controls
is also generalized in a straightforward way. For the sake of
completeness, let us first define Un := {un ∈ RK : un(kt) ≥
0 ∀ kt ∈ K,

∑
kt∈A(kT ) un(kt) = γn ∀ kT ∈ K(T )}. Then,

the whole set of feasible controls reads U := {u ∈ RNK :
un ∈ Un ∀n ∈ N , ū(kt) ≤ Ct ∀ kt ∈ K}, where ū(kt) :=
N−1

∑
n∈N un(kt).

We are now in the position to introduce the cost functions
for the stochastic PEV problem. Consider at first a sample



path ξ(A(kT )) of the stochastic process, and associate to it,
for player n, the (deterministic) cost function

JkT
n (un,u−n) :=

∑
kt∈A(kT )

p

(
d(kt) + ū(kt)

c

)
un(kt).

(8)
The S-adapted, stochastic cost function Jn(un,u−n) is
defined as the expectation value of (8) over all sample paths.
Denoting by P (kt) the probability for node kt, we write

Jn(un,u−n) :=
∑
kt∈K

P (kt) p

(
d(kt) + ū(kt)

c

)
un(kt).

(9)
We finally redefine the pseudogradient according to

F (u) :=
(
∇unJn(un,u−n); n ∈ N

)
∈ RNK . Following

the same argument used for Proposition 2, we easily con-
clude that, if Assumption 1 holds, the pseudogradient F (u)
is strictly monotone.

B. Extended Game Reformulation

In [20], a reformulation of GNE problems as NE problems
with N + 1 players is made. Applying this reformulation to
our case, the cost functions become

J̄n(u,λ) := Jn(u) +
∑
kt∈K

λ(kt)un(kt), n ∈ N (10)

J̄N+1(u,λ) := −
∑
kt∈K

λ(kt)

(∑
n

un(kt)−NCt

)
, (11)

where λ := (λ(kt); kt ∈ K) ∈ RK denotes the strategy
for the (N + 1)-th player (we will also use the notation
uN+1 to refer to λ). The set of feasible controls is given by
Ū := {(u,λ) : un ∈ Un, ;∀n ∈ N ; λ(kt) ≥ 0, ∀ kt ∈ K}.
Notice that, as an important difference with respect to the
original formulation, all constraints are now individual. The
original coupling constraint has been replaced by the action
of the (N+1)-th player, which can be interpreted as a central
operator establishing an additional price λ(kt) to incentivize
the other N players to fulfill the original coupling constraint
(3). Indeed, if the original constraint is violated, the central
operator cost function becomes unbounded by below, so that
an equilibrium is only possible when (3) is satisfied.

From Paccagnan et al. [20], Lemma 3, we conclude that,
if the extended game on Ū with cost functions (10) and (11)
has an unique NE, this equilibrium corresponds to the unique
solution of the variational inequality VI(F ,U). In turn, the
extended game can be equivalently reformulated in terms
of a variational inequality VI(F̄ , Ū) with pseudogradient
F̄ (u,uN+1) :=

(
∇un̄

J̄n̄(u,uN+1); n̄ ∈ N ∪ {N + 1}
)
∈

R(N+1)K .
Proposition 3: The pseudogradient F̄ (u,λ) of the cost

functions (10) and (11) is strictly monotone on Ū .
Proof: It is easy to verify that

〈F̄ (u,λ)− F̄ (u′,λ′), (u,λ)− (u′,λ′)〉
=〈F (u)− F (u′), (u− u′)〉, (12)

so that Proposition 3 directly follows from the strict mono-
tonicity of F (u).
Proposition 3 guarantees that the extended-game variational
inequality VI(F̄ , Ū) has an unique solution [17]. From the
aforementioned argument in Paccagnan et al. [20], we con-
clude that this solution is also the unique solution of the vari-
ational inequality VI(F ,U), and therefore, by Rosen [17],
it solves the original GNE problem as well. The extended-
game reformulation proves itself to be useful for constructing
decentralized mechanisms to calculate the GNE. In this
study, we apply the extragradient algorithm described by
[30] to calculate the solution of VI(F̄ , Ū). Similarly to the
APA algorithm in [20], the central operator communicates
to the players, at each iteration step, the aggregate PEV
demand ū(kt) and the price λ(kt) for all nodes kt ∈ K,
while the controls update is performed individually, and then
communicated back to the central operator. Then, in turn,
the central operator updates the price λ(kt+1) which will be
used for the next iteration. Notice that we do not require
strong monotonicity of the pseudogradient, which is used in
[20] to guarantee convergence of the APA algorithm. While
being sufficient for ensuring existence and uniqueness of the
solution of VI(F ,U), strict monotonicity is less demanding
in terms of the price function structure (we remark that [20]
just considers quadratic games, and therefore linear price
functions).

IV. NUMERICAL EXAMPLE

A. Setup

We consider a two-state (S = 2) Markov process for
the non-PEV demand dt, and a full-day time horizon with
periods of one hour each (T = 24). Demand states are
defined by a base-case demand curve d(1)

t , equal to the one
used by [7], and by a high demand curve d

(2)
t = d

(1)
t +

0.5 kW. Due to external conditions, for instance weather, the
actual non-PEV demand realization dt can jump from one
curve to the other. In the simple example discussed here,
we limit the periods where jumps are allowed to the set
T̃ ≡ {5, 9, 13, 17, 21}, and accordingly divide the day into
six intervals It̃ := {t̃, ..., t̃ + 3} of four hours each, where
t̃ ∈ {1} ∪ T̃ . The tree describing the stochastic process
is composed of 252 nodes, among which there are 32 leaf
nodes, each corresponding to one sample path. Notice that
an internal node kt has two children nodes if t ∈ T̃ , and one
child node otherwise. For the Markov process, we consider
the dynamics described by the transition matrix Pih = 1/2,
for any i, h ∈ S = {1, 2}. At every t̃ ∈ T̃ , there is therefore
an equal probability of remaining on the current demand
curve or jumping to the other one.

We consider a population of N = 10 PEV’s with prop-
erties equal to the heterogeneous-case example discussed in
[7]. More specifically, the initial state-of-charge, charging
efficiency, and capacity per single PEV amount to xn,1 =
0.15, αn = 0.85 and c = 12 kW for all n ∈ N , respectively.
The battery sizes βn are equal to 10, 15 or 20 kWh, and
are found with a proportion of 50%, 30% and 20% of the



entire population, respectively. The price function is given by
p(r) = 0.15 r3/2 $/kWh. Finally, we consider the coupling
constraint Ct = 1.5 kW for any t ∈ T .

B. Results

We implemented the extragradient algorithm in Octave,
and used the “quadprog” solver to perform projections on
the set Ū of feasible controls. As a result, we find that the
control vector u solving the GNE problem depends on the
demand state ξ(kt) only for t ∈ I9 ∪ I13 ∪ I17, while the
demand realization during the other three time intervals turns
out to be irrelevant. This can be explained i) by the large non-
PEV demand during intervals I1 and I5, so that controls
are zero in any case, and ii) by the fact that, during the
last interval I21, a well-defined amount of power is left to
be charged, and the control to achieve it cannot depend on
a constant shift of the non-PEV demand. We are therefore
left with eight different controls for each player, each being
characterized by the non-PEV demand realization between
t = 9 and t = 20. The average control ūt is plotted in Fig. 2
for the eight different cases. We may verify that controls
are clearly nonanticipative, in the sense that any two sample
paths being equal up to period t ∈ {12, 16, 20}, have controls
that perfectly overlap up to that period. It is also interesting
to notice that the effect of high non-PEV demand is that of
postponing part of the charging load, in the hope that demand
will eventually come back to its lower state at a later period.
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Fig. 2. Average control ūt for the eight different cases found in the
solution. The six time intervals It̃ are separated by dotted, vertical lines,
while horizontal lines denote the coupling constraint Ct. In the legend, to
describe the sample paths, the i-th character after the d denotes the state
(“1”: low, “2”: high) during the i-th time interval, and asterisks denote the
time intervals during which controls do not depend on the demand state.

The four controls shown in the upper part of Fig. 2 are
also plotted in Fig. 3 in the case of some specific non-PEV
demand realizations. Again, because of nonanticipativity, all
curves are equal up to the third time interval (t = 12), while
they are pairwise equal, for any two subplots on the same

horizontal axis, up to the fourth time interval (t = 16). We
may also remark that the total demand curves clearly deviate
from the valley-filling property observed in [7], a first reason
being the existence of the coupling constraint Ct, which is,
for instance, active during the whole time interval I13 for
the two upper subplots. A second, more interesting reason
preventing perfect valley-filling is intrinsic of the S-adapted
structure itself. For instance, the left subplots show a small
“bump” in the charging controls after t = 17, which cannot
be explained by the coupling constraint. Instead, the player
is considering here the risk of having high demand during
the last interval I21, and decides that it is better to increase
the control during I17, so that less charging power is left for
the last, still uncertain interval.
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Fig. 3. Non-PEV demand and total demand for some specific sample paths.
The six time intervals It̃ are separated by dotted, vertical lines.

C. The cost of perfect information

Finally, we compare the expectation value of the aver-
age cost for charging a PEV when the GNE is calculated
employing three different information structures: i) a model
with perfect anticipative information, where the equilibrium
is calculated by exactly knowing, from the very first period,
the realization of the whole sample path; ii) the S-adapted
information structure exposed in this paper; iii) a deter-
ministic naı̈ve approach which makes use of the expected
demand, i.e., the average between low and high demand.
For these three information structures, the expected costs
amount to 1.1027 $, 1.1044 $ and 1.1066 $, respectively. We
can observe that, with respect to perfect information, the S-
adapted information structure leads to a 0.15% increase of
price, while the naı̈ve approach leads to an increase of 0.35%.
Therefore, the cost of the S-adapted model stands slightly
closer to perfect information than to the naı̈ve approach.

V. CONCLUSIONS

By employing an event tree, we have made use of the
S-adapted information structure to describe an exogenous
stochastic process that affects the non-PEV demand and, in
turn, the real-time price of electricity. We have observed
that, as expected, the effect of higher non-PEV demand
is the one of delaying the charging controls of each PEV



towards later periods. Furthermore, we have noticed that the
valley-filling behavior observed in [7] can be compromised
by the stochastic structure. Similarly to the deterministic
model proposed in [20], our method works for an arbitrary
number N of PEVs, and is able to deal with the presence of
coupling constraints. As a difference, however, we employ
a more general price function, since we do not require the
cost function to be quadratic in the controls.
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