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ABSTRACT 
 
The vortex drop shaft is a benchmark structure in hydraulic engineering. It is often used in sewers and hydropower 
systems, given that a significant energy dissipation combined with a reduced space occupation is achieved. 
Conversely, the flow pattern establishing along the structure may lead to the occurrence of unstable phenomena 
as vibrations, abrasion and choking, particularly if the operational conditions are different from the standard 
design regime. It is advantageous to study the overall hydraulic efficiency of the structure, and particularly to 
derive the hydraulic conditions of the swirling flow along the vertical shaft. At this regard, the paper describes a 
physically based approach, based on the momentum conservation, to derive the rotational angle and the velocity 
profiles along the shaft. The method requires the calibration of an empirical parameter accounting for the 
increase of the wall friction stress due to the centrifugal force. The outcomes of the application of the proposed 
procedure are presented with reference to the operation of two physical models of supercritical vortex drop shafts, 
with a tangential or a spiral inlet at the shaft top. It is shown that the application of the empirically-modified 
momentum approach is necessary for accounting for the significant angular momentum imparted to the swirling 
flow by the spiral inlet and for modelling the rotational flow distribution along the vertical shaft accurately. 
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1. INTRODUCTION 

Vortex Drop Shafts (VDSs) are hydraulic structures across which the flow dissipates a significant amount of 
energy and the air and water flows are separated avoiding thereby a priori choking. Their installation is frequent 
in urban drainage systems. There, VDSs are built to vertically connect up- and downstream sewer collectors at 
notably different elevations. So doing, the laying of sewers with an excessive bottom slope is avoided. The 
elevation difference for VDS sewer applications is typically larger than 5 to 20 m (Gisonni and Hager 2012). 
VDSs can also be used as flood spillways at dams (Mulligan et al. 2019). For such structures, the shaft height is 
considerably larger than in sewer applications.  
The occurrence of rotational flows is often undesirable because of the formation of vibrations, the entrainment of 
air, or due to other local instability phenomena reducing the overall structure efficiency (Khatsuria 2015). 
Nevertheless, the recourse of VDSs being integrated in diversion structures or spillways to ensure flood control 
is frequent, as documented in literature (Liu et al. 2018; Zhang et al. 2018). 
Early works on vortex drops were carried out by Italian hydraulicians Drioli (1947), Viparelli (1950) and Pica 
(1970). Several experimental studies followed and, over the years, different layouts of VDSs were proposed. The 
inlet device issuing the approach flow in the vertical shaft was analyzed for various geometrical configurations 
(circular, tangential, screw, spiral) by Drioli (1947), Laushey (1952), Jain (1984) and Kellenberger (1988). All 
these studies proved that the approach flow energy content is a basic parameter to design the inlet correctly. Del 
Giudice et al. (2010) developed an innovative solution to adapt a subcritical tangential inlet device for supercritical 
approach flows.  
For sewer applications, a dissipation chamber is conventionally placed at the toe of the vertical shaft to reconvert 
the flow direction from vertical to horizontal and to de-aerate the flow. Hager and Kellenberger (1987) conceived 
a standard chamber configuration, and equipment in the chamber to improve the flow behavior was suggested by 
Del Giudice et al. (2008). 
As for the vertical shaft, some design criteria to define the shaft diameter Ds are available for both sewer and 
spillways (Hager and Kellenberger 1987; Kellenberger 1988; Khatsuria 2015). For VDS spillways, the concern 
about the pressure and velocity distributions along the vertical shaft is significant since an underestimated energy 



 

dissipation and the occurrence of cavitation can damage the shaft. Liu et al. (2018) and Zhang et al. (2018) 
demonstrated that turbulence models simulate the complex flow behavior in the shaft with a good accuracy. 
Velocity and pressure distributions along the shaft were, instead, not of a primary interest for VDSs applied in 
drainage systems. Zhao et al. (2006) collected flow depth and shaft wall pressure measurements in a VDS with a 
shaft length Ls/Ds = 12.1. Camino et al. (2015) focused on flow velocities distributions along the shaft by 
considering two physical models of a plunging drop shaft. Carty et al. (2019) introduced an empirical equation to 
derive the rotational angles in the vertical shaft. Recently, Crispino et al. (2019a, b) proposed a theoretical method 
based on the momentum conservation approach to derive the velocity profiles along the shaft of a VDS with Ls/Ds 
= 23.5. The structure operated under a supercritical approach flow regime, and the flow was directed in the vertical 
shaft by passing through a spiral inlet. An enhancement of this theoretical model is presented in this study. In 
particular, the paper aims to show that the herein discussed model schematizes the flow regime in the shaft by 
predicting flow angles and velocities with a good accuracy. The suggested approach is particularly applied to 
replicate the shaft flow behavior in two physical models of VDSs, respectively with a tangential and spiral inlet. 

2. METHODOLOGY 

2.1. Momentum equation 

In VDSs the approach flow entering the inlet device is linear. The inlet structure deviates the flow and adds angular 
momentum. In the shaft, the falling flow is driven by centrifugal and gravitational forces. The center, also called 
“core” (Gisonni and Hager 2012), of the shaft is filled by air which escapes vertically upward through the shaft. 
The water flows along the shaft wall as annular flow. A sketch of an annular flow body running along the shaft is 
shown in Figure 1, together with a photo showing a vertical shaft in operation (Crispino et al. 2019a). As visible, 
the annular flow adheres to the shaft wall and the water trajectories are inclined with an angle θ relative to the 
horizontal. The complementary rotational angle is α. The friction due to the contact between the flow and the shaft 
wall generates energy dissipation. The dissipation mechanism along the vertical shaft was described by Jain 
(1987), who introduced a theoretical approach based on the following hypotheses: 
 

1. the annular flow is perfectly rotation-symmetrical to the vertical axis z; 
2. the tangential (subscript t) velocity distribution is assumed to be in compliance with irrotational flow. 

This means that the product of the tangential velocity component Vt times the radius r is constant and 
equal to the circulation Ω; 

3. the radial velocity component is negligible and thus assumed to be zero; 
4. the vertical (subscript z) velocity component does not vary over a cross-section 

 

  

Figure 1. Definition sketch of the control volume of the annular flow (on the left) and photo of a physical model 
of vertical shaft in operation for an incoming discharge Q = 12.70 m3/s (Crispino et al. 2016) 



 

The governing equations on the flow across the control volume of height dz (Figure 1) are the continuity and the 
momentum equations (Jeanpierre and Lachal 1966; Jain 1987). The continuity equation is: 
 

Q = AꞏVz (1) 
 
where Q is the discharge, Vz is the vertical component of the mean flow velocity and A = πDse is the cross-sectional 
area (with an accuracy of 5% for e/Ds < 0.05) depending on the shaft diameter Ds and on the flow thickness e. For 
the control volume represented in Figure 1, the vectoral momentum equation is: 
 

    
s s

ρQ ρQ( + ) D eρgdz D dsV V dV τ  (2) 

 
where vectors ρQV and ρQ(V+dV) are the entering and outing momentum fluxes, with ρ as the water density, 
πDseρgdz is the weight of the fluid volume, with g as the gravity acceleration, and τπDsds is the frictional force 
due to the shear stress τ acting on the ds-long surface (Figure 1). The centrifugal forces inducing pressure on the 
shaft wall should be theoretically included in Eq. (2). However, in the present approach the pressure forces were 
ignored since the flow tickness e is small. 
Eq. (2) can be formulated for the vertical and horizontal (tangential) component as Vz = Vcosα and Vt = Vsinα 
(Figure 1): 
 

ρQV cosα – ρQ (V+dV)cos(α+dα) = πDseρgdz − τπDsdzcosα (3) 
 

ρQV sinα – ρQ (V+dV)sin(α+dα) = − τπDsdzsinα (4) 
 
Eq. (1) can be substituted in Eqs. (3) and (4) to obtain: 
 

ρ πDseVz V cosα – ρ πDseVz (V+dV)cos(α+dα) = πDseρgdz − τπDsdzscosα (5) 
 

ρ πDseVz V sinα – ρ πDseVz (V+dV)sin(α+dα) = − τπDsdzsinα (6) 
 
Eqs. (5) and (6) can be further simplified by developing a Taylor series of cos(α+dα) and sen(α+dα) in which 
lower terms can be neglected. This leads to: 
 

ρ πDseVz d(V cosα) = πDseρgdz − τπDsdzcosα (7) 
 

ρ πDseVz d(V senα) = − τπDsdzsenα (8) 
 
Given the wall shear stress τ = λ/4∙ρ∙V2/2, with λ as the friction factor, Eqs. (7) and (8) can be finally written as: 
 

d(Vz
2/2g) = [1 − λ/(4eg)ꞏV2/2 cosα] dz (9) 

 
d(Vt

2/2g) = − [(1 −cos2α)/cosα λ/(4eg)ꞏV2/2] dz (10) 
 
Eqs. (9) and (10) are thus useful to derive vertical and tangential velocity profiles. As described by Crispino et al. 
(2019a), these equations can be discretized giving: 
 

Vz,2 = {[1 − λ/(4e1g)ꞏV1
2/2 cosα1] Δz1,2 + Vz,1

2/2}0.5
 (11) 

 
Vt,2 = {− [(1 −cos2α1)/ cosα1 λ/(4e1g)ꞏV1

2/2] Δz1,2 + Vt,1
2/2}0.5

 (12) 
 
where subscripts 1 and 2 refer to two consecutive horizontal cross-sections with a vertical distance Δz1,2. 
These equations can be solved by supposing two boundary conditions. The computation procedure starts at the 
shaft inlet (z = 0.0 m) where the total discharge Q is given. The second boundary condition is usually assigned to 
V by using the free vortex theory to model the velocity distribution along the inlet, which initiates the approach 
flow rotation.  



 

2.2. Experimental data 

The abovementioned theoretical model is applied to derive the velocity profiles along the vertical shaft of VDSs 
headed by tangential and spiral inlets (Figure 2). The experimental data collected by Zhao et al. (2006) and 
Crispino et al. (2019a) are considered.  
 

 

Figure 2. sketch of: (a) spiral inlet; (b) tangential vortex inlet 

Zhao et al. (2006) studied a vortex drop structure with a tangential-typed inlet (Quick 1990), with a first outer 
radius R = 0.16 m, at the top of the vertical shaft (Ds = 0.223 m and Ls = 2.70 m). Some experimental tests were 
conducted with a supercritical approach flow in a rectangular channel. Velocity components were derived from 
the measurements of the shaft wall pressure, whereas e was measured using a specially designed small L-shaped 
probe. The main hydraulic features of the tests performed by Zhao et al. (2006) are resumed in the Table 1, where 
subscripts o and in are referring to the tangential inlet cross-section and to the shaft inlet cross-section. Table 1 
also reports the approach Froude number Fo = Vo/(gho)0.5, with h as flow depth, the capacity Froude number 
relative to the vertical shaft FC = Q/(g∙Ds

5)0.5 and the mean velocity of the flow at the shaft entrance Vin derived by 
applying the free-vortex distribution theory (Quick 1990) as 
 

Vin =Vo∙R/(Ds/2 – ein) (13) 
 

Table 1. Hydraulic features of the test performed by Zhao et al. (2006) 
 

Q Fo FC Vo Vin ein 
0.051 m3/s 3.50 0.69 3.92 m/s 8.79 m/s 0.031 m 

 
Crispino et al. (2019a,b) conducted an experimental campaign on a supercritical VDS controlled by a spiral inlet 
chamber. The vertical shaft model was characterized by a diameter Ds = 0.31 m and a length Ls = 7.22 m, and the 
spiral inlet had a first radius R = 0.43 m. Selected tests (Table 2), with FC ranging between 0.09 and 0.56, are 
considered herein. During each test, the rotational flow angles of the streamlines along the shaft were measured. 
The approach velocity Vo was measured with a micro-propeller (±1%), and Vin was derived by using the free-
vortex theory as indicated by Crispino et al. (2019a). The flow thickness ein is, instead, calculated by using Eq. 
(1) as a function of Q and of the vertical velocity component Vin,z = Vin∙cosθs. where θs = 30° is the spiral bottom 
slope. 
 

Table 2. Hydraulic features of the tests performed by Crispino et al. (2019a) 
 

Q Fo FC Vo Vin ein 
0.015 m3/s 6.29 0.09 2.44 m/s 6.91 m/s 0.013 m 
0.038 m3/s 3.36 0.34 2.59 m/s 7.34 m/s 0.045 m 
0.074 m3/s 2.50 0.46 2.70 m/s 7.64 m/s 0.057 m 
0.092 m3/s 2.36 0.56 2.55 m/s 7.23 m/s 0.075 m 



 

2.3. Shaft flow regime 

According to Eqs. (11) and (12), the velocity profiles are obtainable by defining the shaft friction factor λ. This 
was estimated by using the Moody’s diagram (Figure 3) as a function of the Reynolds number R = 4∙Rh∙Vin/ν, with 
Rh = ein∙(2  ein)∙D/4 as the hydraulic radius and ν as the water kinematic viscosity, and of the relative shaft wall 
roughness . The latter was in the turbulent smooth regime for both physical models of Zhao et al. (2006) and 
Crispino et al. (2019a, Figure 3). For this reason, in the next applications λ is computed by using the following 
equation suggested by Zigrang and Sylvester (1985): 
 

λ = 0.25∙[log(/3.7 + 13/R)]2
 (14) 

 
Eq. (14) approximates the calculation of the friction factor by about 2%, as stated by Gisonni and Hager (2012). 
On the other hand, this relation allows to derive explicitly λ. 
 

 

 

Figure 3. Moody-diagram with indication of the shaft flow regime for tests carried out by Zhao et al. (2006) and 
Crispino et al. (2019a) 

3. RESULTS 

3.1. Standard momentum equation 

Eqs. (11) and (12) give the vertical and tangential velocity components Vz and Vt, and consequently the mean 
velocity V. It is thus possible to derive α as: 
 

α = arctan(Vt/Vz) (15) 
 
The results of the combined application of Eqs. (1), (11), (12) and (15) are compared to the observations of Zhao 
et al. (2006) and Crispino et al. (2019a) in Figures 4 and 5.  
Figure 4 shows that the computed values of e, Vz and Vt are in a good agreement with the measurements collected 
by Zhao et al. (2006). The relative error in the calculation of the velocity components is equal to about 10%, 
whereas e is computed by a mean relative error of about 14%. It is noteworthy that the momentum approach gives 
vertical velocity values larger than the corresponding observations whereas the predicted tangential velocities are 
slightly smaller than the observed ones. 
In the Figure 5 a comparison between the computed and measured α for the tests with FC = 0.09 and FC = 0.56 is 
shown. 
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Figure 4. Comparison between observations (Obs) and predictions (see section 2.1) for the VDS of Zhao et al. 
(2006): (a) e; (b) Vz; (c) Vt 

For FC = 0.09 (Figure 5a) the discrepancies between measurements and predictions are not negligible, with a 
relative error of about 40%. If FC increases (Figure 5b), then the theoretical approach significantly overestimates 
α. This means that the momentum balance equations, as conceived in the section 2.1, tend to underestimate the 
flow friction mechanism along the shaft and to excess the flow rotation. The larger Q (or FC) is the more significant 
becomes the error in the prediction of α. This is probably related to the ideal assumption of the axisymmetric and 
irrotational flow across the vertical shaft (see section 2.1). On the other hand, the centrifugal forces become 
presumably relevant when augmenting Q, and correspondingly FC. Zhao et al. (2006) stated that the forces giving 
a pressure on the shaft wall are significant at the drop shaft entrance, where the flow thickness gradient is large, 
whereas they can be neglected for small values of e, that are typically observed along most of the shaft length. 
According to the present results, this simplification is acceptable when e is small, whereas the imprecision of the 
momentum conservation approach results to be intolerable in the first part of the shaft, where the centrifugal effect 
due to the spiral inlet is more relevant. 

  

Figure 5. Comparison between observed (Obs) and computed (Eq. 15) α in the VDS of Crispino et al. (2019a): 
(a) FC = 0.09; (b) FC = 0.56 

As compared to the flow observations of Crispino et al. (2019a), the centrifugal forces in the upper part of the 
vertical shaft considered by Zhao et al. (2006) are not so relevant to make the shaft flow features not accurately 
predictable by the momentum approach. This can be attributed to the approach flow rotation induced by the 
tangential-typed inlet. The wall of the tangential inlet forces the approach flow to complete a 270°-rotation leaving 
an open 90°-slot (Quick 1990). Conversely, in the spiral inlet of Crispino et al. (2019a), the flow adhered to the 
wall of the spiral and it concluded a rotation of 585°. The centrifugal effect induced by the spiral was thus more 
considerable than that one generated by the passage of the approach flow along the tangential inlet.  
For this reason, the momentum approach, as presented in the previous section, is appropriate to predict the 
hydraulic features of the swirling flow issued by a tangential inlet across the vertical shaft. Conversely, according 
to the present experimental data the computation procedure based on the set of Eqs. (1), (11), (12) and (15) is not 
adequate to calculate the velocity profiles along the vertical shaft with a spiral inlet at its top. 
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3.2. Assumption of a friction increase 

To adapt the standard momentum equation predicting the flow rotational angles along the vertical shaft headed 
by the spiral inlet, λ is here multiplied with a n-parameter. Eqs. (11) and (12) are thereby converted in: 
 

Vz,2 = {[1 − nꞏλ/(4e1g)ꞏV1
2/2 cosα1] Δz1,2 + Vz,1

2/2}0.5
 (16) 

 
Vt,2 = {− [(1 −cos2α1)/cosα1 nꞏλ/(4e1g)ꞏV1

2/2] Δz1,2 + Vt,1
2/2}0.5

 (17) 
 
Crispino et al. (2019a) suggested to use a constant value of n along the shaft to be calculated as n = 10∙Fc. The 
results derived by the application of the constant value of n in the momentum equations are shown in Figure 6 for 
FC = 0.09 (Figure 6a) and FC = 0.56 (Figure 6b). As compared to Figure 5, it is evident that the accuracy of the 
momentum balance approach in predicting α is now sensibly improved, especially for FC = 0.56. The mean relative 
error is about 40% for all the tests of Table 2. α is still overestimated in the first part of the shaft, indicatively up 
to z/Ds = 7.0. Further down, the model gives smaller angles than the observed ones. Under a design perspective, 
it would be more convenient to overestimate α because the assumption of a zero rotation at the shaft end 
corresponds to the achievement of quasi-uniform flow conditions and, consequently, to an erroneous definition of 
the flow conditions at the shaft outlet. 

  

Figure 6. Comparison between observed (Obs) and computed (Eq. 15) α in the VDS of Crispino et al. (2019a), 
with the introduction of n = 10∙Fc: (a) FC = 0.09; (b) FC = 0.56 

A new calculation of the corrective n-parameter is proposed in the present paper. The effect of the centrifugal 
forces on the swirling flow is more significant along the first part of the shaft, where the rotational motion 
dissipates more rapidly following Crispino et al. (2019a). The value n is mainly decisive along this upper shaft 
part. At this aim, the n-parameter can be set equal to: 
 

n = 15∙FC (18) 
 
for z/Ds ≤ 5.0, or to: 
 

n = 5∙FC∙e−0.20ꞏz/Ds (19) 
 
for z/Ds > 5.0. The results derived by using Eqs. (18) and (19) for calculating the n-parameter are represented in 
Figure 7 for all the tests resumed in Table 2. The measured α values fit then by the momentum approach, given 
that the relative error reduces to 25 %. According to Eqs. (18) and (19), n-parameter is not dependent on the shaft 
depth z along the upper shaft part (z/Ds ≤ 5.0), and then it rapidly decays as the flow falls down z/Ds > 5.0. This is 
also coherent with the experimental observations of Carty et al. (2019) who analyzed the streamline flow regime 
along the vertical shaft of VDSs. In particular, Carty et al. (2019) showed that the falling flow could be assumed 
as fully irrotational for z/Ds ≤ 5.0, giving a circulation constant along the upper shaft part. Centrifugal effects do 
not vary with z in this shaft region, and this observation sustains the assumption of a constant amplifying factor 
for z/Ds ≤ 5.0 as Eq. (18) gives. Downstream of z/Ds = 5.0, instead, Carty et al.  (2019) observed a free-surface 
and velocity profiles of the annular jet more uniform, allowing to assume that α decreases along the shaft according 
to a power curve as: 
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α = 32.94∙z−0.735 − 10 (20) 

 
A non-linear relation between α and z was thus also derived by Carty et al. (2019), as recommended by using Eq. 
(19). On the other hand, the effect of the increase of Q (or FC) is not modelled in Eq. (20) despite its relevance. 
At this regard, Figure 8 demonstrates that the error made by using Eq. (20) to estimate the distribution of α is 
larger as FC increases. This proves that an accurate empirical recommendation to predict α along vertical shafts 
must keep into account that centrifugal effects are more significant by augmenting FC. 

  

  

Figure 7. Comparison between observed (Obs) and computed (Eq. 15) α in the VDS of Crispino et al. (2019a), 
with the introduction of n derived by Eqs. (18) and (19): (a) FC = 0.09; (b) FC = 0.34; (c) FC = 0.46; (d) FC = 

0.56 
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Figure 8. Comparison between observed (Obs) and computed (Eq. 20) α in the VDS of Crispino et al. (2019a) 

4. CONCLUSIONS 

The theoretical formulation of a swirling flow along vertical shafts of vortex drop structures is assessed. A 
prediction of the shaft flow features is required when vortex drop shafts have to be designed or validated. The 
selection of the appropriate shaft material and dimensions, on one hand, and the verification of the energy 
dissipation, on the other one, requires a reliable prediction of velocities, rotational angles, and pressures across 
the shaft.  
Early studies on drop shaft hydraulics suggested to apply the momentum equation, together with the continuity, 
to derive flow velocities, wall pressures and flow thickness. As shown herein, this traditional approach works well 
for vortex drop shafts with tangential inlets. If the vertical shaft is controlled by a spiral inlet, then the present 
results indicate that significant centrifugal effect along the upper part of shaft de-equilibrates the momentum 
balance. Then, the introduction of an empirical n-parameter to consider the implicit increase of the shaft wall 
roughness is necessary. The results show that such shaft friction factor n is quite reliable. An enrichment of the 
experimental dataset of vortex drop shafts with spiral inlet will be desirable to further test the accuracy of the 
present computational approach. 
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