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ABSTRACT We report here the draft genome sequences of Arthrobacter sp. strains
4041 and 4042, both of which possibly belong to the diverse Arthrobacter agilis spe-
cies and are potentially usable as plant biostimulants for agriculture and as depollut-
ing bacteria for the environment.

Arthrobacter spp. (Actinobacteria) are Gram-positive soil bacteria, appearing in a
rod or coccoid shape (1), which grow under aerobic and anaerobic conditions

(1). They are present in Antarctic (2) and desert (3) soils and in alkaline and
subglacial lakes (4, 5), and some species are known to promote plant growth (5–8),
to inhibit plant-pathogenic bacteria and fungi or wood-decaying fungi (7, 9), and to
degrade a wide range of organic and polyaromatic pollutants (4, 10, 11).

These two strains were isolated from soil samples in western France. DNA was
extracted with a modified cetyltrimethylammonium bromide (CTAB) protocol (12) from
a pure culture grown exponentially from a single colony in LB broth. The sequencing
library was built with the TruSeq Nano DNA PCR-free library preparation kit (Illumina,
USA). Whole-genome sequencing was carried out within one Illumina MiniSeq run
at a 2 � 151-bp paired-end read length using a MiniSeq high-output kit, with
resulting genome coverages of 452� and 473� for strains 4041 and 4042, respec-
tively. Overall quality metrics of the reads were assessed with FastQC version 0.11.5
(13). Genome assemblies were produced with SPAdes genome assembler version
3.10 (14), set in “paired-end assembly, careful mode,” and yielded 31 and 34 contigs
(�200 bp) for strains 4041 and 4042, respectively. They were finally ordered with
BioEdit version 7.0.5 (15) and analyzed with QUAST version 4.6.3 (16) set as “QUAST:
skip contigs shorter than 200 bp.” The total genome length was 3,878,126 bp with
a GC content of 67.66% and an N50 value of 466,984 bp for the strain Arthrobacter
sp. 4041 and 3,235,327 bp with a GC content of 68.85% and an N50 value of
391,935 bp for the strain Arthrobacter sp. 4042. A BLAST search of the complete 16S
rRNA gene of these 2 strains showed that these strains share about 99.7% identity
with several Arthrobacter agilis strains in the GenBank nucleotide database (17).
Automated gene annotation was carried out by the NCBI Prokaryotic Genome
Annotation Pipeline (PGAP) version 4.1 (18) and Rapid Annotations using Subsys-
tems Technology (RAST) version 2.0 (19) using the ClassicRAST annotation scheme.
PlasmidFinder version 1.3 (20) and plasmidSPAdes (21), both with default settings,
did not detect any plasmids. PGAP identified 3,536 genes and 3,416 proteins in
strain 4041 and 2,995 genes and 2,885 proteins in strain 4042. No known prophage
was found. Based on the PGAP annotation, the NCBI genome neighbor report
showed that strains 4041 and 4042 displayed 48.85% symmetric identity and
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83.42% gapped identity with each other. Compared to the 2 other publicly available
genomes, strain 4042 shared 99.85% symmetric identity and 99.99% gapped iden-
tity with A. agilis strain CGMCC 1.15723 from China, while 4041 displayed 56.82%
symmetric identity and 86.29 gapped identity with strain UMCV2 from Mexico (8),
confirming an observed high variability in the Arthrobacter genus (1). Their se-
quences also predicted resistance to antibiotics and toxic metal compounds. Strain
4041 has genes potentially involved in auxin synthesis and a nitrilase gene. Both
strains are considered for agricultural and environmental uses.

Data availability. These whole-genome shotgun (WGS) projects were deposited at
DDBJ/EMBL/GenBank under the accession numbers NFSC00000000 for Arthrobacter
sp. strain 4041 and NFSD00000000 for Arthrobacter sp. strain 4042. The versions
described in this paper are the first versions, NFSC01000000 and NFSD01000000.
Concerning contigs, 31 and 34 contigs for Arthrobacter sp. strains 4041 and 4042,
respectively, have been deposited at DDBJ/EMBL/GenBank under the accession num-
bers NFSC01000001 to NFSC01000031 and NFSD01000001 to NFSD01000034. Raw
sequencing data sets have been registered in the NCBI Sequence Read Archive data-
base (22) under the accession numbers SRR5513009 for strain 4041 and SRR5513012 for
strain 2042.
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