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Abstract Foraging is a common benchmark problem in
collective robotics in which a robot (the forager) explores
a given environment while collecting items for further depo-
sition at specific locations. A typical real-world application
of foraging is garbage collection where robots collect gar-
bage for further disposal in pre-defined locations. This work
proposes a method to cooperatively perform the task of find-
ing such locations: instead of using local or global locali-
zation strategies relying on pre-installed infrastructure, the
proposed approach takes advantage of the knowledge gath-
ered by a population about the localization of the targets. In
our approach, robots communicate in an intrinsic way the
estimation about how near they are from a target; these esti-
mations are used by neighbour robots for estimating their
proximity, and for guiding the navigation of the whole pop-
ulation when looking for these specific areas. We performed
several tests in a simulator, and we validated our approach on
a population of real robots. For the validation tests we used
a mobile robot called marXbot. In both cases (i.e., simula-
tion and implementation on real robots), we found that the
proposed approach efficiently guides the robots towards the
pre-specified targets while allowing the modulation of their
speed.
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1 Introduction

There is a large amount of real world tasks where a group
of robots performs better or more efficiently than a single
robot [2]. The approach of using multiple robotic agents to
perform a task in a cooperative manner is called collective
robotics. Collective robotics has been used for a diversity
of tasks like object manipulation, obstacle overpassing, and
stair climbing. In all cases, collective robotics targets the exe-
cution of tasks that, when performed by a single robot, are
impossible or inefficient. Researchers argue that by organiz-
ing simple robots into cooperating teams, useful tasks may be
accomplished otherwise impossible using a single robot [15].

Collective robotics has gained the interest of a large num-
ber of researchers in the last decades thanks to the wide range
of possibilities of applications that it offers. However, con-
trolling such systems demands the use of coordination strat-
egies taking advantage of the fact of having more than one
individual, i.e., the presence of neighbours which can coop-
erate to ease the execution of the task. The goal is thus to
find a strategy that allows a set of robots to, somehow, inter-
act among them in order to find the solution in a more effi-
cient manner than the same set of robots performing the task
simultaneously but independently. Including such interac-
tion implies additional costs in terms of robot set-up and
computation, like addition of communicating capabilities or
attachment mechanisms. In spite of this additional cost, the
collective solution must still be more efficient than the indi-
vidual one.

A common benchmark problem in collective robotics is
foraging. The term foraging in robotics is used to designate a
group of behaviours that mimic the behaviour of foraging in
animals. Thus, a forager robot has to navigate in its environ-
ment while collecting items and depositing them at specific
locations [4,27]. In order to perform this type of task, robots
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need to be able to explore their environment in an efficient
way, and at any moment, find target locations which are com-
mon to the whole population, such as storage places where
the collected objects have to be stacked, battery charging sta-
tions, or specific sites if a fixed path has been established.
Foraging has been largely studied due to its importance!
in collective robotics, and it has been divided into several
states namely: searching, grabbing, homing and depositing;
and the problem of coordination between robots can exist at
every state. In the work we describe here, we are interested
in the problem of coordination for the first and last tasks, i.e.,
searching and homing.

Different approaches have been used in designing control
strategies for groups of searching robots. There is a classi-
cal approach where a central planning unit coordinates the
actions of the population of robots. This unit sends com-
mands according to the state of each unit in order to make
them cooperate. The distribution of labours can be hierar-
chical, and each individual must be capable of replacing the
planner unit if it fails due to malfunction [4]. This approach,
while being the more intuitive and understandable, is often
not scalable and difficult to implement due to the communica-
tion requirements of a central coordination, which in addition
makes the system less robust.

An alternative to this approach consists on endowing
the system with self-organization properties, allowing indi-
vidual units to cooperate without a central planner. Self-
organization is frequently achieved by taking inspiration
from biology [12], and in particular from the behaviour of
social species. Social species of insects, for instance, are very
successful in performing cooperative tasks related to the sur-
vival of the species. Their success might come from the
fact that social interactions can compensate for individual
limitations, both in terms of physical and cognitive capabil-
ities. Indeed, herds and packs allow animals to attack larger
prey and increase their chances for survival and mating [14],
while organizations and teams facilitate information sharing
and problem solving.

Some examples of coordination strategies found in biol-
ogy are stigmergy in ants [10] and trophallaxis in bees [9].
Stigmergy refers to a specific type of social communication
through the modification of the environment, where the result
of work of an individual modifies the behaviour of the rest of
the population in a unintentional manner [13]. It is a form of
self-organization. The construction of nests in termites and

! Foraging is important since it is a metaphor for a broad class of
problems integrating exploration, navigation and object identifica-
tion, manipulation and transport, and robot-robot cooperation. More-
over, many actual or potential real-world applications for robotics are
instances of foraging robots, for instance cleaning, harvesting, search
and rescue, land-mine clearance or planetary exploration [27].

2 1t has been estimated that one-third of the animal biomass of the
Amazon rain forest consists of ants and termites [24].
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other insects are examples of stigmergy in nature. Moreover,
trophallaxis is the exchange of fluid food by direct mouth-
mouth contacts between members of the population. These
exchanges can transfer information about the quality of food
source, temperature and water demand. These mechanisms
have served as inspiration to develop controllers for collective
robotics, and there is a large number of different implemen-
tations of these concepts, each one requiring different levels
of complexity of the robots, and different types of commu-
nication between the units. Schmickl and Crailsheim [23]
used trophallaxis as inspiration for creating a decentralized
strategy of communication in a swarm of small robots. By
using this approach, they manage to create two gradients into
the population, and to make the robots employ these gradi-
ents in order to navigate towards pre-defined areas. Sugawara
et al. [25] employed stigmergy as inspiration to make a pop-
ulation of robots to cooperate in the task of collecting virtual
food in a controlled environment. They solved the main prob-
lem of stigmergy of modifying the environment with chem-
ical traces by using images projected on the floor where the
robots can detect them. Campo et al. [11] employ virtual pher-
omones to guide the process of path selection in a population
of foragers. The pheromones in this case are local messages
which are passed between members of a chain of robots.
This paper describes a novel approach for the localization
of targets (e.g., searching and homing behaviours) in a pop-
ulation of foragers. The control of the population of robots is
performed in a distributed way. In order to test our approach
we designed an experimentation scenario where robots have
two possible states which are “work™ and “search”. In the
“work” state robots perform a certain foraging task and are
distributed on the arena. In the case of the work presented in
this paper, we have a dummy foraging task consisting in navi-
gating on the arena avoiding obstacles. The main interest is in
the “search” state, where a robot will try to arrive to a specific
target region on the arena. This target region can be a battery
charging station, an area for garbage disposal, or the output
of a maze. Whatever the robot may search, our hypothesis
is that a searching robot can exploit the collective knowl-
edge, given that there may be other robots that can estimate
how far they are from the target region, and will somehow
help the searching robot to achieve its goal. The proposed
target localization avoids the use of global positioning sys-
tems, that might be difficult to deploy in unknown or hostile
environments, and avoids also the use of odometry, which
is sensitive to cumulated errors after large running periods.
However, robots need basic communication capabilities® in
order to disseminate the information they have to the rest of
the population. We decided to use light in the visible spec-
trum as communication channel in order to render the exper-

3 For the purpose of disseminating information in the population, a
communication schema which is local and implicit would be enough.
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iments more visual. In this manner, we simplify the process
of assessing the behaviour of the robots in a qualitative way,
and provide interesting and easily interpretable demonstra-
tions. Our approach for the implementation uses the colour
LEDs and omni-directional cameras of the robots as com-
munication link. Thus, each robot encodes in its colour the
information of how likely it is to find a target in its proximi-
ties, and each robot can “see” what neighbouring robots are
showing by using its own camera. This paper complements
the initial tests shown on [22] about this approach of commu-
nication and coordination, and shows its validation by means
of an implementation on real robots. The simulations were
performed with the simulator Enki [19], and the tests on the
real arena were performed by using 20 marXbot robots [6,7].

The paper is structured as follows. Section 2 introduces
the use of topological navigation and the use of landmarks,
and describes the use of state communication in coordinat-
ing a population of robots. Section 3 describes the simulation
framework that was used in order to do the first tests of the
target localization strategy, and the robots and sensors imple-
mented. Several results of the simulations are also shown in
this section. Section 4 describes the real robot that was used
for validating the social-based approach, the results of the
tests we performed over the population, and a comparison
with the simulation. Section 5 gives some conclusions.

2 Searching and homing in a forager robot

As it has been already mentioned, localizing a target (e.g.,
searching, homing) is one of the essential tasks of a for-
ager robot. When foraging, robots have to be able to find
target locations which are common to the whole population
in order to collect some resources, or to deposit them in a
pre-established position. Finding a target zone is thus a cru-
cial behaviour for a robot being part of a swarm of foragers.
Several approaches have been used with this purpose, e.g.,
omniscient planners, sensing absolute position/orientation,
following global beacons, using landmarks, pheromones,
beacon chains or contact chains [26]. Global strategies like
the use of centralized planners or GPS-like systems are
expensive and difficult to implement or unreliable when the
number of robots increases or when robots are placed in
changing or hostile environments. Conversely, local strat-
egies like the use of local beacons or landmarks, or bio-
inspired methods like pheromones, are more easily scalable
and allow the implementation of self-organized systems
which can adapt to unknown environments.

2.1 Landmarks and beacons

The use of landmarks in robot navigation is a widely used
approach which has been called topological navigation [4].

Robots using this strategy do not use precise measurements
of position but have to infer their own location from the per-
ception of known marks in the environment such as doors
or intersections in the case of indoor navigation. Topological
navigation is common for us since most of the information
we use to locate ourselves and target directions are relative
to objects in our landscape. Nevertheless, using landmarks
is not exclusive to superior animals. Some researchers have
taken inspiration from small social animals like insects which
employ similar strategies to find their way back to home
after exploration journeys. Some species of desert ants, for
instance, use visual landmarks in order to return to important
places in their environment [ 18] when other methods like the
use of pheromones is not possible. Moreover, other individu-
als which make part of the population can also be landmarks.
Bees, for instance, can use the physical contact with other
individuals of the hive in order to regulate the behaviour of
foragers [9]. This form of communication, where individu-
als employ other members of the population as landmarks
or beacons for locating a target has also been a source of
inspiration for navigation in robotics [21,26].

2.2 Social approach of target localization

One of the most important aspects in controlling the coordi-
nation of a group of agents is the communication between
those agents. Different considerations can be done about the
type of communication within the members of the popu-
lation. The communication can be global if the whole set
of agents can receive messages, or local if only neighbour
agents can communicate. Moreover, the communication can
be explicit or implicit whether the sender is aware of the
receiver or not, or even targeted if the sender is able to select
the receiver. As it has been already mentioned, local com-
munication schemas are more scalable to large populations,
and implicit communication is easier to implement. Indeed,
it is not by coincidence that the communication schemas in
social species of insects have these properties.

A type of communication in collective robotics having
these properties is state communication [3]. In state com-
munication robots communicate through their behaviour in
explicit or implicit manner. Hence, robots have to be able
to interpret the behaviour of other robots by using their sen-
sory capabilities. This type of communication has been suc-
cessfully used for coordinating tasks in collective robotics
[16,17,21] and it has proven to be robust and scalable.

State communication can be used to transfer information
about the location of a specific place and hence, a basis of
a social approach of target localization in a population of
foragers. In this paper, we present a novel approach for find-
ing a common target location based on the knowledge gath-
ered by a population of robots. It supposes the existence of a
set of robots performing a foraging task. A group of robots
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is thus distributed in the environment while searching for
some kind of resource, and at any moment, any individual
has to find a specific place which is common for the whole
population e.g., a charging station, or a depot where gath-
ered objects have to be stacked. Robots are not provided
with their positions when looking for the targets, instead,
each individual has to use imprecise nearness estimations of
neighbours which are transferred through state communica-
tion. The physical means that are used for establishing the
communication link are not relevant for testing the validity of
our approach. What is important is that the communication
must be local and implicit.

For the sake of easily visualising what is happening in
the population, we decided to use visible light as physical
layer for establishing the communication. In order to share
the knowledge with its neighbours, every robot can display a
colour, and that colour reflects an internal state of the robot
which is directly related to the certitude of being near the tar-
get. Each robot has limited vision which allows it to detect
other robots as well as obstacles. Thus, if a robot needs to go
to a specific place, it has to follow robots showing the colour
that was assigned to this place. These coloured robots act as
moving beacons to guide other members of the population to
the specific goals. Once arrived to the target, the robot must
update its colour in order to cooperate with the rest of the
population serving as beacon for other robots while linearly
decreasing its colour. Moreover, robots were programmed
to copy a proportion of the colour of other robots, and as
a consequence, an emerging colour gradient is formed in
the population. This behaviour improves the dissemination
of information through the robots, facilitating the task of
looking for a target. Any robot in the population behaves as a
mobile beacon, and cooperates with the execution of the task
by guiding other robots to the target, even if the exact position
of the target is unknown. The details of the implementation
of the social strategy are shown in Sects. 3.2 and 4.3.

Note that this approach does not exactly mimic stigmergy
given that the robots do not produce any trace in the envi-
ronment (as it happens with the pheromones of ants); and it
does not exactly mimic trophallaxis given that the robots do
not lose any of the information they have when they commu-
nicate (as in the case of bees for instance).

2.3 The proposed foraging task

We performed several experiments in order to validate our
social-based approach of target localization. In our foraging
task, robots will only perform the searching and homing parts
of foraging, and the components of grabbing and deposit-
ing are not present. In our approach robots may be in one
of two possible states: working or searching. In the work-
ing state, robots freely (i.e., randomly) navigate on the arena
while avoiding obstacles (i.e. walls and other robots). In the
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searching state, robots must look for one of the targets that
are distributed in the arena. Robots that happens to find the
targets must change their colour in order to share this infor-
mation with other members of the population. Furthermore,
every robot in the population must copy the R and B colour
components of the robots within its field of view having the
highest values for these components. Robots in the searching
state should follow the direction of the colour gradient that
was created by the population of robots in order to head in
the direction of the target.

In order to validate our approach, we placed two targets
in opposite corners of the arena, and set the state of some
of the robots in the population to searching. These robots
repeatedly go from one target to the other, while at the same
time we measured the time each robot spent in its trajectory.

3 Simulations

This section shows some of the experiments we carried out in
simulation. Some of these experiments where already intro-
duced on [22], and others are completely new experiments
that were designed in order to further test our approach.

3.1 Simulation setup

We used a simulator called Enki [19] to perform the first
tests of the proposed strategy. Enki is an open source 2D
robot simulator written in C++ which provides collision and
limited physics support for robots evolving on a flat surface.

3.1.1 The simulated arena

The flat space where robots evolve is a square arena limited
by dark gray* walls of 15 cm height. There are two simulated
RFID tags located at opposite corners of the arena. Each tag is
programmed to be detected at a maximal distance of 21.5 cm.
These areas are shown by the two light grey circles located at
the top-left corner for tag number 1, and bottom-right corner
for tag number 2. This setup is shown in Fig. 1.

3.1.2 The simulated robots

The robots implemented on Enki were programmed to simu-
late a real robot called marXbot [6,7]. This robot has two
wheels® for locomotion, [RGB] LED for displaying col-
ours, omni-directional camera, infra-red bumpers, rotating
distance sensor scanner, and a RFID tag detector. The simu-
lated omni-directional camera is a vector of 180 pixels that

4 R =30%, G =30%, B =30%.

5 The actual robot has a combination of tracks and wheels called treels.
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Fig. 1 Arena where the simulated experiments evolved. The numbered
cylinders are the mobile robots and the two grey circles represent the
zones from where RFID tags can be detected. Tag 1 is placed in the
top-left corner, and tag 2 is placed in the bottom-right corner

detects the colours of the objects around the robot (i.e., one
pixel of the linear image covers 2 degrees of field of view).
A picture of the actual robot is shown in Fig. 9a.

3.2 Implementation of the social approach in simulation

The simulated robots were programmed to avoid obstacles
(i.e., walls and other robots), to detect two specific zones
(i.e., the targets), and to communicate their state in order to
collaborate with the population in the task of foraging.

3.2.1 Detection of targets and state communication

Two simulated RFID tags where placed in two opposite cor-
ners of the arena, in a way that robots can detect them by
using their RFID detectors when approaching to a certain
distance (i.e., 21.5 cm). These RFID tags represent the tar-
gets the robots have to detect when navigating. Additionally,
when arobot finds a target (i.e., it detects the RFID tag), it can
communicate this information to the rest of the population by
showing one of two colours. Hence, for the simulations we
present here, when a robot detects the target number 1 it sets
the green component of its colour to 100%, and in the other
case, when a robot detects the target number 2 the robot sets
the red component of its colour to 100%. Showing a colour
(which must be known by the whole population) when a robot
finds a target allows other robots in the proximities of the tar-
get to know its location. Once the robot leaves the target zone
it linearly decreases all the components of its colour.
Additionally, robots can further share their knowledge by
copying the colour of neighbouring robots. The idea with this
behaviour is that the colour of the robots indicate how certain

Attenuation factor
0.4
|

T T T T T
0 50 100 150 200 250 300

Distance [cm]

Fig. 2 Attenuation of the colours detected by the simulated omni-
directional camera with respect to the distance to the object

arobot is of the information it has. Hence, robots can follow
the gradient of colour in order to get to a target. This gradient
was created by simulating a limit on the maximal range of
vision of the omni-directional camera. After some tests, this
maximal range was set to ~50 cm as shown in Fig. 2.

3.2.2 Navigation

Navigation was performed in a pure reactive manner as in
Braitenberg vehicles [8], and the integration of sensor infor-
mation was based on a strategy called motor schema-based
navigation [1]. Hence, 24 infra-red sensors were used as
bumpers, and the 180 pixels of the omni-directional linear
camera were employed in order to detect mid-range and dis-
tant obstacles and colours. The steer direction S was thus
calculated by adding 4 components:

— Random (r): A vector pointing to a random direction.

— Bumpers (b): The vector pointing in the direction where
there are no obstacles detected by the bumpers.

— Free Area (f): The vector pointing in the direction where
there are no obstacles detected by the camera.

— Attraction to Landmark (t): The vector pointing in the
direction where there are objects having the colour asso-
ciated to the target.

— Repulsion (nt): The vector pointing in the direction
where there are no objects having a colour associated
to a different target

Sy =7y + by + fx + 1t +nty (D
Sy =ry+by+ fy+1t,+nt, 2)

Component r was added to allow the robot to get out from
corners, or other places where sensory information is sym-
metric, and to guarantee that every run of the experiment is
different.

Each one of the aforementioned components was calcu-
lated as the dot product of the vector having the response of
the sensor group, and the vector of positions of each individ-
ual sensor. Let us take the bumpers as an example. We build
two vectors here, a vector bumper with the signals of the 24
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Fig. 3 Histograms of the data
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infra-red sensors, and a vector A compiling the angle « of
each sensor. The vector b summarizing the activation of the
24 bumpers, and pointing in the direction where there is an
obstacle® is calculated as follows:

b, = bumper - cos A 3)
by = bumper - sin A 4)

Furthermore, in the case of the omni-directional camera
some masks were applied to the image in order to eliminate
the influence of walls when calculating the t and nt compo-
nents.

3.3 Tests on simulation

This section shows the results of some simulated tests with
two different configurations of the arena.

3.3.1 Comparison with random search

The results in this subsection were obtained by using the
setup described in Sect. 3.1, with a square arena of 300 cm
of side length, and by placing two targets in opposite corners
of the arena at positions (40, 260) cm and (260, 40) cm. In
order to test our simulation setup, we measured the time a
robot spends in going from one target to the other by 1. using
a random walking strategy, and 2. using our social-based
approach. The random walking strategy was implemented
by setting to zero the components t and nt of the steering
vector. Figure 3 summarizes the measures we made for 1000
single trips in each case.

6 If there are several obstacles this method returns the direction where
there are more detections.
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As it can be seen in Fig. 3, the time needed for finding a
target is dramatically reduced when robots employ the social-
based approach.

In order to characterize our approach, we performed a
set of tests modifying the attraction between robots and we
measured the time they spent in finding the targets. For doing
so, we multiplied the component t of the steering vector in
Egs. 1 and 2 by a parameter of attraction k. The resulting steer
vector is shown in Eqgs. 5 and 6. By changing the attraction
between robots we also modify the dynamics of the pop-
ulation, making the navigation less or more fluid. We also
explored the efficiency of our approach under the presence of
different amounts of robots performing the task of searching
within the population. The results of these tests are depicted
in Fig. 4. The population size was always kept constant.

Sy =71y + by + fx +k-tx +nty (5)
Sy =ry+by+ fy+k-ty+nt, (6)

As it can be seen in Fig. 4, the parameter k can be used to
control the speed of the robots and thus to control the time
the robots spend in finding a target. From the same figure, it
can also be observed that the average time for finding a target
is lower when few robots are searching targets.

3.3.2 Comparison with a GPS-like controller with similar
complexity

The results in this section were obtained by using the slightly
modified arena shown in Fig. 5a. This arena has a rectangular
form of 300 cm x 400 cm side length, and two targets located
at positions (60, 40) cm and (340, 40) cm.

The goal of these experiments is to compare our social
approach against another method driving the robots to the
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Fig. 4 Average time spent by a robot with respect to the value of attrac-
tion in the case of using the information gathered by the population about
the location of the targets. Each point in the image summarizes a set of
1000 single trips performed by the robots

targets with a similar complexity. Maps and global coordi-
nation strategies are thus not allowed.

Given that in the social approach each robot relies on the
direction to move, we decided to compare that against a GPS-
like approach where each robot knows the location of the tar-

gets and moves in that direction. Therefore, we replaced the
components t and nt of the steering vector by a single vector
a always pointing in the direction of the desired target. The
resulting steering formulae are shown in Eqs. 7 and 8.

Sx
S,V

Fy + by + fx +ax
ry +by+ fy +ay

(N
®)

Figure 5 shows the average time a robot spends in going
from one target to the other for both strategies, different val-
ues of k, and different amounts of robots searching at the
same time. After comparing Fig. 5b, c it can be seen that
average time in the case of the GPS-like strategy is lower
that in the case of the social strategy. This result can be seen
as obvious given that there are no obstacles in the trajectory
of the robots, and thus knowing the position of the target
gives a major advantage to the GPS-like approach.

We added an obstacle between the two targets to make this
comparison more interesting. In the presence of an obstacle
robots have to first avoid the obstacle in order to get to the tar-
get. With this experiment we want to observe how the robots
behave with these two simple strategies when obstacles of
different lengths are placed in the arena. Figure 6 shows the
obstacles of length 50, 100, 150 and 200 cm that were put in
the arena to perform the tests.

Figure 7 shows the average time for robots using the social
approach when going from one target to the other with dif-
ferent values of k, different amounts of robots searching at
the same time, and different lengths of obstacles. As it can
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arena where simulated
experiments considering
an obstacle evolved.

Fig. 5 a Tag 1 is placed in the bottom-left corner, and tag 2 is
placed in the bottom-right corner. b, ¢ Average time a searching robot
spends in going from one target to the other without the presence of

Attraction (k)

(b) Average time of the
social strategy without
obstacle.

Attraction (k)

(c) Average time of the
GPS-like strategy with-
out obstacle.

obstacles in the environment. Different values of k and different amounts
of robots searching for targets at the same time were tested
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(a) Obstacle of 50 cm. (b) Obstacle of 100 cm.

Fig. 6 Four different lengths of obstacles in the modified arena
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Fig. 7 Average time for robots using the social approach for target localization. We tested different values of k, different amounts of robots
performing the searching task at the same time, and different lengths of obstacle between the targets

be seen from that figure, the average time increases with
the length of the obstacle between the targets. This result
is coherent since robots have to transit longer paths when
longer obstacles are put between the targets.

Figure 8 shows the average time for robots using the GPS-
like approach when going from one target to the other with
different values of k, different amounts of robots search-
ing at the same time, and different lengths of obstacles. As
in the previous case, the average navigation time is posi-
tively affected by the length of the obstacle between the
target. However, the GPS-like approach seems to be more
influenced by the presence of big obstacles than the social
approach.

We pushed even further the comparison between both
approaches by putting an very large obstacle which covers
almost the whole arena letting just a little corridor for the
robots to pass through. Figures 7d and 8d show the results
of this last comparison. As it can be seen in the figure, the
social approach manages to drive the robots to the targets
even when operating in an environment which has more the
form of a labyrinth than an open space. Instead, with the
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GPS-like approach, robots spent much more time to get to
the targets in this environment.

4 Validation on the marXbot robot

A set of the above described experiments was implemented
on a real robotic platform in order to validate our approach
handling real physical constraints. For doing so, we used a
collective robotic set-up with 20 robots communicating their
state through visual signals: emitted by RGB LEDs and per-
ceived by omni-directional cameras. This section describes
the robotic platform and the experimental set-up.

4.1 The marXbot robot

The marXbot [6,7] is a small mobile robot’ designed at
the EPFL with the support of the FP6 European project
PERPLEXUS. This robot offers a reliable hardware plat-
form to perform experiments in collective robotics. It has

7 17 cm diameter, 17 cm height, ~1000 g weight.
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Fig. 8 Average time for robots using the GPS-like approach for target localization. We tested different values of k, different amounts of robots
performing the searching task at the same time, and different lengths of obstacle between the targets

a modular hardware and software architecture with a real
operative system which allows high flexibility and robust-
ness. The ground mobility is achieved by a combination
of tracks and wheels that gives good mobility in even and
uneven terrains. About 60 sensors ensure a perception of
the environment sufficient to perform a large variety of tasks
and a collaboration among several individuals. Moreover, the
marXbot robot is modular to allow different configurations
depending on the task to be achieved.

The robot structure is based on a modular concept at
all levels: mechanical, electronics and software. Mechani-
cal modularity is achieved by stacking modules on top of
another following a well-defined mechanical specification.
Figure 9b shows the modules composing one of the basic
configurations of the marXbot. From Fig. 9b one can distin-
guish a common element: two central electrical connectors
and four fixations holes around them ensuring the mechan-
ical and electrical interface between all the modules. The
modularity of the electronics is achieved by:

— Sharing, on the extension connectors:

—  The raw battery power supply.

— Some control signals such as the power enable and
the reset signal.

—  Two communication buses: CAN and I>C.

— Selecting different functionalities for the several modules
in such a way that they result as independent as possible.

— Providing each module with its own local processing
power.

— Supporting on each module the ASEBA architecture
described in [20].

Figure 9a shows a picture of the actual robot in one of its
possible configurations with five modules.

The base module contains the power supply of the whole
robot. The marXbot is powered by a 3.7 V, 10 Ah Lithium-
Polymer battery which is hot-swappable. The hot-swapping
capability is provided by a super-capacitor which maintains
the power supply of the robot for ~10 s during battery
exchange. The casing in the base module embeds two individ-
ual battery cells, the slipping contacts for hot-swapping, and
the protection electronics. This electronics provides charging
and over-current protection, but also monitoring, allowing the
robots to know the current battery capacity and the number
of recharge cycles it went through.

Moreover, the base module contains two tracks and two
wheels that give mobility to the robot. This combination of
tracks and wheels is called freels. Treels are powered by two
2 W motor, each one associated to a rubber track and a wheel.
These motors are driven by dedicated electronic boards sit-
uated on each side of the battery (one for each motor). With
this configuration, the marXbot can reach a maximum speed
of ~30 cm/s.

The base of the robot also provides some sensing capabil-
ities. There are infra-red sensors distributed around the robot
on the main printed circuit which act as virtual bumpers and
ground detectors. Those sensors have a range of some centi-
metres, 24 are directed outside the robot and 8 are directed to
the ground. In addition, 4 contact ground sensors are placed
under the lowest part of the robot and mounted on the two
vertical printed circuits.

The base of the marXbot also embeds a RFID reader and
writer with an antenna situated on the bottom of the robot,
close to the ground. This reader can read all types of RFID
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Fig. 9 The marXbot in a
configuration including five
modules

.

(a) Actual image of the marXbot.

chips in the HF 13.56 MHz range. By using this reader,
RFID chips can be placed on the ground to identify specific
zones.

Finally, to better perceive the orientation of the robot body
in all-terrain conditions, the marXbot base includes 3 axis
accelerometers and gyroscopes.

The top module includes two cameras, a LED beacon,
an imx.31 processor and some peripherals, such as a WiFi
board and a flash card reader. The two cameras are mounted
in different configurations: a front camera and an omni-
directional camera on top of the board. This last specific
feature makes that this module can only be placed on the top
of the robot. The imx.31 processor runs LINUX and access
standard peripherals such as WiFi, USB or flash storage.

4.2 Experimentation setup

Our implementation makes use of a population of 20
marXbots on an arena. We employed the RGB led and the
omni-directional camera to implement the state communica-
tion (see Sect. 2) between robots.
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imx31 module
scanner module

range and bearing
module

\_; gripper module

(b) Exploded CAD view of the
marXbot.

4.2.1 The arena
The arena we employed for our experiments includes:

— Aworking areaof 6.4 mx4 m, 2.8 mhigh. Only a portion
of this working area has been used for the experiments,
as illustrated in Fig. 10.

—  White walls made of highly reflective tissue for optimal
diffusion of light.

— Anhomogeneous lightning system with a spectrum with
low infra-red components.

— One black/white 5 Mpixels camera placed on the ceiling
to track the position of the robots.

— Tracking software based on the fidtrack library [5].
In order to track a robot, a fiducial was placed over the
omni-directional camera on top of the robot.

Figure 10 shows 20 marXbot robots on the arena during
our experiments. We distributed the robots in a square of 2 m
of side length, and we placed some RFID chips in opposite
corners of the arena. These RFID tags represent the targets
that the robots have to search.
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Fig. 10 Example of arena configuration with twenty marXbot robots

4.3 Implementation of the social approach on the marXbot

We tried to keep both implementations of our approach (i.e.,
in the marXbot as well as in the case of simulation) as accu-
rate as possible. However, the implementation in the actual
robot does not match perfectly the simulation. The idea was
not to simulate every detail of the robot but to exhibit the
same high-level behaviour in both cases. For this reason,
some constants we employed in our algorithms are not the
same.

4.3.1 Detection of targets

The marXbot robot has a RFID reader which we employed
to detect the target areas. Once the robot is located over one
of the RFID chips, it changes the colour of its LED beacon
in order to inform the other members of the population about
the location of the target. If a robot detects the target number
1, it sets the blued component of its colour to 100%, instead, if
arobot detects the target number 2, it sets the red component
of its colour to 100%.

4.3.2 Omni-directional camera

Colour calibration had to be done before processing the
images from the camera since we decided to propagate the
information through the population by using the RGB com-
ponents of the LED beacon. In our experimental set-up,
robots share information by encoding it in the value of the
R and B components of the colour of their LED beacon.
Robots receiving this information have to decode the col-
our by extracting the right R and B components that were

8 In the case of the real robot we employed the blue component instead
of the green component we used in simulation. The reason for this
choice is related to the camera of the marXbot which detects better the
red and blue components.

sent. After some preliminary tests we found that the R'G’ B’
components detected by the camera do not keep the same
proportions than the components sent by the LED. Instead,
if a sender robot sets the red component of its LED beacon to
100%, the receiver robots detect a blob with the three com-
ponents RG B (i.e., components G and B are present even if
the sender does not send them). In order to get the original
values sent by the sender, receiving robots have to make a
transformation of the three received components consisting
in projecting the received components into the actual R'G’B’
axes of the camera. Figure 11(before transformation) shows
the intensity of the components detected by the camera when
a sender robot emits each one of the RG B components indi-
vidually.

After some algebraic manipulations, we managed to find
the R'G’'B’ axes of the camera in which each one of the
detected components have to be projected in order to detect
the original RG B components that were sent. Equations 9,
10 and 11 show how each one of these components were
obtained.

R = 1.097 — 0.26g — 0.02b )
G = —0.24r +1.19g — 0.16b (10)
B = —0.06r — 0.33g + 1.06b (11)

This calibration process was done once, before starting
the experiments. Figure 11 shows the resulting components
after the transformation.

Moreover, the images obtained from the omni-directional
camera have to be analysed in order to extract the location and
the colours of neighbouring robots. The goal of processing
these images is to obtain the direction where there are other
robots showing the red and blue components, and to detect
the most predominant colours in the proximities in order to
copy them. Figure 12 shows an example of an image obtained
with the omni-directional camera. In order to ease the task
of detecting the LED beacons of other robots, we reduced
the integration time of the camera in a way that only the
robots showing colours (i.e., LED beacon turned on) could
be visible. The algorithm for image processing performs two
steps:

1. Blob detection. The first step after capturing the image
from the omni-directional camera is to detect the
neighbouring robots. In order to do so, we performed
a blob detection on the image and we compute the posi-
tion of blobs of light which represent the LED beacons
of robots.

2. Transformation of the R'G’B’ components. Once the
location of neighbouring robots is detected, we trans-
form their colour as it was aforementioned in order to
find the RG B components that were sent. Then, we keep
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Fig. 11 Each one of the three components of colour detected by the omni-directional camera, before and after transformation

Fig. 12 Example of an image captured with the omni-directional
camera. LED beacons are blue for all robots

the maximum value of the detected components in order
to emit this colour by using the LED beacon.’

Note that the use of the RGB code may limit the number
of targets to search to a maximum of 3, since the signal used

9 No attenuation of the components was done as it was done in the case
of simulation. In the experiments with the actual marXbot this atten-
uation is intrinsically done by the camera and the algorithm of blob
detection.
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for coding the estimation of the distance to each target must
be orthogonal respective to the signals used for other targets.
However, the use of colours for state transmission can be
considered as a proof of concept of a larger approach. If we
consider the use of RF signals with N different frequencies,
each frequency can be used for coding the estimation for each
target, providing the possibility of guiding robots towards N
different targets, accepting that the chosen RF frequencies
will be orthogonal and that there will not be harmonics inter-
ference between them.

4.3.3 Navigation

As in the case of simulation, navigation was implemented
in a very simple reactive manner. We computed the direc-
tion to move by using the same approach showed in Eqs. 1
and 2 in Sect. 3.2.2. Component b'? of the steering vector
was computed by using the lectures from virtual bumpers,
and component t'! of the steering vector was calculated by
using information from the omni-directional camera. In order
to go to the target while avoiding obstacles the final steering

10 The vector pointing in the direction where there are no obstacles.

I The vector pointing in the direction where it is more likely to find a
target.
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Fig. 13 Histograms of the data
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4.4 Tests on a population of marXbots 2000
>
We implemented the social-based approach in a population of —
20 marXbots evolving on the arena described in Sect. 4.2.1. 5
Figure 13 shows the resulting single-trip times after 30 min- 1500 P
utes of collecting data.
A direct quantitative comparison of the results obtained —
in simulation (Fig. 3) and in the real robot (Fig. 13) may T T 0
make few sense since real physical constraints are always 2500 XSOOO 3500

very difficult to model in an accurate manner. However, we
can use both figures in order to establish interesting qualita-
tive equivalences between simulated and real experiments. In
both cases we can observe a Poisson-like distribution for both
random and social based approach. In the real robot imple-
mentation the distribution may become less evident because
of the few amount of runs which are due to the practical
difficulty of performing lots of real measures, but the repre-
sentation of the results of the different runs (at the bottom of
the distribution) helps to guess the response trend. Another
interesting parallel is the performance comparison between
the social and random approaches; the socially driven robot
can find the target around 100 faster than the random search
in both cases: simulation and real implementation.

4.5 Tracking a robot
Moreover, we put a fiducial over one of the robots that was

using the social-based approach in order to track its position
during the experiment. The robot was tracked by using the

Fig. 14 2D histogram of the position of a searching marXbot. Colours
indicate the amount of times the robot was found in [x, y] position

camera on the ceiling of the arena as described in Sect. 4.2.1.
Tracking the position of robots allowed us to have a better
idea of the trajectories they made in order to get to the targets.
Figure 14 shows a 2D histogram of the position of the tracked
robot. In this picture, the color of each one of the boxes in
the grid indicates the amount of times the robot was in that
position. As it can be seen in the histogram, the searching
robot has a strong tendency to go trough the diagonal of the
arena, or in other words, to follow the gradient that was made
by the other members of the population.

5 Conclusions

Robots performing a cooperative task in an unknown envi-
ronment eventually need to find common target areas. Since
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these key zones are common for every robot, we proposed
to guide the navigation of each robot by using the knowl-
edge about the location of the targets that is disseminated in
the whole population. The proposed coordination scheme is
distributed and uses state communication in an intrinsic way,
i.e., robots transmit information about their internal state, but
they are not aware of whether other robots receive this infor-
mation or not. This approach simplifies the communication
and makes the system more robust. Moreover, the proposed
strategy for target localization avoids the use of global posi-
tioning systems, that might be difficult to deploy in unknown
or hostile environments, and avoids also the use of odome-
try, which is sensitive to cumulated errors after large running
periods. Additionally, the fact of being a distributed scheme
makes it very robust and scalable.

We used a robotic simulator to test our approach, and we
verified the correct behaviour of the robots by measuring
the time a robot spent in sequentially travelling between two
targets. For comparing!? purposes we also provide measures
where, instead of using our social-based approach, the robots
freely navigate in a random way. Moreover, some tests con-
cerning robustness and scalability were performed. A param-
eter k was added in order to modulate the attraction between
robots when approaching a target. When we changed k the
average time a robot spends in finding a target changed and
therefore, the trajectories performed by the robots become
more or less smooth. The amount of robots looking for tar-
gets was also changed during simulations. We found that
there is a weak relationship between robot performance and
the amount of robots performing the task; and that this rela-
tionship is even weaker when parameter k is higher. We also
performed some comparisons against another approach for
guiding the robots having a similar degree of complexity.
Global coordination and maps of the arena were thus avoided.
Therefore, we implemented a GPS-like approach were each
robot knows the location of the target and uses this infor-
mation to guide its navigation. We compared both strate-
gies i.e., social and GPS-like, in an slightly modified arena
with an obstacle between the targets. Our results showed that
the social approach is more robust to the presence of longer
obstacles in the environment.

We surmise that the advantages of the social approach rely
on the fact that there are no fixed maps of the environment
giving the position of the targets. Instead, this knowledge is
distributed in the population, and is thus dynamically updated
as the robots navigate through the environment. The whole
population benefit from the local contributions of each mem-
ber of it, which globally produces a gradient that is useful
to guide any robot to a target. However, this intrinsic map
of the environment is only present if there is a population of
robots collaborating. A single robot (the worst case) is bound

12 A more detailed comparison can be found in [22].
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to navigate randomly through the environment without any
indication of the location of the targets given by neighbouring
robots.

Last but not least, we validated our social-based approach
in a population of real robots. In our experiments we
employed a mobile robot designed at EPFL called the
marXbot. These robots have remarkable capabilities such as
locomotion using tracks and wheels; a large set of sensors
including an omni-directional camera and infra-red bumpers;
and a RGB LED beacon that was used to disseminate the
gradient of knowledge through the population. Even if both
implementations (i.e., simulation and actual marXbot) of the
strategy were not exactly the same, we corroborated that
in both cases the behaviour exhibited by the population of
robots remained the same, the performance curves kept the
same trend, and that they are equivalent in terms of the time
travelled by the robots when looking for a target.

Acknowledgments The authors would like to thank all the members
of the Perplexus project for their valuable work, and their colleagues
at the REDS and the MOBOTS groups for their support. This work is
funded by the FET programme IST-STREP of the European Commu-
nity, under grant IST-034632 (PERPLEXUS).

References

1. ArkinRC (1992) Cooperation without communication: multiagent
schema-based robot navigation. J Robot Syst 9(3):351-364

2. Arkin RC, Bekey GA (eds) (1997) Robot colonies. Kluwer,
Norwell

3. Balch T, Arkin RC (1994) Communication in reactive multiagent
robotic systems. Auton Robots 1(1):27-52

4. Bekey GA (2005) Autonomous robots: from biological inspiration
to implementation and control (Intelligent Robotics and Autono-
mous Agents). The MIT Press, Cambridge

5. Bencina R, Kaltenbrunner M, Jorda S (2005) Improved topologi-
cal fiducial tracking in the reactivision system. In: IEEE computer
society conference on computer vision and pattern recognition-
workshops, 2005. CVPR workshops. IEEE, p 99

6. Bonani M, Baaboura T, Retornaz P, Vaussard F, Magnenat S,
Burnier D, Longchamp V, Mondada F (2009) The marxbot—a
modular all-terrain experimentation robot. http://mobots.epfl.ch/
marxbot.html

7. Bonani M, Longchamp V, Magnenat S, Rtornaz P, Burnier D,
Roulet G, Vaussard F, Bleuler H, Mondada F (2010) The MarXbot,
a miniature mobile robot opening new perspectives for the collec-
tive-robotic research. In: 2010 IEEE/RS]J international conference
on intelligent robots and systems (IROS 2010). http://mobots.epfl.
ch/

8. Braitenberg V (1984) Vehicles: experiments in synthetic psychol-
ogy. The MIT Press, Cambridge

9. Camazine S, Crailsheim K, Hrassnigg N, Robinson GE,
Leonhard B, Kropiunigg H (1998) Protein trophallaxis and the
regulation of pollen foraging by honey bees (Apis mellifera L.).
Apidologie 29(1-2):113-126

10. Camazine S, Deneubourg JL, Franks NR, Sneyd J, Theraulaz G,

Bonabeau E (2001) Self-organization in biological systems.
Princeton University Press, Princeton


http://mobots.epfl.ch/marxbot.html
http://mobots.epfl.ch/marxbot.html
http://mobots.epfl.ch/
http://mobots.epfl.ch/

Memetic Comp. (2011) 3:245-259

259

11.

12.

17.

18.

19.

20.

Campo A, Gutiérrez A, Nouyan S, Pinciroli C, Longchamp V,
Garnier S, Dorigo M (2010) Artificial pheromone for path selec-
tion by a foraging swarm of robots. Biol Cybernet 103:339-352.
doi:10.1007/s00422-010-0402-x

Deneubourg JL, Goss S (1989) Collective patterns and decision
making. Ethol Ecol Evol 1:295-311

Floreano D, Mattiussi C (2008) Bio-inspired artificial intelligence:
theories, methods, and technologies. The MIT Press, Cambridge
Gadagkar R (1997) Survival strategies: cooperation and conflict in
animal societies. Harvard University Press, USA

Ijspeert A, Martinoli A, Billard A, Gambardella LM (2001) Col-
laboration through the exploitation of local interactions in auton-
omous collective robotics: the stick pulling experiment. Auton
Robots 11(2):149-171

Kuniyoshi Y, Kita N, Rougeaux S, Sakane S, Ishii M, Kakikua M
(1994) Cooperation by observation: the framework and basic task
patterns. In: IEEE international conference on robotics and auto-
mation, 1994. Proceedings 1994, vol 1, pp 767-774

Kuniyoshi Y, Rickki J, Ishii M, Rougeaux S, Kita N, Sakane S,
Kakikura M (1994) Vision-based behaviors for multi-robot coop-
eration. In: Proceedings of the IEEE/RSJ/GI international confer-
ence on intelligent robots and systems "94, vol 2. ‘Advanced robotic
systems and the real world’, IROS *94, pp 925-932

Lambrinos D, Roggendorf T, Pfeifer R (2001) Insect strategies
of visual homing in mobile robots. In: Biorobotics—methods and
applications. AAAI Press, pp 37-66

Magnenat S, Waibel M, Beyeler A (2009) Enki—an open source
fast 2d robot simulator. http://home.gna.org/enki/

Magnenat S, Rtornaz P, Bonani M, Longchamp V, Mondada F
(2010) ASEBA: a modular architecture for event-based con-
trol of complex robots. IEEE/ASME transactions on mechatron-
ics PP(99):1-9. doi:10.1109/TMECH.2010.2042722. http://www.
ieee-asme-mechatronics.org/

21.

22.

23.

24.

25.

26.

27.

Nouyan S, Gross R, Dorigo M, Bonani M, Mondada F (2005)
Group transport along a robot chain in a self-organised robot
colony. In: Proceedings of the 9th international conference on intel-
ligent autonomous systems, 10S. 10S Press, pp 433442
Satizabal HF, Upegui A, Pérez-Uribe A (2010) Social target local-
ization in a population of foragers. In: Gonzailez JR, Pelta DA,
Cruz C, Terrazas G, Krasnogor N (eds) Studies in computational
intelligence, vol 284. NICSO. Springer, Berlin, pp 13-24
Schmickl T, Crailsheim K (2006) Trophallaxis among swarm-
robots: a biologically inspired strategy for swarm robotics. In:
The first IEEE/RAS-EMBS international conference on biomedi-
cal robotics and biomechatronics, 2006. BioRob 2006, pp 377-382.
doi:10.1109/BIOROB.2006.1639116

Smith JM, Szathmary E (2000) The origins of life: from the birth
of life to the origin of language. Oxford University Press, USA
Sugawara K, Kazama T, Watanabe T (2004) Foraging behavior of
interacting robots with virtual pheromone. In: Proceedings 2004
IEEE/RS]J international conference on intelligent robots and sys-
tems, 2004 (IROS 2004), vol 3, pp 3074-3079. doi:10.1109/IROS.
2004.1389878

Werger B, Mataric MJ (1996) Robotic “food” chains: externaliza-
tion of state and program for minimal-agent foraging. In: Proceed-
ings of 4th internationl conference simulation of adaptive behavior:
from animals to animats, vol 4. The MIT Press, pp 625-634
Winfield A (2009) Towards an engineering science of robot
foraging. Distrib Auton Robot Syst 8:185-192

@ Springer


http://dx.doi.org/10.1007/s00422-010-0402-x
http://home.gna.org/enki/
http://dx.doi.org/10.1109/TMECH.2010.2042722
http://www.ieee-asme-mechatronics.org/
http://www.ieee-asme-mechatronics.org/
http://dx.doi.org/10.1109/BIOROB.2006.1639116
http://dx.doi.org/10.1109/IROS.2004.1389878
http://dx.doi.org/10.1109/IROS.2004.1389878

	A social approach for target localization: simulation and implementation in the marXbot robot
	Abstract
	1 Introduction
	2 Searching and homing in a forager robot
	2.1 Landmarks and beacons
	2.2 Social approach of target localization
	2.3 The proposed foraging task

	3 Simulations
	3.1 Simulation setup
	3.1.1 The simulated arena
	3.1.2 The simulated robots

	3.2 Implementation of the social approach in simulation
	3.2.1 Detection of targets and state communication
	3.2.2 Navigation

	3.3 Tests on simulation
	3.3.1 Comparison with random search
	3.3.2 Comparison with a GPS-like controller with similar complexity


	4 Validation on the marXbot robot
	4.1 The marXbot robot
	4.2 Experimentation setup
	4.2.1 The arena

	4.3 Implementation of the social approach on the marXbot
	4.3.1 Detection of targets
	4.3.2 Omni-directional camera
	4.3.3 Navigation

	4.4 Tests on a population of marXbots
	4.5 Tracking a robot

	5 Conclusions
	Acknowledgments
	References


