Fichiers

Résumé

The building sector contributes up to 40% of energy consumption and 30% of greenhouse gases emissions (GHG) worldwide [1]. One of the main driver to mitigate these energy and GHG emissions is the renovation of existing buildings. While the energy demand is reduced during an energy related renovation, investment costs and environmental impacts increase due to the materials and building integrated technical systems (BITS) replaced or added to improve its energy performance. To address these trade-offs, there is a need to consider a life cycle approach to avoid impacts’ transfer between the operational and embodied energy and impacts. In this paper, we present a pragmatic Life Cycle Assessment (LCA) methodology for energy related renovation measures of building developed in the framework of the IEA annex 56 “Cost effective energy and carbon emissions optimization in building renovation”. The approach is consistent with the existing building LCA's state-of-the-art but goes into a more applicable methodology by focusing only on the significant life cycle stages for energy related building renovation i.e. the production, transportation, replacement and end of life of new materials for the thermal envelope and building integrated technical systems (BITS) and the operational energy demand. In this paper, the methodology is applied on a Swiss multi-family residential building built in 1965 which was renovated in 2010. The LCA is presented using three indicators: the total and non-renewable cumulative energy demand (CED) and the global warming potential (GWP). Results show that embodied CED and GWP remain negligible in the renovated building compared to the energy savings. Further studies are needed to further apply this LCA methodology.

Détails

Actions

Aperçu