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One way to make the knowledge stored in an artificial neural network more intelligible is to extract symbolic rules. However,
producing rules from Multilayer Perceptrons (MLPs) is an NP-hard problem. Many techniques have been introduced to generate
rules from single neural networks, but very few were proposed for ensembles. Moreover, experiments were rarely assessed by
10-fold cross-validation trials. In this work, based on the Discretized Interpretable Multilayer Perceptron (DIMLP), experiments
were performed on 10 repetitions of stratified 10-fold cross-validation trials over 25 binary classification problems. The DIMLP
architecture allowed us to produce rules from DIMLP ensembles, boosted shallow trees (BSTs), and Support Vector Machines
(SVM). The complexity of rulesets was measured with the average number of generated rules and average number of antecedents
per rule. From the 25 used classification problems, themost complex rulesets were generated fromBSTs trained by “gentle boosting”
and “real boosting.” Moreover, we clearly observed that the less complex the rules were, the better their fidelity was. In fact, rules
generated from decision stumps trained by modest boosting were, for almost all the 25 datasets, the simplest with the highest
fidelity. Finally, in terms of average predictive accuracy and average ruleset complexity, the comparison of some of our results to
those reported in the literature proved to be competitive.

1. Introduction

The explanation of neural network responses is essential for
their acceptance. As an example, physicians cannot trust any
model without any form of enlightenment. An intuitive way
to give insight into the knowledge embedded within neural
network connections and neuron activation is to extract
symbolic rules. However, producing rules from Multilayer
Perceptrons (MLPs) is an NP-hard problem [1].

In the context of classification, the format of a symbolic
rule is given as follows: “if tests on antecedents are true then
class 𝐾,” where “tests on antecedents” are in the form 𝑥𝑖 ≤ 𝑡𝑖
or 𝑥𝑖 ≥ 𝑡𝑖, with 𝑥𝑖 as an input variable and 𝑡𝑖 as a real
number. Class 𝐾 designates a class among several possible
classes.The definition of the complexity of the extracted rules
is often described with two parameters: number of rules and

number of antecedents per rule. Rulesets of low complexity
are preferred compared to those with high complexity, since
at first sight fewer rules and fewer antecedents are better
understood. Another reason of preference is that rule bases
with lower complexity also reduce the risk of overfitting
on new data. Nevertheless, Freitas clarified that the com-
prehensibility of rules is not necessarily related to a small
number of rules [2]. He proposed a new measure denoted
as prediction-explanation size, which strongly depends on the
average number of antecedents per rule. Another measure
of rule transparency is consistency. Specifically, an extracted
ruleset is deemed to be consistent if, under different training
sessions, the rule extraction algorithm produces rulesets
which classify samples into the same classes. Finally, a rule is
redundant if it conveys the same information or less general
information than the information conveyed by another rule.
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An important characteristic of rulesets is whether they are
ordered or not. Ordered rules correspond to the following:

if tests on antecedents are true then . . .,
else if tests on antecedents are true then . . .,
. . .,
else . . .

In unordered rules “else if” is replaced again by “if
tests on antecedents are true then conclusion.” Thus, a
sample can activate more than a rule. Long ordered rulesets
are difficult to understand since they potentially include
many implicit antecedents; specifically, those negated by “else
if.” Generally, unordered rulesets present more rules and
antecedents than ordered ones, since all rule antecedents are
explicitly provided, thus beingmore transparent than ordered
rulesets. Each rule of an unordered ruleset represents a single
piece of knowledge that can be examined in isolation, since
all antecedents are explicitly given. With a great number of
unordered rules, one would try to accurately understand the
meaning of each rule with respect to the data domain. Getting
the global picture could take a long time; nevertheless,
one could be interested only in some parts of the whole
knowledge, for instance, those rules with the highest number
of covered samples.

The Discretized Interpretable Multilayer Perceptron
(DIMLP) represents a special feedforward neural network
architecture from which crisp symbolic rules are extracted in
polynomial time [3]. This particular Multilayer Perceptron
(MLP)model can be used to learn any classification problem,
and rule extraction is also performed for DIMLP ensembles.
Furthermore, special DIMLP architectures were also defined
to produce fuzzy rules [4].

Decision trees are widely used in Machine Learning.
They represent transparent models because symbolic rules
are easily extracted. However, when they are combined in
an ensemble rule, extraction becomes harder [5]. Here, we
propose generating rules from ensembles of shallow decision
trees with the help of DIMLP ensembles. In practical terms,
each rule extracted froma tree is inserted into a singleDIMLP
network; then, all the rules generated from a tree ensemble
are represented by aDIMLP ensemble. Finally, rule extraction
is performed to obtain a ruleset representing the knowledge
embedded within the decision tree ensemble. Because of the
No Free Lunch Theorem no model is better than any other, in
general [6]. Hence, if a connectionist model is more accurate
than a direct rule learner such as RIPPER [7], then it is worth
extracting rules to understand the classifications, even if this
involves extra computing time.

Authors who generated rules from single neural networks
or Support Vector Machines (SVMs), very rarely assessed
their techniques by tenfold cross-validation. Our experi-
ments are based on ten repetitions of stratified tenfold cross-
validation trials over 25 binary classification problems. Note
that the total number of training trials is equal to 42500.
Moreover, we compare the complexity of the rules generated
from DIMLP ensembles, boosted shallow trees (BST), and
SVMs. For SVMs we define the Quantized Support Vector
Machine (QSVM), which is a DIMLP architecture trained

by an SVM learning algorithm [16]. Our purpose is not to
determine which model is the best for these classification
problems, but to characterize the complexity of the rules
produced by themodels. Our results could serve as a basis for
researchers who would like to compare their rule extraction
techniques applied to connectionist models by 10-fold cross-
validation. In the following sections we present the DIMLP
model that allows us to produce rules from BSTs and SVMs
and then the experiments, followed by the conclusion.

1.1. State of the Art. Since the earliest work of Gallant on
rule extraction from neural networks [17], many techniques
have been introduced. In the 1990s, Andrews et al. introduced
a taxonomy aiming at characterizing rule extraction tech-
niques [18]. Essentially, rule extraction algorithms belong to
three categories: decompositional; pedagogical; and eclectic. In
decompositional techniques, rules are extracted at the level of
hidden and output neurons by analyzing weight values. Here,
a basic requirement is that the computed output from each
hidden and output unit must be mapped into a binary out-
come which corresponds to the notion of a rule consequent.
The basic idea of the pedagogical approach is to view rule
extraction as a learning task where the target concept is the
function computed by the network and the input attributes
are simply the network’s input neurons. Weight values are
not taken into account in this category of techniques. Finally,
the eclectic approach takes into account elements of both
decompositional and pedagogical techniques. A few years
later, Duch et al. published a survey article on this topic [9].
More recently, Diederich published a book on techniques
to extract symbolic rules from Support Vector Machines
(SVMs) [19] and Barakat and Bradley reviewed a number of
rule extraction techniques applied to SVMs [20].

1.1.1. Rule Extraction from Neural Network Ensembles. Many
rule extraction techniques from single neural networks have
been introduced, but only a few authors have started to
extract rules from neural network ensembles. Bologna pro-
posed the Discretized Interpretable Multilayer Perceptron
(DIMLP) to generate unordered symbolic rules from both
single networks and ensembles [21, 22]. With the DIMLP
architecture rule extraction is performed by determining the
precise location of axis-parallel discriminative hyperplanes.
Zhou et al. introduced the REFNE (Rule Extraction from
Neural Network Ensemble) algorithm [23], which utilizes the
trained ensembles to generate instances, and then extracted
symbolic rules from those instances. Attributes are dis-
cretized during rule extraction and it also uses particular
fidelity evaluation mechanisms. Moreover, rules have been
limited to only three antecedents. For Johansson, rule extrac-
tion from ensembles is an optimization problem in which a
trade-off between accuracy and comprehensibility must be
taken into account [14]. He used a genetic programming
technique to produce rules from ensembles of 20 neural
networks. Ao and Palade extracted rules from ensembles
of Elman networks and SVMs by means of a pedagogical
approach to predict gene expression in microarray data
[24]. More recently Hara and Hayashi proposed the two-
MLP ensembles by using the “Recursive-Rule eXtraction”
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(Re-RX) algorithm [25] for data with mixed attributes [26].
Re-RX utilizes C4.5 decision trees and backpropagation
to train MLPs recursively. Here, the rule antecedents for
discrete attributes are disjointed from those for continuous
attributes. Subsequently, Hayashi at al. presented the “three-
MLP Ensemble” by the Re-RX algorithm [27].

1.1.2. Rule Extraction from Ensembles of Decision Trees.
Basically, rule extraction techniques applied to ensembles of
decision trees belong to two distinguished groups. In the first,
the purpose is to reduce the number of decision trees by
increasing their diversity. Techniques for the optimization
of diversity are reported in [28]; as an example Gashler et
al. improved the ensemble diversity by combining different
decision trees algorithms [29].

Techniques in the second group concentrate on the rules
extracted during the ensemble construction. A well-known
representative technique in this group is RuleFit [30]. The
base learners are rules extracted from a large number of
CART decision trees [31]. Specifically, these trees are trained
on random subsets of the learning set, the main idea being
to define a linear function including rules and features that
approximates the whole ensemble of decision trees. At the
endof the process this linear function represents a regularized
regression of the ensemble responses with a large number
of coefficients equal to zero. Node Harvest is another rule-
based representative technique [32]. Its purpose is to find
suitable weights for rules by performing a minimization on a
quadratic program with linear inequality constraints. Finally,
in [33], the rule extraction problem is viewed as a regression
problem using the sparse group lasso method [34], such that
each rule is assumed to be a feature, where the aim is to
predict the response. Subsequently, most of the rules are
removed by trying to keep accuracy and fidelity as high as
possible.

1.1.3. Rule Extraction from Support Vector Machines. To pro-
duce rules from SVMs, a number of techniques applied a ped-
agogical approach [35–38]. As a first step, training samples are
relabeled according to the target class provided by the SVM.
Then, the new dataset is learned by a transparent model,
such as decision trees, which approximately learn what the
SVM has learned. As a variant, only a subset of the training
samples are used as the new dataset: the support vectors [39].
Before the training of a decision tree algorithm, Martens at
al. generate additional learning examples close to randomly
selected support vectors [38]. In another technique, Barakat
and Bradley generate rules from a subset of the support
vectors using a modified covering algorithm, which refines
a set of initial rules determined by the most discriminative
features [40].

Fu et al. proposed a method aiming at determining
hyperrectangles whose upper and lower corners are defined
by determining the intersection of each of the support vectors
with the separating hyperplane [41]. This is achieved by
solving an optimization problem depending on the Gaussian
kernel. Núñez et al. determined prototype vectors for each
class [15, 42]. With the use of the support vectors, these
prototypes are translated into ellipsoids or hyperrectangles.

An iterative process is defined in order to divide ellip-
soids or hyperrectangles into more regions, depending on
the presence of outliers and the SVM decision boundary.
Similarly, Zhang et al. introduced a clustering algorithm to
define prototypes from the support vectors [43]. Then, small
hyperrectangles are defined around these prototypes and
progressively grown until a stopping criterion is met. Note
that for these two last methods the comprehensibility of the
rules is low, since all input features are present in the rule
antecedents.

2. Material and Methods

In this sectionwe present themodels used in this work, which
are DIMLP ensembles, Quantized Support Vector Machines,
and shallow boosted trees. The rule extraction process of
the last two models has been made possible by transforming
them into particular DIMLP architectures.

2.1. The DIMLP Model. DIMLP differs from MLP in the
connectivity between the input layer and the first hidden
layer. Specifically, any hidden neuron receives only a connec-
tion from an input neuron and the bias neuron, as shown
in Figure 1. After the first hidden layer, neurons are fully
connected. Note that very oftenDIMLPs are definedwith two
hidden layers, the number of neurons in the first hidden layer
being equal to the number of input neurons.

2.1.1. DIMLP Architecture. The activation function in the
output layer is a sigmoid function given as

𝜎 (𝑥) = 11 + exp (−𝑥) . (1)

In the first hidden layer the activation function is a
staircase function 𝑆(𝑥) with 𝑄 stairs that approximates the
sigmoid function.

𝑆 (𝑥) = 𝜎 (𝑅min) if 𝑥 ≤ 𝑅min; (2)

𝑅min represents the abscissa of the first stair. By default𝑅min =−5.
𝑆 (𝑥) = 𝜎 (𝑅max) if 𝑥 ≥ 𝑅max; (3)

𝑅max represents the abscissa of the last stair. By default𝑅max =5. Otherwise, if 𝑅min < 𝑥 < 𝑅max we have

𝑆 (𝑥)
= 𝜎(𝑅min + [𝑞 ⋅ 𝑥 − 𝑅min𝑅max − 𝑅min

](𝑅max − 𝑅min𝑞 )) . (4)

Square brackets indicate the integer part function and 𝑞 =1, . . . , 𝑄. The step function 𝑡(𝑥) is a particular case of the
staircase function with only one step:

𝑡 (𝑥) = {{{
1 if 𝑥 > 0;
0 otherwise. (5)
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Figure 1: A DIMLP network creating two discriminative hyperplanes. The activation function of neurons ℎ1 and ℎ2 is a step function, while
for output neuron 𝑦1 it is a sigmoid.

If we would like to obtain a better approximation of the sig-
moid function we could change these values and increase the
number of stairs.The activation function in the hidden layers
above the first one is again a sigmoid. Note that the step/stair-
case activation function makes it possible to precisely locate
possible discriminative hyperplanes.

As an example, in Figure 1 assuming two different classes,
the first is being selected when 𝑦1 > 𝜎(0) = 0.5 (black circle)
and the second with 𝑦1 ≤ 𝜎(0) = 0.5 (white squares). Hence,
two possible hyperplane splits are located in −𝑤10/𝑤1 and−𝑤20/𝑤2, respectively. As a result, the extracted unordered
rules are as follows:

(i) (𝑥1 < −𝑤10/𝑤1) → square
(ii) (𝑥2 < −𝑤20/𝑤2) → square
(iii) (𝑥1 ≥ −𝑤10/𝑤1) and (𝑥2 ≥ −𝑤20/𝑤2) → circle.

The training of a DIMLP network having step activation
functions in the first hidden layer was performed by simu-
lated annealing [8], since the gradient is undefined with step
activation functions. When the number of stairs was allowed
to approximate the sigmoid function sufficientlywell, amodi-
fied backpropagation algorithmwasused[8].Thedefaultnum-
ber of stairs in the staircase activation function was equal to50.
2.1.2. Rule Extraction. Each neuron of the first hidden layer
creates a number of virtual parallel hyperplanes that is
equal to the number of stairs of its staircase activation
function. As a consequence, the rule extraction algorithm
corresponds to a covering algorithm for which the goal is to
determine whether a virtual hyperplane is virtual or effective.
A distinctive feature of this rule extraction technique is that
fidelity which is the degree of matching between network
classifications and rules’ classifications is equal to 100%, with
respect to the training set.

Here we describe the general idea behind the rule extrac-
tion algorithm, since more details are described in [3]. The
relevance of a discriminative hyperplane corresponds to the
number of points viewing this hyperplane as the transition
to a different class. In the first step of the rule extraction
algorithm the relevance of discriminative hyperplanes is
estimated from all training examples and DIMLP responses.

Once the relevance of discriminative hyperplanes has
been established a special decision tree is built according to

the strongest relevant hyperplane criterion. In other terms,
during tree induction in a given region of the input space the
hyperplane having the largest number of points viewing this
hyperplane as the transition to a different class is added to the
tree.

Each path between the root and a leaf of the obtained
decision tree corresponds to a rule. At this stage rules are
disjointed and generally their number is large, as well as
their number of antecedents. Therefore, a pruning strategy is
applied to all rules according to the most enlarging pruned
antecedent criterion. The use of this heuristic involves that at
each step the pruning algorithm removes the rule antecedent
which mostly increases the number of covered examples
without changing DIMLP classifications. Note that at the end
of this stage rules are no longer disjointed and unnecessary
rules are removed.

When it is no longer possible to prune any antecedent or
any rule, again, to increase the number of covered examples
by each rule all thresholds of remaining antecedents are
modified according to themost enlarging criterion.More pre-
cisely, for each attribute new threshold values are determined
according to the list of discriminative hyperplanes. At each
step, the new threshold antecedent which mostly increases
the number of covered examples without altering DIMLP
classifications is retained.

The general algorithm is summarized as follows:

(1) Determine relevance of discriminant hyperplanes
using available examples.

(2) Build a decision tree according to the highest relevant
hyperplane criterion.

(3) Prune rule antecedents according to the most enlarg-
ing pruned antecedent criterion.

(4) Prune unnecessary rules.
(5) Modify antecedent thresholds according to the most

enlarging criterion.

2.1.3. DIMLP Ensembles. We implemented DIMLP ensemble
learning by bagging [44] and arcing [45]. Bagging and arcing
are based on resampling techniques. For the first training
method, assuming a training set of size 𝑝, bagging selects
for each classifier included in ensemble 𝑝 samples drawn
with replacement from the original training set. Hence, for
each DIMLP network many of the generated samples may be
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repeated while others may be left out. In this way, a certain
diversity of each single network proves to be beneficial with
respect to the whole ensemble of combined classifiers.

Arcing defines a probability with each sample of the
original training set.The samples of each classifier are chosen
according to these probabilities. Before learning, all training
samples have the same probability to belong to a new training
set (=1/𝑝). Then, after the first classifier has been trained
the probability of sample selection in a new training set is
increased for all unlearned samples and decreased for the
others.

Rule extraction from ensembles can still be performed,
since an ensemble of DIMLP networks can be viewed as a
single DIMLP network with one more hidden layer. For this
unique DIMLP network, weight values between subnetworks
are equal to zero. Figure 2 illustrates three different kinds of
DIMLP ensembles. Each “box” in this figure is transparent,
since it can be translated into symbolic rules. The ensemble
resulting from different types of combinations is again trans-
parent, since it is still a DIMLP network with one more layer
of weights.

2.1.4. Classification Strategy of the Rules. For the training
set the degree of matching between DIMLP classifications
and rules, also denoted as fidelity, is equal to 100%. With
unordered rules, an unknown sample not belonging to
the training set activates zero, one, or several rules. Thus,
several activated rules of different class involve an ambiguous
decision process. As a remedy, classifications provided by
DIMLPs are taken into account to disambiguate the classifica-
tion process. We summarize the possible situations for an
unclassified sample not belonging to the training set:

(i) No activated rules: the classification is provided by the
DIMLP network (thus, no explanation is provided).

(ii) One or several rules belonging to the same class
corresponding to the one provided by the DIMLP
network: thus, rule(s) and network agree.

(iii) One or several rules belonging to different classes: if
the class provided by DIMLP is represented in the
rule(s), we only take into account this (these) rule(s)
to explain the classification and discard the other(s).

(iv) One or several rules belong to one or several classes,
but the class provided by DIMLP is not represented
in the rule(s). Thus, rule(s) and network disagree and
the classification provided by the rules is wrong.

Predictive accuracy is the proportion of correct classified
samples of an independent testing set. With respect to the
rules it can be calculated by following three distinct strategies:

(i) Classifications are provided by the rules. If a sample
does not activate any rule the class is provided by the
model without explanation.

(ii) Classifications are provided by the rules, when rules
and model agree. In case of disagreement, no classi-
fication is provided. Moreover, if a sample does not
activate any rule the class is provided by the model.

(iii) Classifications are provided by the rules, when rules
and model agree. In case of disagreement, the clas-
sification is provided by the model without any
explanation. Moreover, if a sample does not activate
any rule, the class is again provided by the model
without explanation.

By following the first strategy, the unexplained samples
are only those that do not activate any rule. For the second
one, in case of disagreement between rules and models no
classification response is provided; in other words the classi-
fication is undetermined. Finally, the predictive accuracy of
rules and models is equal in the last strategy, but with respect
to the first strategy we have a supplemental proportion of
uncovered samples, those for which rules and models dis-
agree.

2.2. Quantized Support VectorMachines (QSVMs). Function-
ally, SVMs can be viewed as a feedforward neural networks.
Here, we focus on how an SVM is transformed into a QSVM,
which is a DIMLP network with specific neuron activation
functions. Since QSVM is also a DIMLP network, rules
can be extracted by performing the DIMLP rule extraction
algorithm. QSVM is trained by a standard SVM training
algorithm, for which details are provided in [46] or [47].

The classification decision function of an SVM model is
given by

𝐶 (𝑥) = sign(∑
𝑖

𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏) , (6)

𝛼𝑖 and 𝑏 being real values, 𝑦𝑖 ∈ {−1, 1} corresponding to the
target values of the support vectors, and𝐾(𝑥𝑖, 𝑥) representing
a kernel function with 𝑥𝑖 as the vector components of the
support vectors. The sign function is

sign (𝑥) = {{{
1 if 𝑥 > 0;
−1 otherwise. (7)

The following kernels are used:

(i) Linear (dot product)
(ii) Polynomial
(iii) Gaussian.

Specifically, for the dot and polynomial cases we have

𝐾(𝑥𝑖, 𝑥) = (𝑥𝑖 ⋅ 𝑥)𝑑 , (8)

with 𝑑 = 1 for the dot kernel and 𝑑 = 3 for the polynomial
kernel. The Gaussian kernel is

𝐾(𝑥𝑖, 𝑥) = exp (−𝛾 𝑥𝑖 − 𝑥2) , (9)

with 𝛾 > 0, a parameter.
We define a Quantized Support Vector Machine as a

DIMLP network with two hidden layers. The activation
function of the neurons in the second hidden layer is related
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Figure 3: AQSVMnetworkwithGaussian kernel.Thefirst hidden layer performs a quantized normalization of the inputs, while the incoming
weights into neurons of the second hidden layer represent support vectors.

to the SVMkernel. Figure 3 presents aQSVMwith aGaussian
activation function in the second hidden layer.

Neurons in the first hidden layer have a staircase activa-
tion function. The role of neurons of the first hidden layer is
to perform a normalization of the input variables. This nor-
malization is carried out throughweight values depending on
the training data before the learning phase. Note that during
training these weights remain unchanged. Let us assume
that we have the same number of input neurons and hidden
neurons in the first hidden layer.These weights are defined as

(i) 𝑤𝑘𝑙 = 1/𝜎𝑙, with 𝜎𝑙 as the standard deviation of input𝑙,
(ii) 𝑤𝑙0 = −𝜇𝑙/𝜎𝑙, with 𝜇𝑙 as the average on the training set

of input 𝑙.
With a dot kernel, the activation function in the second

hidden layer corresponds to the identity function, while it is
a cubic polynomial with a polynomial kernel. The number
of neurons in this layer is equal to the number of support

vectors, with the incoming weight connections correspond-
ing to the components of the support vectors. Specifically, a
weight between the first and second hidden layers denoted
as V𝑗𝑘 in Figure 3 corresponds to the 𝑘th component of the𝑗th support vector. Weights between the second hidden layer
and the output neuron denoted as 𝑢𝑗 in Figure 3 correspond
to 𝛼𝑗 coefficients in (6). Finally, the activation function of the
output neuron is a sign function.

2.3. Ensembles of Shallow Decision Trees. A binary decision
tree is made of nodes and branches. At each node, a test on an
attribute is performed; depending on its predicate value the
path continues to the left or to the right branch (if any), until
a terminal node also denoted as a leaf is reached. Shallow trees
have very limited number of nodes; they represent “weak”
learners with limited power of expression. As an example, a
tree with a unique node performs a test only on an attribute.
Such a shallow tree is also called a decision stump. The key
idea behind ensembles of shallow decision trees is to obtain
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strong classifiers by training weak learners by boosting [48].
Three variants of boosting are used in this work to train
boosted shallow trees (BSTs):

(i) Modest Adaboost [49]
(ii) Gentle Adaboost [50]
(iii) Real Adaboost [51].

A single decision tree is built according to a splitting
criterion. Specifically, at each step the most informative
attribute that splits the training set accurately is determined.
Many possible criteria can be used to determine the best
splitting attribute; for more details see [31, 52]. Once training
is completed, BSTs are transformed into DIMLP ensembles.
Specifically, for each BST, a path from a root to a leaf repre-
sents a symbolic rule.Then, each rule is inserted into a unique
DIMLP network. Note also that all the rules extracted from a
BST could be inserted into aDIMLP, but for simplicity wewill
show the former rule insertion technique. We assume here
that DIMLPs have a unique hidden layer with an activation
function which is a sigmoid (cf. (5)).

Figure 4 exhibits a shallow decision tree with two nodes.
Following the paths between the root and the leaves, we
obtain three rules.

(1) if (𝑥1 ≤ 𝑡1) class 𝑏𝑙𝑎𝑐𝑘 𝑐𝑖𝑟𝑐𝑙𝑒
(2) if (𝑥1 > 𝑡1) and (𝑥1 ≤ 𝑡2) class 𝑤ℎ𝑖𝑡𝑒 𝑠𝑞𝑢a𝑟𝑒
(3) if (𝑥1 > 𝑡1) and (𝑥1 > 𝑡2) class 𝑏𝑙𝑎𝑐𝑘 𝑐𝑖𝑟𝑐𝑙𝑒.
Each rule is inserted into a single DIMLP. Note that rule

antecedents are present in the weight values between the
input layer and the hidden layer (see Figure 5).

Without loss of generality we formulate the rule insertion
algorithm for classification problems of two classes, vector(1, 0) coding the first class and vector (0, 1) coding the second.
Rule Insertion Algorithm

(1) For all BSTs generate the list of rules 𝑅 with their cor-
responding class by following all the paths between
roots and leaves.

(2) For each rule 𝑅𝑖 in 𝑅, let 𝜌𝑖 be the number of
antecedents of 𝑅𝑖; then let us define a DIMLP𝑖
networkwith 𝜌𝑖 inputs, 𝜌𝑖 neurons in the hidden layer,
and two output neurons.

(3) For each DIMLP𝑖 coding a unique rule 𝑅𝑖 in 𝑅 and
for the 𝑘th antecedent 𝐴 𝑖𝑘 in 𝑅𝑖, such as 𝐴 𝑖𝑘 ≥ 𝑡𝑖𝑘 (𝑡𝑖𝑘
being a constant), 𝑏𝑘 = −𝑡𝑖𝑘 and 𝑤𝑘 = 1, with 𝑏𝑘 being
the weight value between the bias neuron and hidden
neuron 𝑘 and𝑤𝑘 being theweight value between input
neuron 𝑘 and hidden neuron 𝑘.

(4) For each DIMLP𝑖 coding a unique rule𝑅𝑖 in𝑅 and for
each antecedent 𝐴 𝑖𝑘 in 𝑅𝑖, such as 𝐴 𝑖𝑘 < 𝑡𝑖𝑘, 𝑏𝑘 = 𝑡𝑖𝑘
and 𝑤𝑘 = −1.

(5) For each DIMLP𝑖 coding rule 𝑅𝑖 of class (1, 0),
V𝑖𝑘 = 100, for 𝑘 = 1, . . . , 𝜌𝑖 (V𝑖𝑘 designates weight
values between the hidden layer and the first output
neuron) and 𝑐1 = −100𝜌𝑖 + 10 (𝑐1 is the weight value

between the bias neuron and the first output neuron);𝑢𝑖𝑘 = 0 (𝑢𝑖𝑘 designates weight values between the
hidden layer and the second output neuron) and 𝑐2 =−100𝜌𝑖 + 10 (𝑐2 is the weight value between the bias
neuron and the second output neuron).

(6) For eachDIMLP𝑖 coding rule𝑅𝑖 of class (0, 1), V𝑖𝑘 = 0,
for 𝑘 = 1, . . . , 𝜌𝑖 and 𝑐1 = −100𝜌𝑖 + 10; 𝑢𝑖𝑘 = 100 and𝑐2 = −100𝜌𝑖 + 10.

Boosting algorithms provide for each weak learner coeffi-
cients that are inserted in the combination layer (cf. Figure 2).
Note that for DIMLP ensembles trained with bagging or
arcing these weights are equal to 1/𝑁, with𝑁 being the num-
ber of networks in the ensemble.

3. Results

In the experiments we use 25 datasets representing classifi-
cation problems of two classes. Table 1 illustrates their main
characteristics in terms of number of samples, number of
input features, type of features, and source.Wehave four types
of inputs: Boolean; categorical; integer; and real. The public
sources of the datasets are

(i) UCI: Machine Learning Repository at the University
of California, Irvine: https://archive.ics.uci.edu/ml/
datasets.html [53],

(ii) KEEL: http://sci2s.ugr.es/keel/datasets.php [54],
(iii) LIBSVM:https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/

datasets/.

3.1. Models and Learning Parameters. Our experiments are
based on 10 repetitions of stratified 10-fold cross-validation
trials. Training sets were normalized by Gaussian normal-
ization. Specifically, the input variable averages and standard
deviations calculated on a training set were used to normalize
the input variables in a testing set.The followingmodels were
trained on the 25 datasets:

(i) Boosted shallow trees trained by modest boosting
(BST-M)

(ii) Boosted shallow trees trained by gentle boosting
(BST-G)

(iii) Boosted shallow trees trained by real boosting (BST-
R)

(iv) DIMLP ensembles trained by bagging (DIMLP-B)
(v) DIMLP ensembles trained by arcing (DIMLP-A)
(vi) QSVM with dot kernel (QSVM-L)
(vii) QSVM with polynomial kernel of third degree

(QSVM-P3)
(viii) QSVM with Gaussian kernel (QSVM-G).

The complexity of boosted shallow trees was controlled
according to the parameter defining the number of splits for
each shallow tree (cf. Section 2.3).This parameter varies from
one to four. Note that when this value is equal to one we

https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html
http://sci2s.ugr.es/keel/datasets.php
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 4: A shallow decision tree with two splitting nodes. Three rules are obtained from the paths between the root and the leaves.
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Figure 5: Three symbolic rules represented by three DIMLP networks with a step activation function in the hidden layer and a sigmoid
function in the output layer (see the rules in the text). Weight values 𝑡1 and 𝑡2 are constants denoting thresholds of rule antecedents.

obtain decision stumps.The number of decision trees in each
ensemble was fixed to 200, since very often after this value the
improvement in accuracy is very small.

For DIMLP ensembles the learning parameters are

(i) the learning parameter 𝜂 (𝜂 = 0.1),
(ii) the momentum 𝜇 (𝜇 = 0.6),
(iii) the Flat Spot Elimination (FSE = 0.01),
(iv) the number of stairs 𝑄 in the staircase function (𝑄 =50).

The default number of neurons in the first hidden layer is
equal to the number of input neurons and the number of neu-
rons in the second hidden layer is empirically defined in order
to obtain a number of weight connections that is less than
the number of training samples. Finally, the default number
of DIMLPs in an ensemble is equal to 25, since it has been
empirically observed that for bagging and arcing the most
substantial improvement in accuracy is achievedwith the first
25 networks [44].

For QSVMs, default learning parameters are those
defined in the libSVM library (this software is available at

https://www.csie.ntu.edu.tw/∼cjlin/libsvm/). The number of
stairs in the staircase function was set to 200, in order to
guarantee a sufficient number of quantized levels in the input
values. We used nu-SVM [55]; note that our goal was not
to optimize the predictive accuracy of the models but just
to use default configurations in order to assess the accuracy
and complexity of the models. With respect to all the defined
models and datasets, the total amount of training and rule
extractions is equal to 42500 (=17 ⋅ 25 ⋅ 100).
3.2. Overall Results. Figure 6 gives a general view of the
logarithm of the complexity of the rulesets (𝑦-axis) generated
from the models (𝑥-axis). Here, complexity corresponds to
the total number of rule antecedents per ruleset.With respect
to the 𝑥-axis indexes 1 to 4 indicate BST-M with the split
parameter varying from 1 to 4, indexes from 5 to 8 are related
to BST-G, indexes from 9 to 12 indicate BST-R, and finally
indexes from 13 to 17 are illustrated as the results corre-
sponding to DIMLP-B, DIMLP-A, QSVM-L, QSVM-P3, and
QSVM-G, respectively. For each boxplot, the central mark is
the median obtained by cross-validation trials and the edges
of the box are the 25th and 75th percentiles.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 1: Datasets used in the experiments.

Dataset #samples #Attr. Attr. types Maj. class (%) Ref.
Australian Credit Appr. 690 14 bool., cat., int., real 55.5 UCI
Breast Cancer 683 9 int. 65.0 UCI
Breast Cancer 2 569 30 int., real 62.7 UCI
Breast Canc. (prognostic) 194 33 Real 76.3 UCI
Bupa Liver Disorders 345 6 int., real 58.0 UCI
Chess (kr-versus-kp) 3196 36 bool. 52.2 UCI
Coronary Heart Disease 884 16 bool., real 64.5 [8]
German Credit 1000 20 cat., int. 70.0 UCI
Glass (binary) 163 9 Real 53.4 UCI
Haberman 306 3 int. 73.5 UCI
Heart Disease 270 13 bool., cat., int., real 55.6 UCI
ILPD (liver) 583 10 int., real 71.5 UCI
Ionosphere 351 34 int., real 64.1 UCI
Istanbul Stock Exch. 536 8 Real 54.9 UCI
Labor 57 16 cat., int., real 64.9 UCI
Musk1 476 166 int. 56.5 UCI
Pima Indians 768 8 int., real 65.1 UCI
Promoters 106 58 cat. 50.0 UCI
Saheart 462 9 bool., int., real 65.4 KEEL
Sonar 208 60 Real 53.4 UCI
Spect. Heart 267 22 bin. 58.8 UCI
Splice junct. 3175 60 cat. 51.9 LIBSVM
Svmguide 7089 4 Real 56.4 LIBSVM
Tictactoe 958 9 cat. 65.3 UCI
Vertebral Column 310 6 Real 67.7 UCI
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Figure 6: Boxplots of the average log-complexity of the extracted rulesets (𝑦-axis) with respect to each model (𝑥-axis). Complexity
corresponds to the number of rule antecedents per ruleset. With respect to the 𝑥-axis indexes 1 to 4 indicate BST-M with split parameter
varying from 1 to 4, indexes from 5 to 8 are related to BST-G, indexes from 9 to 12 indicate BST-R results, and finally indexes from 13 to 17
correspond to DIMLP-B, DIMLP-A, QSVM-L, QSVM-P3, and QSVM-G, respectively.

Overall, with respect to the 25 datasets used in the experi-
ments the lowest median complexity is obtained by BST-M1,
while the top medians are given by BST-G3, BST-G4, BST-
R3, and BST-R4. Moreover, it clearly appears that the median
complexity augmentswith the increase of the number of splits
in the shallow trees from one to three.

Figure 7 illustrates the average predictive accuracy of the
extracted rulesets (𝑦-axis) with respect to each model (𝑥-
axis). It is worth noting that BST-R4 and DIMLP-B reach

the highest medians, with DIMLP-B obtaining a better 25th
percentile.

Figure 8 shows boxplots of the average fidelity of the
extracted rulesets. Qualitatively, BST-M obtains the best
results with respect to median fidelity, while BST-G and BST-
R give lowest fidelity results. As a qualitative rule of the
obtained results, the lower the complexity of the extracted
rulesets the higher the fidelity, and vice versa. This observa-
tion is also illustrated in Figure 9. Specifically, with respect to
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Figure 7: Boxplots of the average predictive accuracy of the extracted rulesets (𝑦-axis) with respect to each model (𝑥-axis).
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Figure 8: Boxplots of the average fidelity of the extracted rulesets (𝑦-axis) with respect to each model (𝑥-axis).
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Figure 9: Plot of average fidelity versus average number of antecedents per ruleset.

the 25 classification problems used in the experiments, each
point of this figure represents the average fidelity of the ex-
tracted rulesets versus the average number of antecedents per
ruleset. Is it worth noting that from left to right (with respect
to the 𝑥-axis), red “+” indicates BST-M1, BST-M2, BST-M3,
and BST-M4. Thus, ruleset complexity augments with the
number of splits of the shallow trees. Similarly, we can see
the same trend for the triangles related to BST-Gs and BST-
Rs. Based on the 17 models, a linear regression is also shown.
Hence, we can clearly see a trend for which fidelity is inversely
proportional to the complexity of rulesets.

3.3. Detailed Results. Table 2 gives for each dataset the aver-
age predictive accuracy obtained by the best model (column
three), as well as the average predictive accuracy of the
best extracted rulesets (column five). The difference of these
average accuracies is reported in column six. The last three
columns indicate the average fidelity, the average number of
generated rules, and the average number of antecedents per
rule, respectively. It isworth noting that the average predictive
accuracy of rulesets is rarely better than the predictive
accuracy provided by the best model, because the power of
expression of rules is somewhat limited with respect to that
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Table 2: Comparison between the average predictive accuracy obtained by the bestmodel (column three) and the average predictive accuracy
of the best extracted rulesets (column five). The last three columns indicate the average fidelity, the average number of generated rules, and
the average number of antecedents per rule, respectively.

Dataset Model Avg. Acc. Model Avg. rules Acc. Diff. Fid. #rules #Ant.
Australian Credit Appr. DIMLP-B 86.7 DIMLP-B 86.5 0.2 97.9 21.4 2.8
Breast Cancer QSVM-G 97.2 QSVM-G 96.7 0.5 98.7 11.6 2.9
Breast Cancer 2 BST-G1 97.5 BST-G1 96.4 1.1 97.6 31.6 3.6
Breast Canc. (prognostic) DIMLP-B 81.0 DIMLP-B 79.0 2.0 94.8 12.6 2.8
Bupa Liver Disorders DIMLP-B 72.7 BST-M4 71.1 1.6 91.8 37.2 3.4
Chess (kr-versus-kp) BST-G3 99.6 BST-G3 99.8 −0.2 99.7 37.0 4.3
Coronary Heart Disease DIMLP-A 94.6 DIMLP-A 92.3 2.3 96.2 71.6 4.6
German Credit QSVM-P3 75.9 QSVM-P3 75.1 0.8 94.4 85.4 5.4
Glass (binary) BST-G4 88.2 BST-M3 85.4 2.8 95.8 16.7 3.2
Haberman BST-M1 75.0 BST-M1 75.0 0.0 100.0 3.0 1.3
Heart Disease DIMLP-B 85.8 DIMLP-B 84.3 1.5 95.2 20.6 3.2
ILPD (liver) BST-G3 70.8 DIMLP-A 70.8 0.0 96.8 25.2 2.8
Ionosphere QSVM-G 94.4 BST-M1 92.1 2.3 97.8 14.3 2.8
Istanbul Stock Exch. QSVM-L 77.7 QSVM-L 77.6 0.1 94.4 30.0 3.0
Labor QSVM-G 95.1 BST-R4 89.6 5.5 95.4 9.8 2.5
Musk1 DIMLP-A 94.1 BST-G4 87.2 6.9 91.7 78.1 4.5
Pima Indians QSVM-G 76.8 DIMLP-B 76.3 0.5 97.0 38.8 3.3
Promoters BST-G3 92.1 BST-M1 84.7 7.4 90.7 11.4 2.7
Saheart DIMLP-B 72.7 BST-M3 72.3 0.4 97.5 26.3 3.4
Sonar BST-G4 88.6 BST-M3 81.9 6.7 88.3 35.8 4.2
Spect Heart DIMLP-B 73.0 DIMLP-B 72.2 0.8 94.8 20.4 3.2
Splice junct. BST-M4 97.3 BST-M4 97.1 0.2 99.1 63.1 4.7
Svmguide BST-M4 97.3 BST-M4 97.2 0.1 99.7 44.5 3.1
Tictactoe BST-G4 99.9 BST-G4 100 −0.1 99.9 28.6 4.0
Vertebral Column DIMLP-B 85.5 DIMLP-B 84.0 1.5 96.1 16.7 2.7

of the original models. However, for many datasets, ruleset
average predictive accuracy is quite close to that provided by
the best model.

Results shown in Table 3 are similar to those provided by
Table 2.The only difference resides in theway that the average
predictive accuracy of the rulesets is measured. Specifically,
here, we only take into account whether the model from
each rule is generated and if the rules agree. In that case, the
average predictive accuracy of the rules is always equal or
higher than that provided by the model. Intuitively, it means
that if rules and models agree then results are more reliable.

The purpose of Figure 10 is to show the average difference
in predictive accuracy between a model and its generated
rulesets over the 25 classification problems.The lower part of
this Figure concerns this average difference when rules and
network agree.

Tables 4 and 5 present the detailed results of rulesets’
average predictive accuracy and standard deviations. Note
that the classification decision was determined by the neural
networkmodel when a testing sample was not covered by any
rule. Moreover, in the case of conflicting rules (i.e., rules of
two different classes), the selected class is again the one
determined by the model. Tables 6 and 7 show the average
complexity in terms of average number of rules and average
number of antecedents per ruleset. Finally, Tables 8 and 9

illustrate average fidelity results with their standard devia-
tions.

In Table 10 our purpose is to illustrate the impact of
DIMLP ensembles with respect to single DIMLPs. We focus
on average predictive accuracy and average complexity of the
generated rulesets. Columns four and seven are related to
single architectures. Complexity, which is given in terms of
number of rules and average number of antecedents per rule,
is in bold when the product of these two components is the
lowest. Note that for single architectures, 10% of the samples
are used to decide when to stop training (with 80% of samples
used for training). With respect to single DIMLPs, bagging
tends to reduce average complexity of the generated rulesets,
since in 22 problems out of 25 it was lower. Conversely, for
DIMLP ensembles trained by arcing, average complexity was
higher in 20 problems. Finally, average predictive accuracy of
rulesets produced by ensembles was higher than or equal to
that provided by single DIMLPs in 22 problems out of 25.

3.4. Related Work. Among several published works on the
knowledge extracted from ensembles, very few are based
on cross-validation trials. Table 11 presents rule extraction
results with respect to the Breast Cancer classification prob-
lem. Only the last two rows concern rule extraction from
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Table 3: Comparison between the average predictive accuracy obtained by the bestmodel (column three) and the average predictive accuracy
of the best extracted rulesets (column five) when rules and model agree on classification. The last three columns indicate the average fidelity,
the average number of generated rules, and the average number of antecedents per rule, respectively.

Dataset Model Max. Acc. Model Max. rules Acc. Diff. Fid. #rules #Ant.
Australian Credit Appr. DIMLP-B 86.7 BST-G2 87.9 −1.2 94.3 73.4 4.5
Breast Cancer QSVM-G 97.2 QSVM-G 97.5 −0.3 98.7 11.6 2.9
Breast Cancer 2 BST-G1 97.5 BST-G1 98.1 −0.6 97.6 31.6 3.6
Breast Canc. (prognostic) DIMLP-B 81.0 DIMLP-B 81.7 −0.7 94.8 12.6 2.8
Bupa Liver Disorders DIMLP-B 72.7 QSVM-G 73.6 −0.9 89.3 45.6 3.7
Chess (kr-versus-kp) BST-G3 99.6 BST-G3 99.8 −0.2 99.7 37.0 4.3
Coronary Heart Disease DIMLP-A 94.6 DIMLP-A 95.2 −0.6 96.2 71.6 4.6
German Credit QSVM-P3 75.9 BST-G1 77.1 −1.2 92.8 102.7 5.0
Glass (binary) BST-G4 88.2 BST-G3 90.1 −2.2 89.1 22.6 3.1
Haberman BST-M1 75.0 BST-M1 75.0 0.0 100.0 3.0 1.3
Heart Disease DIMLP-B 85.8 DIMLP-B 86.8 −1.0 95.2 20.6 3.2
ILPD (liver) BST-G3 70.8 BST-R4 73.1 −2.5 88.2 102.2 4.3
Ionosphere QSVM-G 94.4 QSVM-G 95.1 −0.7 95.5 24.2 3.4
Istanbul Stock Exch. QSVM-L 77.7 QSVM-L 78.7 −1.0 94.4 30.0 3.0
Labor QSVM-G 95.1 QSVM-G 95.6 −0.5 92.6 9.8 2.6
Musk1 DIMLP-A 94.1 DIMLP-A 95.2 −1.1 88.5 90.1 4.3
Pima Indians QSVM-G 76.8 QSVM-G 77.7 −0.9 95.8 44.4 3.5
Promoters BST-G3 92.1 BST-G3 93.2 −1.1 84.5 25.4 4.0
Saheart DIMLP-B 72.7 DIMLP-B 73.3 −0.6 95.8 29.2 3.3
Sonar BST-G4 88.6 BST-G4 89.7 −0.9 88.2 42.3 4.3
Spect Heart DIMLP-B 73.0 DIMLP-B 73.8 −0.8 94.8 20.4 3.2
Splice junct. BST-M4 97.3 BST-R3 97.8 −0.5 97.6 130.8 6.0
Svmguide BST-M4 97.3 BST-M4 97.4 −0.1 99.7 44.5 3.1
Tictactoe BST-G4 99.9 BST-G4 100 −0.1 99.9 28.6 4.0
Vertebral Column DIMLP-B 85.5 DIMLP-B 86.2 −0.7 96.1 16.7 2.7
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Figure 10: Average difference in predictive accuracy between a model and its generated rulesets. The lower part with negative values is
obtained when rules and network agree.

ensembles. Note that a fair comparison for the complexity
of the extracted rules is difficult, since some techniques such
as Re-RX generate ordered rules, while DIMLP-B extracts
unordered rules. For the predictive accuracy, DIMLP-B
obtains the highest average.

With the use of G-REX [14], a genetic programming
technique, Johansson presented a number of results on the
extraction of decision trees from ensembles of 20 neural
networks, based on one repetition of 10-fold cross-validation.

Table 12 presents these results, with columns three and four
depicting the results provided by Trepan [14], which is a
general technique for knowledge extraction [13]. Our results
with DIMLP-Bs (based on 10 repetitions of stratified 10-
fold cross-validation) are shown in the last three columns.
Average fidelity of DIMLP-Bs is always greater than that
obtained by G-REX and Trepan (it is considerably higher
in five of the classification problems). With the exception of
one classification problem, the average predicative accuracy
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Table 4: Average predictive accuracy and standard deviations of the extracted rules for boosted shallow trees trained by modest boosting
and gentle boosting.

Dataset BST-M1 BST-M2 BST-M3 BST-M4 BST-G1 BST-G2 BST-G3 BST-G4
Australian Credit Appr. 85.6 0.2 85.8 0.3 86.0 0.7 86.1 0.9 84.8 0.8 85.2 1.1 85.3 0.8 85.1 0.6
Breast Cancer 95.9 0.2 96.3 0.4 96.5 0.4 96.2 0.2 95.8 0.3 95.9 0.5 96.1 0.5 96.3 0.4
Breast Cancer 2 95.6 0.6 95.7 0.5 95.1 0.8 95.1 0.7 96.4 0.7 96.0 0.7 95.8 0.6 95.7 0.4
Breast Canc. (prognostic) 73.8 1.6 72.4 1.7 72.9 2.1 72.9 2.6 72.7 2.4 75.0 1.6 74.7 2.8 74.6 1.8
Bupa Liver Disorders 64.5 1.4 69.5 2.2 70.9 1.5 71.1 1.6 70.5 2.3 68.8 1.6 67.0 2.2 67.2 1.2
Chess (kr-versus-kp) 93.5 0.0 95.1 0.2 96.2 0.1 97.5 0.2 96.7 0.1 99.5 0.1 99.8 0.1 99.7 0.1
Coronary Heart Disease 80.5 0.7 88.8 0.4 89.2 0.7 89.4 0.3 87.7 0.7 89.2 0.9 89.0 0.6 89.1 0.9
German Credit 72.3 0.4 72.5 0.4 72.5 0.4 72.4 0.7 74.2 0.7 73.8 1.2 73.3 1.1 73.1 0.6
Glass (binary) 79.9 1.4 84.6 1.5 85.4 1.9 85.2 1.7 82.9 1.8 83.1 2.3 83.3 2.3 84.1 1.5
Haberman 75.0 1.0 74.4 0.7 74.5 0.9 74.6 1.0 72.5 1.8 66.5 1.5 64.9 2.4 65.3 1.5
Heart Disease 83.1 0.8 81.6 1.9 80.7 2.0 80.8 1.8 80.6 1.6 77.1 2.4 76.4 1.8 76.5 2.0
ILPD (liver) 70.5 0.7 69.9 0.8 69.1 0.6 69.4 0.7 69.5 1.2 69.7 1.4 69.6 1.5 69.6 1.6
Ionosphere 92.1 1.1 91.2 0.8 91.8 0.6 91.5 1.1 91.5 0.9 90.5 1.3 91.3 0.8 91.4 1.2
Istanbul Stock Exch. 77.1 0.7 75.8 0.7 76.6 0.9 76.4 0.8 75.1 1.1 73.2 1.2 72.5 1.5 72.8 1.2
Labor 83.6 1.7 84.2 2.8 87.5 4.1 84.7 3.3 81.9 2.9 86.0 3.8 84.4 3.3 82.9 4.0
Musk1 73.1 0.7 83.5 1.5 84.9 1.4 85.3 1.4 83.4 1.5 86.0 1.6 86.7 1.5 87.2 1.8
Pima Indians 75.0 0.5 76.0 0.9 75.7 0.5 75.9 0.7 75.0 0.9 72.8 0.9 72.0 1.1 72.3 1.0
Promoters 84.7 3.1 79.7 3.4 81.2 3.5 78.1 5.2 82.8 4.3 80.4 4.8 80.6 3.3 81.5 1.6
Saheart 71.4 1.2 72.2 1.4 72.3 1.1 71.7 1.3 67.2 1.1 64.5 1.8 65.3 1.8 63.0 1.5
Sonar 80.1 2.0 79.4 2.5 81.9 1.6 80.8 2.5 80.9 1.7 81.8 2.7 80.1 3.8 81.4 1.5
Spect Heart 71.0 1.2 72.1 1.0 71.4 1.3 71.6 1.7 71.4 2.0 65.4 1.8 66.1 2.0 66.3 1.9
Splice junct. 89.4 0.4 96.0 0.1 97.0 0.2 97.1 0.2 94.8 0.3 96.7 0.2 96.4 0.2 95.9 0.3
Svmguide 96.8 0.1 97.1 0.1 97.1 0.1 97.2 0.1 97.0 0.1 97.0 0.1 96.8 0.2 96.8 0.1
Tictactoe 70.0 0.2 73.5 0.4 83.2 0.7 95.1 0.9 98.3 0.1 99.3 0.2 99.8 0.2 100.0 0.0
Vertebral Column 79.2 0.7 82.8 1.6 82.3 1.5 81.8 1.0 81.6 1.6 80.3 1.2 81.0 1.1 80.6 1.5

Table 5: Average predictive accuracy and standard deviations of the extracted rules for BST-R, DIMLP ensembles, and QSVMs.

Dataset BST-R1 BST-R2 BST-R3 BST-R4 DIMLP-B DIMLP-A QSVM-L QSVM-P3 QSVM-G
Australian Credit Appr. 85.2 0.9 85.0 0.5 84.8 1.0 84.4 0.9 86.5 0.5 84.9 0.7 85.6 0.2 85.7 0.6 85.6 0.3
Breast Cancer 95.8 0.4 96.1 0.4 96.0 0.5 96.5 0.5 96.5 0.3 96.2 0.3 95.1 0.4 92.0 0.5 96.7 0.4
Breast Cancer 2 95.9 0.6 95.7 0.3 95.5 0.5 95.3 0.6 95.6 0.4 95.8 0.4 93.2 0.5 89.0 0.7 94.4 0.4
Breast Canc. (prognostic) 72.9 1.8 73.6 2.2 75.1 2.1 74.3 1.6 79.0 1.9 77.7 2.1 77.9 1.4 78.5 1.8 77.4 2.3
Bupa Liver Disorders 70.0 1.5 66.5 1.3 65.4 0.8 65.7 2.6 70.9 1.7 67.2 1.9 59.6 3.6 61.9 2.5 70.9 1.0
Chess (kr-versus-kp) 96.8 0.1 99.7 0.1 99.7 0.1 99.7 0.1 99.5 0.1 99.7 0.1 90.5 0.0 91.9 0.1 94.9 0.1
Coronary Heart Disease 88.0 0.8 88.8 0.7 88.6 0.8 89.1 0.5 91.6 0.5 92.3 0.6 85.4 0.4 87.0 0.5 86.5 0.5
German Credit 74.2 0.5 73.9 0.7 73.2 1.2 72.6 0.7 73.6 0.6 72.6 1.0 74.8 0.8 75.1 0.9 73.0 1.3
Glass (binary) 82.7 1.7 82.9 2.8 83.2 1.5 84.3 2.3 77.8 1.4 81.1 2.1 66.7 2.9 76.4 3.1 76.7 1.9
Haberman 72.5 1.2 66.7 1.4 65.8 2.0 65.0 1.5 74.3 1.1 73.3 0.6 63.1 3.9 65.7 2.4 70.3 2.1
Heart Disease 79.5 2.2 75.8 2.2 76.8 2.0 75.3 1.7 84.3 1.4 80.5 1.9 82.8 1.5 82.2 1.6 81.8 1.3
ILPD (liver) 69.5 1.3 70.1 1.1 70.1 1.1 70.4 1.2 70.7 0.6 70.8 1.5 65.2 1.8 68.6 1.0 68.4 1.4
Ionosphere 91.3 1.0 91.5 1.2 91.0 1.1 91.7 0.9 92.1 0.6 90.6 1.5 86.3 0.8 88.3 1.0 91.8 0.6
Istanbul Stock Exch. 74.5 1.2 72.3 1.0 72.5 1.0 72.8 1.8 77.2 0.8 75.1 1.9 77.6 1.0 76.8 0.6 77.1 0.6
Labor 83.2 3.8 86.3 2.3 86.4 3.6 89.6 2.7 84.3 5.2 87.4 2.1 88.3 2.3 83.6 3.1 89.1 3.5
Musk1 83.7 1.6 86.9 1.0 86.6 1.3 86.2 1.3 85.8 1.6 86.0 1.1 79.9 0.6 82.4 1.8 83.4 1.9
Pima Indians 75.1 0.9 73.2 1.1 72.0 0.8 72.1 1.1 76.3 0.6 74.2 1.2 75.9 0.8 76.3 0.5 76.2 0.5
Promoters 82.7 4.2 80.7 3.4 80.9 4.3 84.1 2.6 83.0 2.5 81.1 2.9 80.8 3.3 80.4 2.6 80.5 3.5
Saheart 66.9 1.2 64.1 1.3 63.1 1.3 63.5 1.6 71.9 0.8 68.6 1.3 61.6 3.9 70.7 0.9 70.1 1.2
Sonar 80.3 2.3 80.6 2.7 79.2 3.1 78.0 2.0 79.0 1.7 78.4 2.9 77.1 2.3 77.9 1.8 75.4 3.6
Spect Heart 71.4 2.0 65.4 2.6 64.9 2.0 66.8 1.7 72.2 1.5 67.9 2.2 67.6 1.4 68.9 1.6 66.5 2.4
Splice junct. 94.5 0.4 96.7 0.2 96.4 0.3 96.0 0.3 95.1 0.3 95.3 0.4 85.8 0.4 87.4 0.3 93.8 0.3
Svmguide 97.0 0.1 96.9 0.1 96.8 0.1 96.7 0.2 96.8 0.1 96.9 0.1 92.8 0.1 90.3 0.1 93.2 0.1
Tictactoe 98.3 0.1 99.3 0.2 99.9 0.1 100.0 0.0 98.4 0.0 98.7 0.2 98.3 0.0 98.3 0.0 98.9 0.1
Vertebral Column 80.8 1.1 81.3 0.5 81.3 1.4 81.4 0.6 84.0 0.6 82.7 1.1 83.9 0.8 84.0 0.7 83.5 1.2
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Table 6: Average complexity of the extracted rules given by the number of rules and antecedents per rule for BST-M and BST-G.

Dataset BST-M1 BST-M2 BST-M3 BST-M4 BST-G1 BST-G2 BST-G3 BST-G4
Australian Credit Appr. 2.0 1.0 21.6 3.6 24.3 3.7 26.5 3.8 49.1 4.3 73.4 4.5 74.5 4.5 76.8 4.5
Breast Cancer 13.0 2.7 13.6 2.9 17.7 3.2 21.5 3.3 22.3 3.4 24.8 3.5 25.8 3.5 25.7 3.5
Breast Cancer 2 13.9 2.7 21.9 3.2 28.2 3.5 30.4 3.5 31.6 3.6 34.1 3.6 35.1 3.6 36.1 3.7
Breast Canc. (prognostic) 4.3 1.6 7.5 1.9 8.2 2.0 9.1 2.1 39.3 3.8 41.7 3.7 43.0 3.6 43.7 3.6
Bupa Liver Disorders 19.5 2.8 35.2 3.4 37.2 3.4 37.2 3.4 54.7 3.8 64.6 4.0 63.8 4.1 64.0 4.1
Chess (kr-versus-kp) 8.0 2.2 17.8 3.8 19.5 3.8 28.8 4.0 66.8 4.6 38.9 4.3 37.0 4.3 37.8 4.3
Coronary Heart Disease 18.9 3.0 36.7 3.6 41.4 3.7 46.6 3.9 68.5 4.5 78.0 4.7 83.2 4.6 91.4 4.7
German Credit 6.0 2.0 13.5 2.9 16.7 3.2 20.5 3.3 102.7 5.0 144.7 5.2 173.7 5.1 174.2 4.9
Glass (binary) 9.6 2.4 17.7 2.9 19.3 3.0 20.2 3.0 20.4 3.1 21.9 3.1 22.6 3.1 23.3 3.1
Haberman 3.0 1.3 5.2 1.7 14.0 1.9 7.7 2.0 27.3 3.0 52.0 3.4 65.4 3.6 64.3 3.7
Heart Disease 14.5 2.8 20.2 3.2 24.6 3.5 28.9 3.7 34.6 3.8 39.8 3.9 41.1 4.0 41.7 4.0
ILPD (liver) 3.5 1.4 5.1 1.7 8.1 2.0 10.2 2.3 78.0 4.2 97.5 4.4 97.7 4.4 99.4 4.3
Ionosphere 14.3 2.8 24.0 3.5 28.6 3.9 30.3 4.0 29.3 3.9 31.3 3.9 32.4 3.9 32.2 3.9
Istanbul Stock Exch. 9.6 2.0 17.1 2.5 21.5 2.9 28.7 3.3 58.1 3.8 80.3 4.0 79.8 4.1 80.7 4.1
Labor 6.8 2.1 7.8 2.2 7.8 2.2 7.6 2.2 8.4 2.4 9.5 2.5 9.6 2.4 8.3 2.2
Musk1 27.4 3.4 44.5 4.2 61.9 4.5 70.8 4.5 75.0 4.5 76.2 4.5 75.2 4.5 78.1 4.5
Pima Indians 11.6 2.3 26.3 3.0 32.6 3.3 36.0 3.4 70.8 4.2 111.6 4.6 115.7 4.6 114.9 4.6
Promoters 11.4 2.7 19.9 3.7 21.7 3.8 23.6 3.9 21.5 3.8 23.5 3.9 25.4 4.0 25.2 3.9
Saheart 11.7 2.6 21.3 3.3 26.3 3.4 30.4 3.5 66.2 4.3 84.0 4.5 83.9 4.5 86.5 4.4
Sonar 21.6 3.5 34.0 4.1 35.8 4.2 37.2 4.2 37.5 4.2 39.8 4.2 41.4 4.3 42.3 4.3
Spect Heart 2.3 1.1 8.3 2.3 11.1 2.6 13.7 2.8 26.8 3.5 45.2 4.4 53.1 4.6 52.9 4.6
Splice junct. 21.7 3.3 63.2 4.8 59.4 4.7 63.1 4.7 144.5 5.8 119.7 5.9 129.9 6.0 148.3 6.2
Svmguide 26.4 2.4 37.4 2.8 40.9 2.9 44.5 3.1 68.1 3.6 105.1 3.8 157.5 4.0 167.4 4.0
Tictactoe 2.0 1.0 55.4 4.4 40.7 4.2 34.9 4.1 34.7 4.1 26.1 3.6 25.7 3.7 28.6 4.0
Vertebral Column 4.4 1.6 19.0 3.0 22.7 3.2 26.2 3.3 32.2 3.4 34.2 3.4 34.0 3.4 35.2 3.4

Table 7: Average complexity of the extracted rules given by the number of rules and antecedents per rule for BST-R DIMLPs and QSVMs.

Dataset BST-R1 BST-R2 BST-R3 BST-R4 DIMLP-B DIMLP-A QSVM-L QSVM-P3 QSVM-G
Australian Credit Appr. 49.6 4.3 72.9 4.5 74.4 4.5 76.9 4.4 22.7 3.7 82.7 5.1 2.0 1.0 20.5 3.7 8.3 2.6
Breast Cancer 23.3 3.4 24.3 3.4 25.3 3.5 25.9 3.5 12.5 2.7 25.2 3.6 13.2 3.0 22.7 3.5 11.6 2.9
Breast Cancer 2 32.4 3.6 35.0 3.6 35.9 3.6 36.0 3.6 20.8 3.1 27.2 3.3 18.9 3.0 20.9 3.1 16.3 3.1
Breast Canc. (prognostic) 39.4 3.8 41.8 3.6 42.5 3.6 43.5 3.5 12.6 2.8 24.6 3.5 17.9 3.3 15.9 3.1 26.1 3.6
Bupa Liver Disorders 55.8 3.8 64.7 4.0 65.1 4.1 65.4 4.1 36.9 3.3 31.8 3.2 39.2 3.3 62.9 3.9 45.6 3.7
Chess (kr-versus-kp) 67.5 4.7 35.3 4.2 37.5 4.3 37.6 4.2 32.5 4.0 36.3 4.2 8.7 2.4 25.3 3.6 29.0 3.9
Coronary Heart Disease 68.6 4.5 79.6 4.6 81.6 4.5 81.3 4.5 44.8 4.0 71.6 4.6 41.9 3.8 42.0 3.7 34.7 3.6
German Credit 104.3 5.0 149.4 5.1 177.6 5.0 178.9 4.8 56.7 4.3 93.9 5.1 77.4 5.3 85.4 5.4 170.6 5.7
Glass (binary) 20.7 3.0 22.4 3.1 23.3 3.1 24.7 3.0 13.7 2.7 19.9 3.2 26.2 3.1 16.8 2.9 16.1 3.0
Haberman 28.7 3.0 54.9 3.5 65.5 3.6 65.7 3.7 7.8 1.9 2.3 0.6 11.1 2.3 15.4 2.7 11.2 2.5
Heart Disease 35.5 3.9 40.3 3.9 40.5 4.0 41.0 3.9 20.6 3.2 39.3 4.2 18.1 3.2 20.3 3.2 19.5 3.1
ILPD (liver) 78.0 4.2 97.7 4.4 100.0 4.3 102.2 4.3 23.9 3.1 25.2 2.8 72.8 4.1 67.3 4.0 56.2 3.9
Ionosphere 30.3 3.9 31.5 3.9 32.5 3.9 32.5 3.9 19.3 2.9 29.5 3.2 20.5 3.2 20.9 3.2 24.2 3.4
Istanbul Stock Exch. 58.5 3.8 79.6 4.0 79.1 4.0 79.7 4.1 21.4 2.8 23.4 2.9 30.0 3.0 26.6 3.1 26.1 3.1
Labor 8.6 2.3 10.1 2.6 10.3 2.5 9.8 2.5 7.3 2.2 9.2 2.6 4.3 1.7 4.9 1.8 9.8 2.6
Musk1 73.8 4.5 74.8 4.5 77.2 4.5 80.2 4.4 57.4 4.4 90.1 4.3 50.9 4.1 50.7 4.1 89.2 4.4
Pima Indians 71.5 4.3 113.5 4.6 117.0 4.6 117.5 4.5 38.8 3.3 47.0 3.6 46.1 3.4 37.5 3.3 44.4 3.5
Promoters 22.2 3.8 24.4 3.9 23.2 3.8 23.0 3.7 11.8 2.7 20.4 3.4 15.0 3.1 15.2 3.2 22.4 3.5
Saheart 65.6 4.3 84.1 4.4 85.5 4.4 85.5 4.4 29.2 3.3 27.5 3.3 54.1 3.8 37.5 3.8 38.6 3.8
Sonar 38.1 4.2 41.1 4.3 42.4 4.3 44.5 4.3 24.1 3.2 40.2 3.8 28.3 3.9 29.7 3.8 42.3 3.9
Spect Heart 26.9 3.5 45.9 4.4 52.8 4.6 53.6 4.6 20.4 3.2 26.8 3.6 21.2 3.3 25.0 3.5 40.0 4.3
Splice junct. 144.9 5.8 120.9 5.9 130.8 6.0 147.1 6.2 108.3 5.5 172.6 6.4 223 6.0 209.9 6.0 166.2 6.6
Svmguide 72.5 3.6 109.3 3.8 166.8 3.9 169.6 4.0 38.0 2.9 69.8 3.2 99.1 3.5 91.9 3.3 90.7 3.5
Tictactoe 34.1 4.0 25.9 3.6 29.9 4.1 30.5 4.1 27.3 3.7 32.8 3.8 24.8 3.6 24.8 3.6 27.2 3.8
Vertebral Colum 33.8 3.4 34.4 3.4 34.5 3.4 34.5 3.4 16.7 2.7 27.8 3.2 17.1 2.8 18.3 2.8 17.9 2.8
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Table 8: Average fidelity and standard deviations of the extracted rules for BST-M and BST-G.

Dataset BST-M1 BST-M2 BST-M3 BST-M4 BST-G1 BST-G2 BST-G3 BST-G4
Australian Credit Appr. 100.0 0.0 98.9 0.2 98.5 0.3 98.3 0.4 94.8 1.3 94.3 0.7 94.8 0.9 94.6 0.6
Breast Cancer 98.7 0.4 98.9 0.4 98.9 0.4 98.8 0.4 98.6 0.4 98.7 0.5 98.8 0.3 98.7 0.2
Breast Cancer 2 98.1 0.5 97.8 0.5 97.1 0.5 97.3 0.7 97.6 0.6 97.3 0.6 97.6 0.6 97.5 0.6
Breast Canc. (prognostic) 99.6 0.4 98.9 0.9 98.5 1.1 98.3 1.0 87.2 1.7 87.4 2.2 87.7 2.0 89.1 1.8
Bupa Liver Disorders 98.3 1.0 93.6 1.4 93.3 1.2 91.8 1.1 88.8 0.9 88.0 1.5 88.8 1.6 89.3 1.5
Chess (kr-versus-kp) 100.0 0.0 99.9 0.0 99.9 0.1 99.7 0.1 99.2 0.1 99.5 0.1 99.7 0.1 99.8 0.1
Coronary Heart Disease 99.6 0.2 97.7 0.5 97.0 0.7 96.9 0.8 94.2 0.7 95.2 0.6 94.6 0.5 94.0 0.3
German Credit 100.0 0.1 99.7 0.3 99.5 0.2 99.5 0.3 92.8 0.5 90.0 0.8 88.9 1.0 88.0 1.0
Glass (binary) 97.9 0.9 94.4 1.5 95.8 1.5 93.5 1.5 92.9 2.0 90.5 2.0 89.1 1.5 91.1 2.3
Haberman 100.0 0.0 99.9 0.3 99.3 0.5 99.4 0.5 93.9 1.8 92.3 1.0 92.7 1.6 93.5 1.5
Heart Disease 98.1 0.8 94.3 1.6 94.5 1.6 95.0 1.5 91.9 1.2 91.6 2.4 90.8 1.6 91.9 1.3
ILPD (liver) 100.0 0.1 99.8 0.1 99.7 0.2 99.6 0.3 91.1 1.1 90.2 1.3 89.2 1.8 89.0 1.2
Ionosphere 97.8 1.1 95.8 1.3 96.0 0.9 95.6 0.8 95.7 1.2 94.9 1.2 95.5 0.8 95.8 1.3
Istanbul Stock Exch. 99.6 0.3 98.3 0.6 98.1 0.5 96.5 1.0 92.9 0.7 91.5 1.3 90.7 1.0 91.3 1.0
Labor 93.9 3.8 93.4 2.7 93.2 3.6 95.6 3.0 91.2 3.7 90.2 2.6 93.6 3.7 95.8 1.7
Musk1 96.7 0.6 92.7 1.3 91.8 1.4 92.0 1.5 91.3 1.7 91.3 1.7 91.8 1.0 91.7 1.8
Pima Indians 99.8 0.2 98.5 0.2 97.6 0.4 97.3 0.7 93.8 0.8 90.5 1.1 91.1 1.5 90.2 1.1
Promoters 90.7 1.8 87.8 2.6 87.4 2.9 86.5 3.8 86.6 2.4 85.3 3.8 84.5 3.3 85.4 3.0
Saheart 99.4 0.4 98.1 1.0 97.5 0.9 96.8 1.3 89.9 1.7 87.6 2.2 87.9 1.2 88.0 1.6
Sonar 93.0 1.9 88.5 2.0 88.3 2.1 87.6 2.5 88.6 1.4 87.7 2.2 87.1 2.2 88.2 2.4
Spect Heart 100.0 0.0 99.1 0.6 98.4 0.4 98.5 0.6 93.5 1.6 91.5 1.1 92.3 2.0 91.3 0.9
Splice junct. 100.0 0.0 99.1 0.1 99.2 0.1 99.1 0.2 96.8 0.3 97.9 0.2 97.7 0.2 97.4 0.2
Svmguide 99.9 0.0 99.8 0.1 99.8 0.1 99.7 0.1 99.4 0.1 99.1 0.1 99.0 0.1 99.0 0.1
Tictactoe 100.0 0.0 97.1 0.4 98.6 0.4 98.5 0.5 99.2 0.3 98.3 0.3 99.7 0.1 99.9 0.1
Vertebral Column 99.9 0.3 96.6 1.1 96.0 0.9 95.4 1.0 93.7 0.9 93.1 1.3 93.3 1.7 93.2 2.0

values of our models and rulesets are a bit greater than that of
G-REX and Trepan.

In [15] rule extraction from SVMs is reported based on
ten repetitions of stratified tenfold cross-validation. Table 13
illustrates the comparison with our results obtained by
QSVMs. Note that the average number of antecedents is not
reported, because their number in [15] is equal to the number
of inputs.Thus, we generate less complex rulesets, on average,
while our predictive accuracy is better or very close. Finally,
we obtain better average fidelity.

3.5. Discussion. SVMs are very often used as single models,
because with boosting they tend to overfit the data. Shallow
trees are weak learners; thus they have to be trained in
ensembles. For DIMLPs, we observed that when they are
trained by bagging, the complexity of the extracted rulesets
tends to be a bit lower than that of rulesets produced by a
single network 22 times out of 25. In contrast, ensembles
trained by arcing show increased complexity in the extracted
rulesets 20 times out of 25. Concerning the impact of model
architecture, from this work it turned out that for boosted
decision trees when the number of splits is increased, then the
extracted rulesets tend to be more complex, on average (see
Figure 9 with BST-M, BST-G, and BST-R with the number of
splits in a decision tree varying from 1 to 4).

With respect to rulesets, the lower the fidelity, the higher
the complexity. Conversely, the higher the fidelity, the lower

the complexity. Since average predictive accuracy is in some
cases provided by the most complex rulesets, we also have
a clear trade-off between accuracy and complexity. Another
compromise to take into account is the proportion of covered
samples with respect to predictive accuracy. Specifically, from
Table 2 we showed that very often the average predictive
accuracy of rulesets is lower than that of the models from
which they are generated. In case of disagreement between
rules and models, if rules are ignored, more samples are left
without explanation, but the remaining rules will have better
predictive accuracy, on average (cf. Table 3).

Let us suppose that a physician is in a realistic situation
for which a patient diagnosis is provided by an ensemble of
DIMLPs. If the patient symptoms (e.g., inputs) are not cov-
ered by any rule, the physician cannot explain the response
given by the neural ensemble. Hence, a first possibility would
be to perform again rule extraction by including the new
patient data. However, this solution has two drawbacks. The
first is the rule extraction time duration, which is fast for all
the used datasets in this work but will be prohibitive with big
data. The second drawback is that, after reextraction of the
rules, the new ruleset could have considerably changed and
so it could take time for the physician to understand it.

To minimize the number of times a new sample remains
unexplained, we can increase fidelity. The basic idea consists
of aggregating the rules extracted from several models.
With the use of unordered rules representing single pieces
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Table 9: Average fidelity and standard deviations of the extracted rules for BST-R, DIMLP ensembles, and QSVMs.

Dataset BST-R1 BST-R2 BST-R3 BST-R4 DIMLP-B DIMLP-A QSVM-L QSVM-P3 QSVM-G
Australian Credit Appr. 94.8 0.9 94.7 0.7 94.7 0.6 94.4 0.9 97.9 0.5 96.0 0.5 100.0 0.0 98.1 0.6 99.3 0.2
Breast Cancer 98.5 0.6 98.7 0.3 98.5 0.4 98.5 0.5 98.8 0.4 98.9 0.3 98.9 0.4 98.1 0.3 98.7 0.4
Breast Cancer 2 97.3 0.4 97.6 0.4 97.5 0.7 97.6 0.5 97.4 0.6 97.3 0.7 97.2 0.5 97.1 0.8 98.1 0.4
Breast Canc. (prognostic) 87.0 2.1 88.1 2.0 88.0 2.0 88.4 1.9 91.9 1.5 94.8 1.6 91.1 1.3 93.9 0.6 92.2 1.1
Bupa Liver Disorders 88.0 1.9 87.9 1.8 87.2 1.7 86.9 1.9 93.1 0.9 94.5 1.1 91.4 1.9 85.3 1.7 89.3 1.2
Chess (kr-versus-kp) 99.2 0.2 99.6 0.1 99.8 0.1 99.8 0.1 99.6 0.1 99.8 0.1 100.0 0.0 99.7 0.1 99.6 0.1
Coronary Heart Disease 94.2 0.8 94.8 0.8 94.4 0.4 94.6 1.0 97.1 0.4 96.2 0.5 97.5 0.5 97.3 0.6 97.8 0.4
German Credit 92.4 0.6 89.8 0.9 88.8 1.1 88.5 1.0 96.2 0.8 94.1 1.3 94.4 0.7 94.4 0.8 90.0 1.0
Glass (binary) 94.1 1.6 91.5 1.8 90.9 2.7 90.1 2.7 94.4 1.3 91.4 1.1 87.1 2.5 90.7 0.8 91.6 1.4
Haberman 93.4 1.3 92.0 0.7 92.7 1.3 93.4 1.6 98.9 1.1 99.5 0.3 95.9 1.4 96.2 1.4 96.8 0.8
Heart Disease 92.8 1.5 92.1 1.6 90.7 2.4 90.3 2.8 95.2 1.2 93.9 1.8 95.4 1.3 94.5 1.2 94.4 1.9
ILPD (liver) 90.9 0.8 89.5 1.1 89.3 1.4 88.2 1.1 96.8 1.3 97.4 0.9 89.9 1.2 89.4 1.3 92.1 1.4
Ionosphere 96.0 1.2 96.0 1.3 95.9 1.2 96.0 1.0 96.1 0.6 94.6 1.3 95.6 0.8 94.8 0.8 95.5 1.0
Istanbul Stock Exch. 93.3 0.8 91.3 1.1 90.9 0.7 90.9 1.5 96.4 0.9 96.7 0.7 94.4 0.8 96.1 0.6 95.9 0.9
Labor 93.3 4.6 93.5 3.2 92.3 3.9 95.4 2.6 93.8 3.2 89.8 6.3 92.1 2.2 90.1 3.1 92.6 3.96
Musk1 91.9 1.5 92.2 0.9 91.4 1.4 90.9 1.3 91.5 0.7 88.5 0.8 92.1 1.0 91.0 0.9 87.5 1.6
Pima Indians 93.6 0.7 90.7 1.3 90.5 1.4 90.5 0.9 97.0 0.6 95.1 0.9 95.8 0.8 96.2 0.5 95.8 0.5
Promoters 88.0 3.3 87.0 3.5 87.3 3.0 90.4 3.0 92.0 2.9 87.5 2.2 85.5 3.4 85.5 3.2 88.6 4.1
Saheart 90.3 1.8 89.2 1.5 88.6 1.6 86.8 0.6 95.8 1.0 95.2 1.3 91.1 1.9 93.4 0.7 93.7 1.3
Sonar 88.8 2.7 86.8 3.0 87.2 1.9 85.5 2.1 90.6 1.2 85.1 2.2 88.4 1.5 86.0 2.7 82.7 2.0
Spect Heart 93.6 1.8 91.5 1.5 90.9 1.6 89.9 2.0 94.7 1.0 94.8 1.4 93.4 0.6 94.1 1.1 92.3 1.3
Splice junct. 96.9 0.4 97.9 0.3 97.6 0.2 97.4 0.4 96.9 0.3 98.0 0.2 95.1 0.2 95.1 0.2 91.2 0.3
Svmguide 99.4 0.1 99.1 0.1 98.9 0.1 98.9 0.1 99.7 0.1 99.4 0.1 99.3 0.1 99.2 0.0 99.4 0.1
Tictactoe 99.4 0.3 98.3 0.4 99.6 0.2 99.9 0.1 100.0 0.1 99.2 0.3 100.0 0.0 100.0 0.0 99.6 0.3
Vertebral Column 93.6 1.0 94.0 1.4 92.6 0.8 93.9 1.0 96.1 0.9 93.3 1.8 96.2 0.7 95.9 1.2 95.6 0.7

of knowledge, even if their number is greater than those
obtained with a single model, their comprehension could be
possible in a reasonable amount of time. In the next experi-
ment we consider combinations of five models (out of 17) by
majority voting, even if the number of extracted rules roughly
increases by a factor equal to five. When rules of different
classes are activated we ignore the rules that are different
from the majority voting response (this corresponds to the
first strategy in Section 2.1.4). This approach was applied to
10 classification problems. Table 14 shows the obtained results
for all the possible combinations of five aggregated rulesets,
equal to 6188. The second column represents the average
over the 6188 possible combinations of the average predictive
rulesets’ accuracies (with the standard deviation). Columns
three and four show the minimal and maximal rulesets’
predictive accuracy and the last column is the average of the
average fidelity. It is worth noting that this last value is always
above 99.6% and the average of the average ruleset accuracy is
greater than the best corresponding values shown in Table 2
(fifth column).

4. Conclusion

In thiswork, theDIMLPmodelwas used to extract unordered
rules from ensembles of DIMLPs, boosted shallow trees, and
Support Vector Machines. Experiments were performed on

25 datasets by 10 repetitions of 10-fold cross-validation. We
measured the predicative accuracy of the generated rulesets,
their complexity, and their fidelity. For the 17 classifiers used
in this study, we emphasized a strong relationship between
average complexity and average fidelity of the extracted rule-
sets. As a result, we obtained a spectrum of models showing a
clear trade-off between fidelity and complexity. At one end lie
the decision stumps trained by modest Adaboost for which
the less complex rulesets are generated, bringing also the
best fidelity, on average. At the other end lie models with
highest complexity and lowest fidelity, corresponding to BSTs
trained by real Adaboost and gentle Adaboost. The average
complexity of rulesets produced by BSTs is augmented with
the number of splitting nodes.

Another trade-off is between the covering of testing
samples by rules and predictive accuracy. We clearly pointed
out that when models and rulesets agree then the average
predictive accuracy is better when we ignore the test samples
for which models and rules disagree. Intuitively, this can be
explained by the fact that when models and rules disagree
the classification is somewhatmore uncertain. By aggregating
the responses of several models it was possible to increase
both fidelity and predictive accuracy. Nevertheless, this also
increased complexity.

Very few works systematically assessed symbolic rules
generated from connectionist models by cross-validation.
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Table 10: Average predictive accuracy of extracted rulesets from DIMLP-Bs, DIMLP-As, and single DIMLPs (columns 2, 3, and 4). Average
complexity of rulesets (last three columns).

Dataset DIMLP-B DIMLP-A DIMLP DIMLP-B DIMLP-A DIMLP
Australian Credit Appr. 86.5 84.9 86.1 22.7 3.7 82.7 5.1 30.0 3.9
Breast Cancer 96.5 96.2 96.4 12.5 2.7 25.2 3.6 13.3 2.8
Breast Cancer 2 95.6 95.8 95.9 20.8 3.1 27.2 3.3 19.9 3.1
Breast Canc. (prognostic) 79.0 77.7 77.7 12.6 2.8 24.6 3.5 15.0 2.8
Bupa Liver Disorders 70.9 67.2 67.8 36.9 3.3 31.8 3.2 37.7 3.5
Chess (kr-versus-kp) 99.5 99.7 99.4 32.5 4.0 36.3 4.2 35.7 4.2
Coronary Heart Disease 91.6 92.3 90.9 44.8 4.0 71.6 4.6 53.1 4.2
German Credit 73.6 72.6 73.9 56.7 4.3 93.9 5.1 73.8 5.0
Glass (binary) 77.8 81.1 79.5 13.7 2.7 19.9 3.2 14.5 2.8
Haberman 74.3 73.3 72.8 7.8 1.9 2.3 0.6 6.7 1.8
Heart Disease 84.3 80.5 81.8 20.6 3.2 39.3 4.2 23.5 3.4
ILPD (liver) 70.7 70.8 68.8 23.9 3.1 25.2 2.8 31.1 3.2
Ionosphere 92.1 90.6 92.1 19.3 2.9 29.5 3.2 20.5 3.1
Istanbul Stock Exch. 77.2 75.1 76.0 21.4 2.8 23.4 2.9 26.0 3.0
Labor 84.3 87.4 86.1 7.3 2.2 9.2 2.6 7.2 2.2
Musk1 85.8 86.0 86.2 57.4 4.4 90.1 4.3 60.1 4.3
Pima Indians 76.3 74.2 75.5 38.8 3.3 47.0 3.6 42.3 3.6
Promoters 83.0 81.1 81.3 11.8 2.7 20.4 3.4 12.4 2.8
Saheart 71.9 68.6 70.9 29.2 3.3 27.5 3.3 29.2 3.4
Sonar 79.0 78.4 77.9 24.1 3.2 40.2 3.8 24.5 3.2
Spect heart 72.2 67.9 69.2 20.4 3.2 26.8 3.6 24.4 3.3
Splice junct. 95.1 95.3 94.6 108.3 5.5 172.6 6.4 124.6 7.7
Svmguide 96.8 96.9 96.8 38.0 2.9 69.8 3.2 38.7 2.9
Tictactoe 98.4 98.7 98.5 27.3 3.7 32.8 3.8 31.7 3.9
Vertebral Column 84.0 82.7 83.4 16.7 2.7 27.8 3.2 17.3 2.8

Table 11: Comparison of rule extraction algorithms for the Breast Cancer classification problem, based on 10-fold cross-validation on single
networks or ensembles of neural networks (last two rows).

Rule extraction technique Rules Pred. Acc. Avg. #rules Avg. #Ant.
SSV (10 CV) [9] 96.3 (0.2) 3 –
FSM (10 CV) [9] 96.5 12 –
MINERVA (10 CV) [10] 94.5 (1.5) 4.2 3.3
NeuroLinear + GRG (10 CV) [11] 96.0 2 –
Re-RX + J48graft (10 × 10 CV) [12] 95.8 (1.6) 4.8 1.7
DIMLP-B (10 × 10 CV) 96.5 (0.3) 12.5 2.7

Table 12: Comparison on neural network ensembles with respect to Trepan [13] and G-REX [14]. Our results in the last three columns are
those provided by DIMLP-B.

Dataset NN. Acc. Our Acc. Trepan Acc. G-REX Acc. Our rules Acc. Trepan Fid. G-REX Fid. Our Fid.
Aust. Cred. Appr. 84.3 86.7 84.8 85.9 86.5 92.9 92.3 97.9
Breast Cancer 96.5 97.1 95.4 95.5 96.5 96.8 97.0 98.9
Bupa Liv. Dis. 70.6 72.7 65.6 66.2 70.9 76.2 75.6 93.1
German Credit 73.1 74.0 71.8 72.6 73.6 83.9 82.5 96.2
Ionosphere 92.6 93.2 84.3 91.4 92.1 86.0 90.9 96.1
Labor 92.0 91.7 76.0 88.0 84.3 84.0 88.0 89.8
Pima Indians 74.5 76.6 75.0 74.2 76.3 86.8 84.5 97.0
Sonar 80.5 82.1 67.0 75.0 79.0 67.5 77.5 90.6
Tictactoe 91.0 98.3 79.4 83.4 98.4 80.2 87.2 100.0
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Table 13: Rule extraction comparison for SVMs.

Dataset SVM rules Acc. [15] SVM rules Fid. SVM #rules Our rules Acc. Our Fid. Our #rules
Aust. Cred. Appr. 85.8 90.4 34.5 85.7 (QSVM-P3) 98.1 20.5
Breast Cancer 96.5 98.4 9.0 96.7 (QSVM-G) 98.7 11.6

Table 14: Average predictive accuracy and average fidelity of rulesets by aggregating five models.

Dataset Avg. rules Pred. Acc. Min rules Pred. Acc. Max. rules Pred. Acc. Avg. Fid.
Aust. Cred. Appr. 86.7 (0.3) 85.8 87.5 99.9 (0.1)
Breast Cancer 96.8 (0.3) 95.8 97.4 100.0 (0.0)
Breast Cancer 2 96.9 (0.4) 95.1 97.7 99.9 (0.0)
Bupa Liv. Dis. 72.2 (0.8) 69.4 74.2 99.8 (0.1)
German Credit 75.6 (1.1) 72.7 76.9 99.9 (0.1)
Glass (binary) 85.8 (2.1) 77.8 89.0 99.8 (0.2)
Ionosphere 93.3 (0.5) 91.6 94.2 99.9 (0.1)
Musk1 90.2 (1.3) 85.8 92.9 99.9 (0.1)
Promoters 88.9 (1.6) 83.0 91.7 99.6 (0.3)
Sonar 86.8 (1.2) 82.3 88.6 99.7 (0.1)

Hence, our work could be useful in the future to researchers
who would like to compare their results. So far, the compar-
ison with a work in which rules were extracted from MLP
ensembles was in our favour for both fidelity and predictive
accuracy in eight out of nine classification problems. More-
over, with respect to two datasets from which rules were
generated from SVMs we obtained better fidelity, with pre-
dictive accuracy being greater in one of the problems and
slightly worse in the other. Lastly, we would like to encourage
researchers to perform systematic experiments by 10-fold
cross-validation to assess their rule extraction algorithms
applied to neural networks.
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