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Abstract. This paper describes a shape-aware multi-surface Simplex deformable model for the segmentation of12

healthy as well as pathological lumbar spine in medical image data. It provides an accurate and robust segmentation13

scheme for the identification of intervertebral disc pathologies to enable the minimally supervised planning and patient-14

specific simulation of spine surgery, in a manner that combines multi-surface and shape statistics-based variants of the15

deformable Simplex model. Statistical shape variation within the dataset has been captured by application of principal16

component analysis and incorporated during the segmentation process to refine results. In the case where shape17

statistics hinder detection of the pathological region, user assistance is allowed to disable the prior shape influence18

during deformation. Results have been validated against user-assisted expert segmentation.19
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surgery simulation.21

1 Introduction22

1.1 Motivation23

Lower back pain is the second most common neurological ailment in the United States after a24

headache. According to the American Association of Orthopedic Surgeons, approximately 80 per-25

cent of Americans will suffer from back pain at least once in their lifetime. High incidence cases26

associated with back pain include intervertebral disc degeneration (IID), or disc herniation, in the27

spinal lumbar region, as well as sciatica, pain in the legs due to IID.39, 50 Imaging studies indicate28

that 40% of patients suffering from chronic back pain showed symptoms of IID.20 Primary treat-29

ment planning for lower back pain consists of non-surgical treatment. If non-surgical treatments30

are ineffective, a surgical procedure may be required to treat IID, known as spinal discectomy. Ap-31

proximately 300,000 discectomy procedures, which accounts for over 90% of all spinal surgical32

procedures,5 are performed each year, totaling up to $11.25 billion in cost per year.3 Other spinal33

surgeries include treatment for metastatic spinal tumors and spinal cord injury.34

A patient-specific, high-fidelity spine anatomical model that faithfully represents any existing35

spine pathologies can be utilized as input to Finite Element Model (FEM) for biomechanical load36

and displacement modeling of a healthy and degenerated spine, in surgery planning and navigation,37

for use by expert surgeons, as an anatomical model for surgery simulation for training surgical38

residents, and finally to facilitate the fusion of several spine medical images into a probabilistic39

intensity atlas of the spine, which could provide intensity priors corresponding to various spine40

anatomical structures and thus support the identification of pathology in a minimally supervised41
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manner. This paper describes a shape-aware multi-surface Simplex deformable model for the42

segmentation of healthy as well as pathological lumbar spine in medical image data. It provides an43

accurate and robust segmentation scheme for the identification of intervertebral disc pathologies44

to enable the minimally supervised planning and patient-specific simulation of spine surgery, in a45

manner that combines multi-surface and shape statistics-based variants of the deformable Simplex46

model.47

The initial step towards determining the cause of lower back pain is acquiring and analyzing48

medical image scans of the patient. An X-Ray-based Computed Tomography (CT) scan of the49

lumbar spine assists the physician in determining any degeneration or fractures of the spine’s bony50

structures, namely vertebrae. A Magnetic Resonance Imaging (MRI) scan is normally acquired to51

analyze the soft tissue structures and detect disc herniation in the spine.52

The standard procedure for detecting abnormalities in the spinal structures is through visual in-53

spection of the medical images, which is subject to the expertise of the radiologist in charge of the54

patient. Spine treatment planning requires a patient-specific 3D anatomical model of the spine ca-55

pable of correctly representing the salient anatomical features, such as vertebrae, the inter-vertebral56

discs, the spinal cord and surrounding nerves. This anatomical modeling requires the identification57

of non-overlapping, homogeneous anatomical structures in medical images, a process referred to58

as image segmentation. The complexity of the anatomy of the spine poses a segmentation problem59

due to several connected structures. Low image resolution, low contrast between soft tissues, and60

image noise hinder the detection of these complex structural boundaries, affecting the accuracy61

of the constructed model. Moreover, if the elaboration of a surgery planning model is also left62

to a clinician, the traditional approach to anatomical modeling requires exhaustive slice-by-slice63

segmentation of the structures of interest, which requires several hours of work.64

1.2 Review of the Spine Segmentation Literature65

In this section, current research in spine segmentation is represented. Most methods have adopted66

a hierarchical segmentation approach that exploits prior knowledge by utilizing either shape and67

appearance-based statistical models or probabilistic models to identify the region of interest. Re-68

cent work has emphasized machine learning based on convolutional neural networks, much of it in69

2D.70

Aslan et al.6, 7 propose a hierarchical 3D vertebra segmentation method incorporating graph71

cuts with statistical shape and appearance features to aid in analysis of vertebra osteoporosis and72

fracture analysis. A 3D shape model is constructed by extracting training shapes through manual73

segmentation of 3000 clinical CT images performed by an expert. The training images are aligned74

by rigid registration and binarized to form a shape volume composed of the vertebra object, the75

background and the allowed variability. Their method calculates variability within the dataset by76

calculating the marginal density of the object and background, denoted the distance probability77

model. Aslan et al. have mitigated user intervention by identifying the region of interest using a78

matched filter, with an average identification success rate of 85%.79

Gosh et al.21 present an automatic, multi-step lumbar vertebra segmentation method in CT80

images to detect lumbar wedge compression fractures. They utilize a two-level probabilistic model81

to label the the inter-vertebral discs in the sagittal plane of the CT based on image intensity as well82

as the disc location features. They further detect the vertebral skeleton in the sagittal CT images83

by performing thresholding and morphological operations using the prior knowledge that bone84
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is typically 400 Houndsfield Units or higher. Individual vertebrae are segmented by applying85

the General Hough Transform on the gradient of the vertebral skeleton image and performing86

morphological and hole-filling operations. This method can identify wedge compression fractures87

with a sensitivity of 91.7% but is limited to a representation in the shape of a rectangle, and does88

not segment the sharp vertebra edges, such as the spinous process.89

Khallaghi et al.33 propose a volumetric registration framework of CT lumbar vertebral images90

to Ultrasound images to assist with spinal needle injections. They constructed a statistical shape91

model of 35 CT scans through semi-automatic segmentation and resampling to achieve shapes92

in correspondence. They apply a two-step registration approach for shape model construction as93

well as multi-modal registration by applying rigid registration using 6 random parameters and then94

multi-resolution B-spline deformable model using 12 random parameters. Results show about 80%95

success rate with less than 3.5 mm acceptable registration accuracy, with least registration accuracy96

for the sagittal vertebral images, featuring sharp distinct edges.97

Rasoulian et al.45 improve statistical shape model construction and vertebral registration by98

proposing a probabilistic surface-based group-wise registration method. They apply point-to-point99

correspondence for the training dataset using the expectation-maximization (EM) method to solve100

a probability density estimation problem. This EM method assumes that voxel intensities on a101

shape are independent samples from a probability distribution class, which can be classified to a102

particular region by solving the likelihood function of the posterior probability of that voxel be-103

longing to a region. Given a set of allowed transformations within the mean shape, they determine104

the likelihood of a point located on the mean shape being mapped onto a point in each of the train-105

ing shapes. The constructed SSM is rigidly registered to the extracted bone surface density in the106

ultrasound volumetric images.107

Klinder et al.34 propose an automatic 3D segmentation of the spinal column using statistical108

shape models coupled with an initialization of the region of interest based on the General Hough109

transform. They propose a two-step segmentation method that initially detects the global location110

and orientation of the spinal column shape by representing it as a collection of objects encapsulated111

by rigid transformations against a defined vertebra coordinate system (VCS). In the second step,112

non-rigid shape-constrained deformation of the individual triangulated mesh corresponding to each113

vertebra object is performed. Although the method promises 1 mm accurate results, the results114

may be biased as the reference model is constructed using the same method with user guidance.115

Moreover, the VCS construction requires placement of landmarks by a domain expert that are116

necessary for mean model generation and achieving correspondence.117

Ma et al.41 present a hierarchical deformable surface-based thoracic vertebra segmentation118

method in CT images. 20 training samples comprising 12 thoracic vertebrae were manually seg-119

mented and their discrete triangulated mesh models based on the Marching Cubes algorithm. A120

probabilistic edge detection method was used to sample 5 points along the normal direction for121

each mesh face, where the intensity and gradient projection feature vectors corresponding to each122

sample point were computed. These feature vectors were used to train the probabilistic model123

for detecting a vertebra edge. A coarse-to-fine template deformation mesh approach was adopted,124

where a vertebra was divided into 12 salient sub-regions whose edges were detected through defor-125

mation of a template. These sub-regions are deformed to accurately capture the object boundary126

through piecewise non-rigid registration. This method achieved grouped vertebra segmentation of127

over 90% success rate, however finding the optimal transformations for deformation is computa-128

tionally expensive and dependent on the coarsest mesh resolution.129
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Howe et al.28 propose a hierarchical segmentation scheme for 273 cervical and 262 lumbar130

x-ray images. They initially approximate vertebra location and orientation through the General131

Hough Transform edge detection method, and then subsequently utilize active appearance models132

(AAM) to deform a template towards the extracted edges in two stages. The first stage matches133

the intensity values to segment a vertebra and its two concurrent neighbors, and the second stage134

extracts a single vertebra by matching the weighted intensity values with the AAM template, giving135

priority to the vertebra edge where higher contrast is expected. Their 2D contour extraction is136

limited to areas of high gradient values and high-contrast x-ray images.137

Benjelloun et al.8 present a semi-automatic cervical vertebra segmentation method in x-ray138

images using active shape models. They require 2 landmark placements at the beginning and139

end of the cervical spinal column for model initialization, and apply Harris corner detector with140

additional filters to detect two corners of each cervical vertebra to localize the region of interest.141

A local vertebra template is deformed to segment each vertebra in the region of interest. They also142

investigate the influence of the initialization of the statistical contour, the influence of number of143

landmarks placed on the vertebra boundary, with 20 landmarks used in their method, and training144

sample size, with 75 ideal shapes used. Their segmentation using the vertebra model resulted in145

a high success rate over 90% with a mean error of 0.6 mm, however they do not provide specific146

details of their ASM construction and corner detection scheme.147

Zhao et al.58 present a modified gradient vector flow deformable snake with additional external148

forces as a method for segmenting spine MRI images. The authors propose to segment vertebrae149

in the sagittal image plane and base their method on the observation that vertebra contours are150

similar to rectangles with concave edges in the 2D plane. Therefore, external forces, which can151

be modified through weighted coefficients, are augmented to the snake equation for utilization in152

segmentation, producing results that converge faster, with marginally improved results. However,153

this simplistic shape assumption cannot be translated towards volumetric image vertebrae segmen-154

tation.155

Recently, several groups have proposed two-dimensional machine learning segmentation and156

localization algorithms, through convolutional neural networks, namely Lessmann, Whitehead157

and Suzani along with their respective teams.37, 53, 57 While encouraging, their two-dimensionality158

makes them less than readily applicable to surgery planning and simulation. In addition, the MIC-159

CAI Workshop on Computational Methods and Clinical Applications for Spine Imaging held a160

Challenge competition on IVD segmentation that featured an entry that used a 3D deep learning161

approach,59 namely DeepSeg3D by Chen.11 DeepSeg3D exploits 3D convolutional kernels, which162

inputs 3D volumetric data and directly outputs a 3D prediction mask. The architecture of neural163

network contains 2 convolutional layers, 2 max-pooling layer for down-sampling and 2 unpool-164

ing layers for up-sampling. Finally, two groups led by Chu12 and by Korez35 have demonstrated165

the application of machine learning approach to 3D vertebra segmentation, albeit one restricted to166

vertebral bodies: Chu’s approach is based on random forests, while Korez employs a 3D convo-167

lutional network. Neither method does not attempt to identify any of the processes. In machine168

learning approaches, it isn’t clear how the significant reliance on training data is compatible with169

the presence of pathologies, which are necessarily random in nature. Moreover, 3D deep learning170

appears to be restricted to simple, smooth shapes such as the IVD, whereas vertebrae, with fine de-171

tails such as processes and foramina, appear to be challenging for the current state of the art in deep172

learning. It can be argued that the data reduction involved in machine learning approaches, such as173

the max-pooling that simplifies a problem ultimately into one solvable by a fully connected layer,174
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typically obliterates fine-level details such as processes and foramina, while making it difficult to175

exploit a coarse-to-fine strategy.176

1.3 Related Work in Simplex Deformable Surface Models177

Broadly speaking, there are three categories of medical image segmentation techniques: voxel-178

based, boundary-based, and atlas-based approaches. The boundary-based approach can be ad-179

vantageous in the presence of pathologies, while also providing support for the consideration of180

shape priors. This statement is particularly true of the Simplex deformable surface mdoel, an181

efficient discrete deformable model introduced by Delingette 15 for 3D shape reconstruction and182

segmentation. A k-Simplex mesh embedded in Euclidean Rd space, where k < d, is a k-manifold183

discrete mesh with exactly k+1 distinct neighbors. A Simplex mesh has the property of constant184

vertex connectivity. Simplex meshes can represent various objects depending on the connectivity185

k, where 1-Simplex represents a curve, a 2-Simplex represents a surface, and a 3-Simplex repre-186

sents a volume. Our research is focused on surface representation for image segmentation using187

2-Simplex meshes with constant 3-connectivity at each vertex, which is capable of representing188

arbitrary shapes of various values of genus and number of holes. This is especially relevant for189

this research, as the resulting intervertebral disc Simplex mesh has genus = 0, while the vertebral190

Simplex mesh has genus = 1.191

Delingette 15 introduced topological operators to transform a Simplex mesh, which in partic-192

ular allow the addition or deletion of edges22 improved on the former through topological macro-193

operators that ensured higher mesh quality through greater rotational symmetry, thereby poten-194

tiating the application of the Simplex to a multi-resolution model-to-image registration scheme.195

In general, a multi-resolution surface model registration is preferable to a single-resolution ap-196

proach as a result of the smaller number of false minima at a coarse level, which can robustly bring197

medium and fine-level meshes close to their respective global optima which is a better option than198

finding that fine level’s optimum without any coarse-level cues. An illustration of two Simplex199

mesh resolutions appears in figure 1(a).200

Also important, Simplex meshes are geometrically dual to triangulated surface meshes, as201

shown in figure 1(b). One can view the centroid of each Simplex face as coincident with a vertex202

of a triangular mesh and vice versa. The two surface meshes are also topologically equivalent, in203

that a spherical Simplex mesh surface (genus 0) leads to a spherical triangulated mesh, while a204

Simplex toroid (genus 1) maps to a triangulated toroidal mesh. This duality entails that a Simplex-205

based segmentation equates with a triangulated surface of similar density, which can serve as a206

hard boundary constraint for a tetrahedralization of the interior. This result is important to the207

tetrahedral meshing community as it leads to high-fidelity tetrahedral meshes of controlled resolu-208

tion, provided that the interior mesh resolution mirrors the boundary mesh resolution, feasible with209

variational tetrahedralization.4 In contrast, competing one-shot tetrahedralization methods such as210

octree-based approaches impose a large number of tiny tetrahedra near the borders to achieve a211

high-fidelity boundary,17 making them inappropriate for haptics-driven simulation. Moreover, a212

surface meshing stage allows tetrahedral meshing to also benefit from efficient multi-surface mod-213

eling and powerful statistical shape priors.214

The Simplex model also features a discretization of differential surface geometry, as shown215

in Figure 1(c); the local geometry at a vertex P is defined by its three neighbors P 1, P 2 and216

P 3, based on corresponding local parameters. εi are the barycentric coordinates of the projection217
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Fig 1 Features of Simplex surface model. (a) Example of multi-resolution approach illustrated by coarse and fine
overlapping meshes. (b) Duality of 3-connected Simplex mesh (black) with triangulated surface mesh (blue).15 (c)
Definition of Simplex angle, which results in a discrete approximation of surface curvature. (d) 2D depiction of Gilles’
collision detection method based on medial axis models of the Simplex surface boundaries (reproduced from 22).
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of vertex P⊥ on the triangle (P 1P 2P 3) such that ε1 + ε2 + ε3 = 1. The orthogonal projection218

P⊥ can be defined by the linear combination of the position of its neighbors P i with barycentric219

coordinates εi within the triangle (P 1P 2P 3). The variable φ is the angle that determines the220

mean curvature of the mesh at that vertex P , as depicted in figure 1, which is denoted the Simplex221

angle.15 The neighborhood-based constraints of P are thus uniquely governed by the equation222

P (ε1, ε2, φ) = ε1P 1 + ε2P 2 + (1− ε1− ε2)P 3 +h(φ)n where n =
P 1P 3 ∧ P 1P 2

‖P 1P 3 ∧ P 1P 2‖
,

(1)
where h(φ) represents a discrete approximation of mean curvature and n is the surface normal,223

both estimated at the vertex of interest.224

The deformation of the Simplex model is governed by the position of a vertex with respect to225

its three neighbors. The dynamics of each vertex P is governed by a Newtonian law of motion226

represented by the equation227

m
d2P i

dt2
= −γ dP i

dt
+ αF int + βF ext (2)

wherem is the vertex mass, γ is the damping force and α and β are the weight factors of the internal228

and external forces respectively. F int is the sum of internal forces represented by an elastic force229

that enforces smoothness constraints and F ext is the sum of external forces. This physically-based230

deformable model is governed by forces to maintain internal stabilization through F int. F ext is231

the sum of external forces comprised of image information and non-overlap constraints. Image232

information, such as image edge and gradient intensity values, comprises of the similarity criteria233

to be maximized during Simplex evolution along the normal direction.234

During multi-region segmentation, collision handling ensures that object boundaries do not235

overlap or self-penetrate. Gilles22 applied collision detection as an additional step after bone seg-236

mentation by the distance field method where the faces of the medial axis surface boundaries237

are stored into a bounding volume hierarchy in a pre-processing step. As bounding volumes are238

inflated, colliding regions result in overlapping bounding volumes. Figure 1(d) provides a 2D239

example of the medial-axis based collision detection method. A collision vector P c between a240

colliding vertex P and mesh face composed of P i vertices is defined as the linear combination241

P c =
∑

iwiP i − P . Expected collisions are pre-detected by storing the indices and weights of242

the collision vector P c during initialization. This P c vector is updated during deformation as a243

collision response.244

Statistical shape models (SSMs) determines a mean shape and allowed variability within the245

model as well as construction of new shapes through a combination of the principal modes of vari-246

ation within the expected shape. This SSM property can be combined with deformable models to247

constrain a deformation towards an expected shape during the segmentation process in presence248

of image noise or artifacts that otherwise hinder object boundary detection. Tejos et al.54 com-249

bined statistical knowledge with Simplex meshes and snakes evolution to robustly segment knee250

ligaments despite low contrast and significant image noise. Schmid et al.48 augmented Simplex251

meshes with shape and appearance knowledge for segmentation of MRI musculoskeletal struc-252

tures with limited field of view or presence of image artifacts. Although shape models can provide253

robust segmentation with presence of image artifacts and low contrast, their performance is de-254

pendent on initialization. Our work improves on prior SSM-aware Simplex models in its use of255
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a fully automatic landmark placement that makes correspondences explicit through its precise,256

robust repeatability, which prevents any slippage that could occur otherwise.257

1.4 Contribution of Proposed Approach258

Our contribution is a coarse-to-fine deformable surface model that uniquely combines minimally259

supervised particle-system-based shape statistics with multi-surface awareness, which leads to a260

general-purpose minimally supervised approach to segmentation, applied to the spine, while en-261

abling a lightweight process to support pathologies that would defy a purely statistical approach. It262

is also unique in supporting controlled-resolution multi-anatomy tetrahedralization, which is vital263

for the medical simulation community. We exploit controlled-resolution meshing conducive to a264

coarse-to-fine multi-resolution approach to 3D segmentation of both discs and vertebrae, as well as265

producing anatomical models with low element count and minimal spatial overlap for interactive266

simulation. This paper builds on our deformable surface model presented in .24 The difference267

between our previously published deformable model and the proposed method is the emphasis on268

statistical shape models to achieve a strong shape prior in the proposed method, in contrast to a269

weak shape prior encoded by a single typical shape, which did not arise from averaging several270

shapes as is the case in the proposed approach. As a result of building on SSMs, not only does271

the new approach leverage first-order shape statistics, but it can also rely on second-order statistics272

that encodes variability in surface shape, which also makes it possible to place a greater weight on273

the shape prior. This greater reliability of shape priors is vital in enabling the application of the274

shape-aware deformable model to extract vertebrae and IVDs from the same tomographic image.275

2 Materials and Methods276

2.1 Overview: Combining Multi-Surface Multi-resolution Simplex with Statistical Shape Models277

This research proposes a minimally supervised multi-surface spine segmentation method by in-278

corporating statistical shape models (SSM) in discrete deformable models, namely multi-surface279

Simplex meshes, to identify healthy vertebrae and inter-vertebral disc structures of the spine, as280

well as user-assisted disc pathological regions. Our work uniquely combines the multi-surface281

multi-resolution Simplex mesh with the SSM-aware Simplex forces in order to segment lumber282

vertebrae and intervertebral discs. Moreover, this paper improves on existing work on SSM-283

aware discrete deformable models through its use of an information theory-based particle system284

for consistent landmark placement that automatically produces correspondences, in a manner that285

scales to multiple 3D surfaces. As a result, the proposed approach constitutes a new, broadly286

applicable methodology for combining deformable surface models with collision detection-based287

multi-surface representation and statistical shape priors.288

Given that our approach emphasizes both deformable surface models and shape statistics, we289

view the initialization as an important component of this pipeline. Figure 2 depicts the overall im-290

age analysis pipeline.The initialization must feature a surface description that will reliably produce291

a good coarse-level agreement with the anatomical boundary in the CT or MR image. As a result,292

we strive for a surface template that can be initially registered unambiguously and deforms robustly293

to coarsely capture the desired shape. To that effect, we have developed some template surfaces294

that lead to good results, which was trivial for intervertebral discs but challenging for vertebrae,295

given their toroidal topology and complex shape in relation to their doughnut-like opening. The296

basic approach to producing this template is outline in appendix B. The next section emphasizes297
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Fig 2 Shape-aware Simplex mesh methodology. The shape prior is either weak or SSM-based.

foundational concepts of SSMs with a particular emphasis on our approach to their construction298

and to their integration into deformable multi-surface models.299

2.2 Shape Statistics-aware Simplex Model-based Segmentation300

Discectomy planning and simulation require a patient-specific, robust 3D representation of ver-301

tebral and intervertebral disc structures, including any pathology, of the lumbar spine. Although302

lumbar vertebral structures have high variability, the prominent features of the bone are consistent303

within a sample population. Moreover, healthy intervertebral discs are also consistent in shape.304
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This consistency exhibited by both anatomical structures facilitates the incorporation of a Statisti-305

cal Shape Model with expected variations into a volumetric image segmentation framework. Low306

image resolution and image artifacts, such as image noise, make biomedical volumetric image307

segmentation a challenge. Ambiguous image intensity results in incorrect, or even disconnected,308

boundary detection of the structure of interest. Prior knowledge, such as expected shape and vari-309

ance within a sample population, can be incorporated through statistical shape models to optimize310

the image segmentation process.311

The shape of an object is the geometrical information that remains after effects of translation,312

rotation and scaling have been filtered.32 Although medical images consist of considerable vari-313

ability by default, appearance and shape of the anatomical structure of interest to be identified are314

consistent across individuals. This information can be exploited by integrating statistical analy-315

sis in deformable models to optimize the segmentation process. Information to be utilized may316

be shape-based, such as points on a discrete mesh or curves in a continuous model. They may be317

appearance-based, such as global patterns of image intensity or gradient occurring regularly within318

a sample of images taken from a subject population.319

Shape model construction consists of aligning a training dataset, applying principal component320

analysis, extracting principal modes of variation, and calculating an average shape model with321

expected shape variability. The calculated average shape and expected variations can be utilized322

to constraint the model deformation process. The training dataset used for model construction323

should be in point correspondence, which can be achieved by a variety of methods. Traditionally,324

in 2D SSMs based on contours, point correspondences are achieved by manual identification of325

landmarks,13 however this method does not scale well to three dimensions and this identification326

can also be undermined by locally ambiguous boundaries coinciding with low-gradient portions of327

a boundary. A related option, demonstrated by Tejos,54 involves the fitting and manual correction328

of a canonical surface mesh on a suite of patient images, with an emphasis on the consistent329

positioning of vertices over comparable anatomical structures (in this case, a suite of knee cartilage330

models). Alternately, a particle system such as described in this paper uses an energy formalism331

to consistently distribute a preselected number of landmarks on a series of surfaces extracted from332

binarized manually segmented anatomical structures.333

A shape is invariant under similarity transformations of rotation, translation and scaling in 2D334

space. Alignment is the process of calculating the optimal m×m rotation matrix Γ, m×1 transla-335

tion vector T and scale parameter β to align all training shapes within a common coordinate space.336

Variations of shape within a training population can be modeled using Principal Component Anal-337

ysis (PCA), also known as Karhunen-Lóeve expansion. Assuming that the training dataset covers338

a set of closely related shapes, correlation between shape points exists that can be represented by339

a multivariate Gaussian distribution. PCA uses an orthogonal transformation to convert a set of340

observations of possibly correlated variables into linearly uncorrelated principal components. This341

transformation results in a first principal component representing as much variability in the data as342

possible and each succeeding component having the highest variance possible while being orthog-343

onal to the preceding. As a very large number of shape points need to be analyzed for statistical344

analysis, PCA is utilized to extract the principal modes, which represent data correlation along345

principal directions within the dataset, to reduce problem dimensionality. PCA is the process of346

determining the set of modes that captures the expected geometric variability within the training347

set.348
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Fig 3 SSM computation methodology

Statistical Shape Model construction through Principal Component Analysis requires point-to-349

point correspondence between a dataset. Correspondence is the process finding a set of points on350

one image or shape that can be mapped as the same set of points on another image, thereby ensuring351

that each structural boundary consists of identical number of co-registered points. Salient points352

used for constructing a shape model are known as landmarks.18 Cootes et al.13 utilized manually353

identified landmarks to construct early statistical shape models in 2D, however this method does354

not scale well to 3D, especially if there is any portion of the boundary that exhibits low contrast.355

Tejos used the Simplex surface model itself, which was subsequently manually corrected, where356

landmark points were assumed to correspond to mesh vertices under a consistent template model357

alignment. We view this assumption as potentially difficult to enforce, with the result that the set358

of landmarks can easily ”slip” from shape to shape if one proceeds in this manner. Our approach359

benefits from a fully automatic approach to homologous landmark placement, as described below.360

2.2.1 Statistical Shape Model Construction361

This section describes a framework for the construction of statistical shape models (SSMs) of lum-362

bar vertebrae and intervertebral discs from CT and MR images respectively of healthy subjects.363

The generated SSMs are utilized as a reference for knowledge-based priors to optimize segmen-364

tation of vertebrae and intervertebral discs in volumetric MR images. These shape models can365

be incorporated into a controlled-resolution deformable segmentation model of the lumbar spine.366

Incorporation of strong shape priors would facilitate quantification and analysis of shape variations367

across healthy subjects. It is intended as a tool for achieving minimally supervised spine segmenta-368

tion results that can be utilized as part of an anatomical input to either to a spine surgery navigation369

system or to an interactive spine surgery training simulator for a discectomy procedure.24
370
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Statistical shape models from 9 L1 vertebrae, 20 L2-L3 and 20 L4-L5 vertebrae as well as371

40 L1 to L5 intervertebral discs have been generated to be utilized as shape priors during spine372

segmentation from volumetric MR images. Correspondence between instances within each model373

has been established using entropy-based point placement on the image surfaces,9, 14, 25 which is374

independent of any reference bias or surface parameterization techniques.375

2.2.2 Image dataset and preprocessing for SSM construction376

Datasets provided by the SpineWeb Initiative have been utilized for generating shape models of377

an L1 vertebra and an L1-L2 intervetebral disc. Volumetric CT scans of healthy subjects, along378

with binary masks, of 10 anonymized patients 29 were used for model construction of L1, coupled379

L2-L3, and L4-L5 vertebrae. The CT scans and binary masks had a resolution of 0.2 × 0.3 ×380

1mm3. In addition, 40 expert interveterbral disc segmentations of 8 anonymized patients, with381

2.0 × 1.25 × 1.25mm3 resolution,10 were preprocessed as input to the correspondence and shape382

model construction method.383

These binary images were initially aligned along the first principal mode, and any aliasing384

artifacts were removed during image preprocessing. The method described in the following section385

was applied to generate distance maps of the binary images, which were used for 3D surface386

reconstruction and establish correspondence between instances of both vertebra and disc shape387

models.388

2.2.3 Correspondence Establishment389

Correspondence establishment is the process of finding a set of points on one 2D contour or 3D390

surface that can be mapped to the same set of points in another image. Anatomically meaningful391

and correct correspondences are of utmost importance, as they ensure correct shape parametriza-392

tion and shape representation. This can be achieved by co-registering manual landmarks onto the393

shape boundary in 2D shape space but is challenging in 3D space. Anatomical landmarks are394

points of correspondence on each shape that match within a sample population ,18 which may be395

manually or automatically placed. Correspondence landmarking may entail identifying matching396

parts between 3D anatomical structures, which is challenging due to inherent variability within ge-397

ometry or shape of the anatomical structure across a population.52 Therefore, landmark placement398

to establish correspondence for robust statistical analysis is a significant task.399

This research focuses on the application to shape-aware surface models of the correspondence400

technique introduced by Cates et al.9, 14 that is independent of structure parameterization or a401

reference bias. This technique, depicted in figure 4, employs a two-stage framework, with soft cor-402

respondence establishment in the first stage, and correspondence optimization across all instances403

of the shape space in the second stage. Soft correspondence is established by automatically plac-404

ing homologous points on the shape surface through an iterative, hierarchical splitting strategy of405

particles, beginning with a single particle. A 3D surface can be sampled using a discrete set of N406

points that are considered random variables Z = (X1, . . . , XN) drawn from a probability density407

function (PDF) p(X). Denoting a specific shape realization of this PDF as z = (x1, x2, . . . , xN),408

the amount of information contained in each point is the differential entropy of the PDF func-409

tion p(x), which is estimated as the logarithm of its expectation log{E(p(x))}, E(·) estimated by410

Parzen Windowing. The cost function C becomes411
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Fig 4 Particle system. (a) Naive depiction of Gaussian repulsion, for a simple 12-particle system (particles occluded
from view depicted in pastel tones; non-occluded particles shown as vivid). (b) System of 4,038 particles on the IVD
surfaces, based on three IVD models used to generate the IVD SSM: L1-L2, L2-L3 and L3-L4. (c) System of 16,384
particles for L1, L2, L3, L4 and L5 vertebrae used to generate shape priors for L1 vertebra, coupled L2 - L3 vertebrae
and coupled L4-L5 vertebrae.

C{x1, . . . , xN} = −H(P i)

=
∑
j

log
1

N(N − 1)

∑
k 6=j

p(xj)

=
∑
j

log
1

N(N − 1)

∑
l 6=j

G(xj − xl, σj) (3)

where G is an isotropic Gaussian kernel with standard deviation σj . These dynamic particles have412

repulsive forces that interact within their circle of influence limited through the Gaussian kernel413

until a steady state is achieved, and are constrained to lie on shape surface through gradient descent414

in the tangent plane.415

These correspondences are further optimized by entropy-based energy minimization of particle416

distribution along gradient descent by balancing the negative entropy of a shape instance with the417

positive entropy of the entire shape space encompassing all instances ( known as an ensemble).9418

Consider an ensemble ε consisting of M surfaces, such as ε = (z1, z2, . . . , zM), where points419

are ordered according to correspondences between these surface pointsets. A surface zk can be420

modeled as an instance of a random variable Z, where the following cost function is minimized:421

Q = H(Z)−
∑
k

H(Pk) (4)
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The cost function Q favors a compact representation of the ensemble and assumes a normal422

distribution of particles along the shape surface. Hence, p(z) is modeled parametrically with a423

Gaussian distribution with covariance Σ. This ensemble entropy term can be represented as424

H(z) ≈ 1

2
log‖Σ‖ =

1

2
Σkλk (5)

where λk are ensemble covariance eigenvalues. This process optimally repositions the particles of425

the shapes within the ensemble to generate robust shape representations with uniformly-distributed426

particles.427

ShapeWorks9 was used to establish dense correspondences of 16,384 homologous points on 49428

lumbar vertebral instances, and 4,038 points on 40 L1-L5 intervertebral disc instances. The en-429

semble shapes were respectively normalized according to centroid-referred coordinates, and were430

further aligned during the correspondence optimization process through iterative Procrustes anal-431

ysis.23
432

2.3 Statistical Shape-based Simplex Mesh Evolution433

Three SSMs of vertebrae were generated as follows:434

• an L1 verteba SSM comprising of 9 vertebral shapes,435

• a coupled L2-L3 vertebrae SSM comprising of 20 training shapes, and436

• a coupled L3-L4 vertebae SSM comprising of 20 training shapes.437

An intervetebral disc SSM representing shape variations of all five lumbar discs was constructed438

using 40 disc training shapes. These shape models are further evaluated to determine their sta-439

tistical sufficiency, and ensure that allowable shape variations within the dataset are efficiently440

represented. SSM-based forces were included as an additional term of the external force in the441

Simplex deformable model.442

A mean shape is initialized within the structure of interest through landmark-based affine reg-443

istration. A shape closest to the structure boundary is determined by iteratively calculating the op-444

timal transformation and shape variations. The Simplex deformation is constrained by allowable445

variations within the PCA in the lower resolutions during the initial segmentation stage, leading446

to a more rigid deformation. This PCA-based shape influence is relaxed in the higher resolution,447

where the Simplex mesh is closer to the image boundary, where the deformation is more influenced448

by the presence of image-based external forces. This results in robust segmentation of global and449

local variations within the population, leading to a more refined result capturing structural details450

present within the MR images.451

2.4 Statistical Shape Model Evaluation Metrics452

Shape model correspondences and the constructed statistical models may be evaluated through453

established metrics, such as model compactness, generalization ability, and specificity.52 A robust454

statistical model should have low generalization ability, low specificity and high compactness for455

the same number of modes. Compactness is the ability of the model to use a minimum number of456
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parameters to faithfully capture shape variance within the dataset. This may be calculated as the457

cumulative variance captured by the first m number of modes458

C(m) =
m∑
i=1

λi (6)

where λi is the largest eigenvalue of the ith mode.459

The generalized ability of the statistical model to represent new, unseen instances of a new460

shape that are not present in the training dataset was evaluated by performing leave-one-out exper-461

iments. Vertebra and disc statistical shape models were generated using all training samples except462

one, which was considered the test sample. This test sample was then reconstructed using the sta-463

tistical shape model, and the root-mean-square (RMS) distance and Hausdorff distance errors were464

calculated between the reconstructed sample and the original test sample after rigid registration.465

This method was repeated over the entire vertebra and disc datasets respectively, to calculate an466

average and worst measure of error for both statistical models. Generalization ability G(m), and467

its associated standard error εG(m) can be mathematically represented as468

G(m) =
1

n

n∑
i=1

Di(m) (7)

εG(m) =
σG(m)√
n− 1

(8)

where Di(m) is the RMS or Hausdorff distance error between the test sample and the instantiated469

shape, n is the number of shapes and σG(m) is the standard deviation of G(m).470

Model specificity is the measure of a model to only instantiate instances that are valid and
similar to those in the training dataset. To measure our statistical models’ specificity, (n − 1)
instances where randomly generated within [−3λ,+3λ] using our statistical models, and compared
to the closest shape in the training dataset. Specificity S(m) and its standard error εS(m) have been
calculated as

S(m) =
1

n

n∑
j=1

Dj(m) (9)

εS(m) =
σS(m)√
n− 1

(10)

where n is the number of samples, Di(m) is the RMS distance error between a randomly generated471

instance and its nearest shape within the training dataset. σ is the standard deviation of S(m).472

Evaluation results of the three constructed vertebrae SSMs and intervertebral disc SSM are473

presented in Section 4.1.474

3 Results and Discussion475

Lumbar intervertebral disc and vertebral segmentation results using inherent, weak-shape priors,476

and consequently strong-shape priors are presented. MeshValmet has been utilized for calculation477

of quantitative validation metrics. The mean absolute shape distance, MASD, (in mm) and absolute478
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Validation Metric Healthy Disc
MASD (mm) 0.321

Absolute Std. dev. (mm) 0.455
MSD (mm) 0.342

Average Hausdorf distance (mm) 3.261
DICE coefficient 0.954

Table 1 Average validation metrics comparing automatic segmentation results with corresponding semi-supervised
segmentation (ground truth) of 16 healthy lumbar intervertebral discs.

standard deviation of all errors (in mm), absolute mean square distance MSD (in mm), the Haus-479

dorff distance (in mm) and DICE similarity coefficient comparison metrics have been calculated to480

compare the quality of our segmentation approach with ground truth. The Hausdorff distance is the481

maximum surface distance between two surface meshes and quantitatively represents a measure482

of the worst segmentation error. DICE similarity coefficient compares the similarity between the483

resulting segmentation and ground truth, and has been calculated as s = (2|X ∩ Y |)/(|X|+ |Y |).484

MRI images used in these studies were T2-weighted Spin Echo, acquired sagittally, on a 1.5 T485

scanner, with a spacing of 0.5 x 0.5 x 3 mm3.486

Parameter values for the Simplex model in expression 2 were set as follows. The mass m was487

set to 1. Some parameters varies over the evolution of the multi-resolution approach. In simulations488

with weak shape priors, the value of the β weighting the external force would operate in the 0.27 to489

0.2 range for IVDs, and from 0.5 to 0.2 range for vertebrae. For SSM-aware simulation, β would490

vary from 0.5 to 0.2 in IVDs and from 0.7 to 0.2 in vertebral models. The internal force α also491

varied over successive multi-resolution iterations, from 0.45 to 0.3 for IVDs and from 0.6 to 0.4492

for vertebrae. Finally, the dampening factor γ varies from 0 to 0.5 over the course of 400 iterations493

for IVDs and from 0 to 0.7 through 400 iterations.494

3.1 Segmentation using weak-shape priors495

3.1.1 Healthy Intervertebral Disc Segmentation496

A statistical comparison of 16 automatic segmentations, using the multi-resolution weak shape497

prior-aware Simplex model, of healthy lumbar intervertebral discs with manually corrected seg-498

mentation results, considered ground truth, is represented in Table 1. The average absolute mean499

error of healthy disc segmentation approach is 0.32 mm ± 0.46 mm, with an average Hausdorff500

distance of 3.26 mm and average DICE score of 0.954. The maximum surface error was generally501

located at the lateral margins of the intervertebral disc, where the automatic segmentation ap-502

proach failed to faithfully capture the image boundary due to image intensity ambiguity caused by503

surrounding spine tissues and ligaments. Figure 5 compares automatic segmentation of a healthy504

L5-S1 disc with the semi-supervised segmentation result, considered as ground truth. Maximum in505

error corresponds with maximum under-segmentation error and maximum out error represents the506

over-segmentation error. Our automatic weak-shape prior segmentation approach under-segmented507

the lateral margins with a maximum in error of -2.45 mm, and a mean absolute segmentation error508

of 0.19 mm± 0.29 mm. This result is improved to 0.079 mm± 0.14 mm using strong shape-priors509

for healthy disc segmentation, as discussed in Section 4.2.510
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Fig 5 Comparison of an automatic L5-S1 healthy disc segmentation result against its corresponding semi-supervised
segmentation (ground truth), with -1.16 mm max. in, 2.45 mm max. out error.

Validation Metric Herniated Disc
MASD (mm) 0.608

Absolute Std. dev. (mm) 0.518
MSD (mm) 0.638

Average Hausdorf distance (mm) 3.485
DICE coefficient 0.917

Table 2 Average validation metrics comparing semi-supervised segmentation results with corresponding manual seg-
mentation of 5 herniated lumbar intervertebral discs.

3.1.2 Herniated Disc Segmentation511

Average results of 5 herniated discs comparing semi-supervised segmentation results against man-512

ual segmentation have been calculated. Evaluation results have been obtained by calculating the513

surface to mesh difference between the manual segmentation, considered ground truth, and the514

Simplex model result from our approach of the corresponding intervertebral disc. Our approach515

demonstrates mean absolute shape distance of 0.61 mm± 0.52 mm of segmentation of 5 herni-516

ated intervertebral discs (Table 5). Our results are favorable in comparison with competing 2D517

segmentation methods of herniated discs, and 3D segmentation methods of healthy discs respec-518

tively. Michopoulou et al.43 reported a 2D mean absolute distance of 0.61 mm, whereas Neubert et519

al.44 achieved a 3D segmented Hausdorff distance of 3.55 mm for healthy discs in high-resolution520

0.34 × 0.34 × 1 − 1.2mm3 MR images; in our case, the average Hausdorff distance is 3.26 mm521

using weak shape-priors.522

Figure 6 shows the spatial distribution of error for a herniated disc; this error is defined in terms523

of initial automatic segmentation using the weak shape prior-aware Simplex versus manual ground524

truth in (a), as well as the semi-supervised segmentation result that combines the former approach525

with constraint-point guided model deformation against the same ground truth in (b). The weak526

prior-based multi-resolution Simplex model does a reasonably good job of segmenting the disc,527

with a maximum in error of -3.61 mm near the disc pathology, although it exhibits undersegmen-528
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Fig 6 Spatial segmentation error of an L5-S1 herniated disc (a) Comparison of weak-prior based automatic (multires-
olution Simplex) segmentation against manual segmentation, considered ground truth (-3.61 mm max. in, 2.60 mm
max. out). (b) Comparison of semi-supervised segmentation (multiresolution Simplex with constraint points near the
pathology) against its corresponding manual segmentation (-3.47 mm max. in, 1.87 mm max. out).

Fig 7 Sagittal MRI slice of a herniated disc with corresponding segmentation and constraint points.
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Validation Metric Intra-rater Inter-rater
MASD (mm) 0.050 0.254

Absolute std. dev. (mm) 0.062 0.323
Maximum out error (mm) -1.214 -2.593
Maximum in error (mm) 0.905 2.290
Hausdorff distance (mm) 1.214 2.593

Table 3 Validation metrics comparing two sets of semi-supervised segmentations of a herniated intervertebral disc
performed by the same anatomist and two different anatomists, demonstrating intra-rater and inter-rater variability
respectively.

Validation Metric Lumbar Vertebrae
MASD (mm) 0.417

Absolute Std. dev. (mm) 0.313
MSD (mm) 0.375

Avg. Hausdorff distance (mm) 2.863
DICE coefficient 0.932

Table 4 Average validation metrics comparing 25 lumbar vertebrae automatic segmentation results, using weak shape
priors, against corresponding manually corrected segmentation of patients in MR images.

tation at the pathology. This error is reduced to -3.47 mm through semi-supervised constraint529

point-guided segmentation of pathology. Figure 7 displays disc pathology with its corresponding530

segmentation using constraint points in a sagittal MRI slice. As herniated disc anatomy cannot be531

faithfully captured by prior shape or intensity features, weak shape prior influence is turned off532

locally and graceful degradation from these priors is allowed in a user-controlled manner, refining533

the segmentation result. It can be observed that maximum error in our semi-supervised segmenta-534

tion result is located at the lateral portion of the intervertebral disc. This is likely due to ambiguity535

in determining the intervertebral disc boundary at the lateral margins of the anatomy during manual536

segmentation.537

3.1.3 Inter- and Intra-rater Variability538

Robustness to variability in user supervision and landmark-placed template mesh initialization is539

demonstrated in a series of experiments where the same anatomist’s results are compared over540

several initializations, and where two anatomist results are also compared.541

Table 3 displays the intra-rater and inter-rater user variability during semi-supervised segmen-542

tation of an L5-S1 herniated disc. As demonstrated in Figure 8, intra-rater variability is present at543

the disc pathology where constraint points were required to correctly segment the herniated part of544

the anatomy. More variability exists between different anatomists, with a larger mean segmenta-545

tion error of 0.25 mm, present at the lateral margins of the disc as well as the disc pathology, where546

manual interaction was required.547

3.2 Vertebra Segmentation548

Table 4 summarizes the segmentation results of L1 to L5 vertebral discs of the lumbar spine us-549

ing inherent weak shape priors during segmentation pertaining to 5 patients. The absolute mean550
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Fig 8 Maximum out (red) and maximum in (blue) segmentation error between two sets of herniated disc segmentations
performed by (a) the same rater (0.91 mm max. in, 1.21 mm max. out), and (b) different raters (2.29 mm max. in,
2.59 mm max out). Over- and under-segmentation is present at the lateral margins and the pathology where constraint
points were required to correct segmentation.

standard error is 0.42 mm, with an average Hausdorff distance, representing average worst error, is551

2.86 mm. The average maximum and minimum segmentation errors observed for the remaining 24552

vertebral segmentations were -3.22 mm to 2.34 mm respectively, with an average DICE coefficient553

of 0.93. This maximum segmentation error was mostly located at the superior or interior processes,554

or the spinous processes where contiguous vertebral structure boundaries were present in the image555

volume. Presence of low image-to-noise ratio, and low image contrast of the bones in T-2 weighted556

MR images likely caused image boundary ambiguity, resulting in over- or under-segmentation of557

these bone sub-structures.558

Figure 9 depicts the worst vertebrae segmentation error encountered during an L3 segmenta-559

tion, demonstrating the need for strong-shape priors to guide the segmentation result. It can be ob-560

served that the maximum in error, corresponding to under-segmentation, is located at the spinous561

processes. This is likely due to the ambiguity in vertebral boundary at that image sub-volume,562

where the spinous process of an L3 vertebra is close to the spinous process of the L2 vertebra563

located above, with ligaments in between. The model was also unable to capture the lateral mar-564

gins of the vertebral body, resulting in under-segmentation. The superior articulate process and the565

lamina were over-segmented, resulting in over-segmentation of maximum Out. error of 4.37 mm.566

Segmentation of vertebral structures is a challenging task in MR images due to the low image567

contrast associated with bone in the image modality. Moreover, the thin ligaments surrounding568
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Fig 9 Comparison of an L3 vertebral segmentation using weak shape prior-aware Simplex versus the manually iden-
tified ground truth, with -3.56 mm max. In, 4.37 mm max Out. This is the worst encountered vertebra segmentation
error.

the complex shape of the vertebral body, especially between the processes of the vertebrae, pro-569

vide low image intensity and gradient change, resulting in image boundary ambiguity. Therefore,570

strong prior knowledge of the average vertebral shape, with allowed variations, have been incorpo-571

rated within Simplex models to guide and improve the segmentation of these complex structures.572

Vertebrae results using PCA-based segmentation are described in Section 4.3.573

4 Segmentation using an SSM-aware Simplex Model574

Statistical Shape Models have been incorporated into Simplex deformable models for segmenta-575

tion refinement. This section discusses the evaluation results of the three vertebral SSMs and inter-576

vertebral disc SSM. Then the segmentation results of the strong shape-based Simplex deformable577

models are presented. A proof of concept of a healthy disc compression is presented to demonstrate578

application of the multi-resolution segmentation results within a Finite Element Model (FEM) sim-579

ulation. Validation studies employ an approach to ground truth inspired by Tejos,54 who adopts a580

vertex-by-vertex manual correction of surface model results to achieve a perfect segmentation, as581

opposed to a slice-by-slice voxel-based identification of a tissue blob. In our case, we use a num-582

ber of constraint points, which imposes a strong attraction to the surface model, in order to correct583

erroneous boundary surface sections.584

4.1 Statistical Shape Model Evaluation585

This section evaluates the 3 vertebrae statistical shape models, and one intervertebral disc SSM in-586

corporated within the segmentation framework by calculating model compactness, generalization587

ability and specificity validation metrics as described in Section 2.4. Figure 10(a) illustrates the588

changes in the shapes along the first three principal modes of variation by 3σ for the constructed589

L1 vertebra SSM. The first mode of the shape model mainly captures scaling across the popula-590

tion. The maximum vertebral variability (16mm) is observed at the inferior and superior articular591

processes and the spinous process. The second and third modes in the vertebral model capture592

variation and scaling in the transverse processes and foramen size respectively.593
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Fig 10 Graphical representation of shape model variability (in mm) captured by the first three principal modes. (a) L1
vertebra SSM based on 10 shapes, seen from superior view. (b) Combined L2 and L3 vertebra SSM computed from 20
shapes, seen from inferior view. (c) Combined L4 and L5 vertebra SSM computed from 20 shapes, seen from superior
view. (d) Combined iintervertebral disc SSM computed from 40 shapes, shown from superior view. Red corresponds
to the maximum outward signed distance (mm) from the mean shape, while blue corresponds to the maximum inward
signed distance (mm) from the mean shape. The middle column corresponds to the average shape, while the left and
right columns represent deviations of -3σ and +3σ respectively with respect to the average shape.

In contrast, the first mode of the intervertebral disc model varies maximally by 7mm. The sec-594

ond principal mode captured stretching in the lateral parts of the disc, and the third mode captured595

rotational effects in the lateral part of the disc respectively.596

Figure 10(b) illustrates the changes in the shapes along the first three principal modes of varia-597

tion by 3σ for the combined L2 and L3 vertebra SSM. The first mode of the model mainly captures598
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scaling of the vertebral body across the L2 and L3 vertebrae training shapes. The maximum ver-599

tebral variability (7mm) is observed at the shape and size of the vertebral body, as well as the600

articular processes. Similar to the L1 vertebra SSM, the second and third modes in the verte-601

bral model capture variation and scaling in the transverse processes and foramen size respectively.602

Statistical shape models combining two neighboring vertebrae were constructed to to exploit the603

similarity in shape between consecutive vertebrae, as well as to increase the training size.604

Variation across the first three modes of variation in the combined L4 and L5 vertebral SSM605

is depicted in Figure 10(c). The mean shape represents an average combined shape of the L4 and606

L5 vertebrae, with variation in the overall thickness of the vertebre captured by the first principal607

mode. The second mode captures variation in size while the third mode captures the thickness of608

the vertebral processes.609

The fourth constructed SSM capturing expected mean and variation in all five intervertebral610

discs of the spine from 40 shapes is depicted in Figure 10(d). As expected, the first mode captures611

variation in disc size, specifically in the posterior shape. The second mode captures size varia-612

tion and shape change along the anterior portion of the disc. The third mod captures changes in613

curvature of the disc.614

Figure 11 graphically illustrates the compactness of the four statistical models as a function615

of the number of modes required to capture 100% of the variation across the population. Each616

principal mode represents a distinct shape variation amongst the shape population. The L1 ver-617

tebra shape model was able to capture variance within the first 7 principal modes, with 39.45%618

variance of the captured by the first principal mode. The combined shape models showed some619

improvement in compactness, due to the increase in training dataset size. Both combined vertebrae620

SSMs were able to capture 95% variability within the first 12 modes. In contrast, the disc SSM621

performed much better due to a larger training dataset, and captured 95% variability within the first622

11 modes, with 42% variation captured by the first mode.623

Figure 12 illustrates the Hausdorff-based generalization ability of the L1 vertebra, combined624

L2 and L3 vertebrae, combined L4 and L5 vertebrae, and the intervertebral disc shape models625

respectively. The generalization ability is the ability of the model to represent unseen shapes, while626

specificity describes the robustness of the shape model in representing seen instances, such as from627

within the dataset. Results presented were calculated by performing Leave-one-out analysis using628

their respective training datasets. Figure 13 demonstrate generalizability characteristics as assessed629

on the basis of RMS distance, while figure 14 depicts specificity based on RMS distance.630

The results of the generalization ability of the constructed models can be further analyzed.631

For the first mode of variation, the average reconstruction error for an unseen instance is for the632

L1 vertebra model is 0.47 mm with a confidence interval of 0.03 mm, with an initial Hausdorff633

distance of 8.2 mm. This error converges to 0.4 mm with worst mean error of 7.6 mm. Our634

L1 vertebra models cumulative specificity error is 1.43 mm in 7 principal modes with negligible635

standard error. The Hausdorff error for generalization ability of the L2 and L3 model using only636

the first mode of variation is 0.9 mm, which is reduced to 0.58 mm after 17 total modes. Similarly,637

the average Hausdorff distance for representing unseen shapes for the L4 and L5 vertebrae model638

is initially 8.2 mm, reducing to 6.7 mm over 17 modes of variation. It can also be noted that639

although the Generalization ability RMS error for the combined shape models is lower than that640

of the L1 vertebral model, the combined models are less compact due to higher variability within641

the training dataset, introduced not only due to larger dataset size but also because it represents642

variations between the the two consecutive vertebrae as well.643
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Fig 11 Compactness versus number of modes used
for representation, featuring L1 vertebra SSM (red),
combined L2-L3 vertebral SSM (green), combined
L4-L5 vertebral SSM (violet), and intervertebral disc
SSM (blue).

Fig 12 Generalization ability based on Hausdorff dis-
tance (mm) vs number of modes used for representa-
tion, featuring L1 vertebra SSM (red), combined L2-
L3 vertebral SSM (green), combined L4-L5 vertebral
SSM (violet), and intervertebral disc SSM (blue).

Fig 13 Generalization ability based on RMS error
(mm) vs number of modes used for representation,
featuring L1 vertebra SSM (red), combined L2-L3
vertebral SSM (green), combined L4-L5 vertebral
SSM (violet), and intervertebral disc SSM (blue).

Fig 14 Specificity vs number of modes used for rep-
resentation, featuring L1 vertebra SSM (red), com-
bined L2-L3 vertebral SSM (green), combined L4-L5
vertebral SSM (violet), and intervertebral disc SSM
(blue).
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Validation Metric L1-L2 L2-L3 L3-L4 L4-L5 L5-S1 Total
MASD (mm) 1.44 0.44 0.93 0.51 0.64 0.79

Absolute Std. dev. (mm) 0.229 0.210 0.159 0.087 0.25 0.187
MSD (mm) 0.53 0.149 0.25 0.76 0.67 0.74

Avg. Hausdorff distance (mm) 1.63 1.12 1.09 0.984 0.982 0.979
DICE coefficient 0.77 0.981 0.971 0.984 0.982 0.979

Table 5 Average validation metrics comparing automatic 16 lumbar disc segmentation results, using strong shape-
based priors, against corresponding manually corrected segmentation of patients in MR images.

Our vertebra model results are similar to those in the literature. Vrtovec et al.56 model is644

more compact, capturing 52% variability within the 1st principal mode. Rasoulian et al.46 capture645

G(m) RMS error of 0.95 mm, with Hausdorff error 9 mm within the 1st principal mode, which646

is decreased to 0.8 mm RMS and 7.5 mm after 7 modes. Their model is worse in generalization647

and specificity, but outperforms in model compactness (capturing 60% in 1st mode). Kaus et al. 31
648

reported 1.66 mm mean error after 20 modes, with 30% 1st mode compactness, constructed with649

32 (L1-L4) vertebral training shapes.650

Our intervertebral disc model is able to represent unseen instances with an initial RMS error of651

1.4 mm, and Hausdorff distance of 4.08 mm, which converges to 0.18mm RMS error and 1.5mm652

worst error after 35 principal modes.653

Overall, the compact model transitions coherently, with a tradeoff between compactness and654

the ability to faithfully represent new training shapes. Some outliers in the first principal mode655

can be noted in the variant vertebral shapes. These outliers may be reduced by increasing the656

size of the population dataset, as well as exploring probabilistic PCA instead of simple PCA,657

which may better account for any outliers in the model. Moreover, large variability exists between658

the vertebrae instances, leading to large variability in the shape models itself. An increase in659

the training dataset would lead to more robust and faithful vertebral shape models better able to660

represent variability within a population.661

4.2 Intervertebral Disc Segmentation using SSM662

Table 5 shows the validation metrics comparing automatic strong shape-based segmentation results663

with manually corrected ground truth of 16 healthy intervertebral discs of the lumar spine. The664

average DICE coefficient achieved is 0.979, which is an improvement over 0.95 achieved without665

SSM incorporation. The absolute mean distance has reduced to 0.79 mm± 0.19 mm, with average666

Hausdorff distance reduced to less than 1 mm.667

Figure 15 displays the segmentation result of an L3-L4 intervertebral disc within the image668

volume in sagittal, coronal and axial view respectively. The resulting segmentation is evaluated669

against a manually corrected segmentation considered as ground truth, which involves the applica-670

tion of a number of constraint points to correct any deviation of underlying boundary. These seg-671

mentation results are depicted in Figure 16(a), which displays the signed maximum and minimum672

distance error. The error is located at the lateral margins of disc, with maximum over-segmentation673

error as 1.08 mm, and maximum undersegmentation (maximum in error) as -0.73 mm. PCA-based674

shape forces are relaxed very close to the image boundary using a high-resolution mesh for seg-675

mentation, and image gradient descent is allowed to guide the deformation along the normal di-676

rection, so that local shape variation and details of the structure can be accurately captured. Image677
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Fig 15 Segmentation of an L3-L4 intervertebral disc.

Fig 16 Segmentation evaluation of IVDs against their corresponding manually corrected segmentations, considered
ground truth: (a) L3-L4 intervertebral disc: the automatically segmented L3-L4 IVD has a signed distance error of
1.08 mm over-segmentation and 0.73 mm undersegmentation. (b) L4-L5 intervertebral disc: the L4-L5 IVD exhibits
a signed distance error of 0.88 mm over-segmentation and 0.41 mm undersegmentation.

boundary ambiguity at the lateral margins of the disc may result in over or under estimation of the678

structure boundary. Figure 16(b) displays the segmentation result of an L4-L5 intervertebral disc,679

with maximum over-segmentation as 0.88 mm, and maximum undersegmentation of -0.41 mm.680

The maximum out error can be observed at the anterior margins of the disc. The statistical shape-681

based segmentation results show significant improvement of results, with reduced error observed682

at the lateral margins of the disc as compared to results of weak-shape prior segmentation. Our683

results are comparable with the state of the art, with mean absolute error as 0.79 mm.684

4.3 Vertebral Segmentation using an SSM-aware Simplex Model685

Strong shape-based segmentation results of lumbar vertebrae of 5 MR images are presented in686

Table 6. Automatic segmentation results of 25 L1 to L5 vertebrae have been validated against687

manually corrected segmentation, based on imposed constraint points, considered as ground truth.688

Our proposed method performs very well, with overall average DICE coefficient of 0.981, with689

average absolute mean error as 0.69 mm± 0.15 mm. The average Hausdorff distance was observed690

to be 1.18 mm. Although the Mean Absolute Shape Distance (MASD) has increased from 0.42691

mm with SSM incorporation, the overall results demonstrate consistent improvement over results692

obtained from segmentation using weak-shape priors. The average Hausdorff distance, a measure693
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Validation Metric L1 L2 L3 L4 L5 Total
MASD (mm) 0.176 1.182 0.72 0.491 0.22 0.685

Absolute Std. dev. (mm) 0.148 0.054 0.133 0.147 0.254 0.147
MSD (mm) 0.288 0.486 0.20 0.316 0.19 0.297

Avg. Hausdorff distance (mm) 1.068 1.162 1.629 1.189 0.863 1.182
DICE coefficient 0.984 0.989 0.978 0.976 0.981 0.982

Table 6 Average validation metrics comparing automatic 25 lumbar vertebrae segmentation results, using strong
shape-based priors, with corresponding manually corrected segmentation of patients in MR images.

Fig 17 Segmentation validation of L2 and L3 vertebrae with ground truth segmentation. (a) L2: maximum over-
segmentation error is 1.62 mm, and maximum undersegmentation error is -0.84 mm. (b) L3: Maximum over-
segmentation error is 0.47 mm, and maximum undersegmentation error is -1.01 mm.

of the worst error, has reduced from 2.86 mm to 1.18 mm, with an expected decrease in Mean694

Square Distance (MSD) error from 0.38 mm to 0.30 mm.695

Figures 17 (a) and (b) display the segmentation results of L2 and L3 vertebrae respectively. In696

the L2, our model has slightly over-segmented the structure, with maximum out error (0.48 mm)697

and maximum in error (-1.01 mm) observed at the superior and interior articular processes. In698

the L3, the maximum over-segmentation error (1.62 mm) can be observed at the superior articular699

process, with some over segmentation of the spinous process; under-segmentation peaks at -0.84700

mm. Similarly to the weak prior shape-based segmentation results, most of the error lies at the701

articular and spinous processes of the vertebrae, where there may be image intensity ambiguity702

due to low image contrast between contiguous anatomical structures or ligaments surrounding the703

vertebral body.704

Contiguous vertebrae and disc structures were segmented with collision detection to mitigate705

any resulting mesh overlap. Figure 18 displays the segmentation of the lumbar vertebral and in-706

tervertebral structures of one of the testing MR datasets. Figure 19 displays segmentation in axial707

view of the vertebrae and intervertebral discs of the lumbar spine. It displays the segmentation of708

contiguous structures across a slice in the image volume, with a segmented L4-L5 intervertebral709

disc, the superior articular process of L5 vertebra (red) , and interior articular processes of the L4710

vertebra located above (in blue).711
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Fig 18 Segmentation results of vertebrae and intervertebral discs of the lumbar spine.
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Fig 19 Segmentation in axial view of the vertebrae and intervertebral discs. Contiguous structures segmented across
a slice in the image volume, with a segmented L4-L5 intervertebral disc, the superior articular process of L5 vertebra
(red) , and interior articular processes of the L4 vertebra located above (blue).

The segmented intervertebral disc surfaces were treated as hard bodies during vertebrae seg-712

mentation, such that the surface points of the intervertebral discs were considered as a repelling713

external force for the deforming vertebral Simplex mesh. Collision handling forces were activated714

during the high resolution segmentation scheme when the deforming vertebral mesh was close715

enough to the vertebral image boundary and the contiguous intervertebral disc boundaries. Figure716

20 displays the signed surface distance between an L2-L3 vertebra and an L2 vertebra without717

collision handling forces activated during segmentation, and with collision detection. Meshes are718

considered to be contiguous and non-overlapping at distance 0.0 mm. There was surface inter-719

penetration, indicating oversegmentation, of 0.47 mm, which was reduced to 2.0× 10−5, resulting720

in non-overlapping surface meshes.721

Most vertebrae results without collision handling resulting in oversegmentation between 0.1722

mm to 0.5 mm, with few under-segmented results. However, in case the surface overlap was over723

over 0.5 mm, collision detection at high resolution was less efficient. Figure 21 shows signed724

surface distance between an L4-L5 intervertebral disc and an L4 vertebra, with the vertebral mesh725

segmented with and without collision handling. The vertebra is over-segmented by 0.8 mm, which726

is reduced to 0.36 mm after segmentation with collision detection. The location of the remaining727

surface overlap is indicated on the L4-L5 intervertebral disc surface in Figure 21(b) by identifying728

surface area where the signed distance map is below 0.0 mm.729

Incorporation of strong shape-based priors in Simplex deformable models provided much ac-730

curate results, reducing the average Hausdorff distance error, which is a measure of the maximum731
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Fig 20 Signed surface distance (a) between an L2-L3 disc and an L2 vertebra before collision handling; there is
maximum inter-penetration of 0.47 mm. (b) from L2 vertebra to L2-L3 disc after collision handling, (c) from L2
vertebra to L2-L3 disc after collision handling.
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Fig 21 (a) Signed surface distance between an L4-L5 vertebra and an L4 vertebra before collision handling; there
is maximum inter-penetration of 0.8 mm. (b) Signed surface distance from L4 vertebra to L4-L5 disc after collision
handling, reduced to 0.36. Area with surface distance below 0, identifying remaining mesh overlap, is highlighted.
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error, to less than 1.5 mm for both vertebrae as well as intervertebral disc segmentation. A signifi-732

cant improvement in performance accuracy was achieved by utilizing Statistical Shape Models for733

vertebrae segmentation, where the DICE coefficient increased from 0.93 to 0.98. This is an im-734

provement to current segmentation techniques, where the lowest obtained DICE coefficient value735

of 0.935 is presented by Ibragimov.30 However, segmentation results of the proposed method can-736

not be directly compared with current literature as they were were validated on different training737

and testing datasets.738

5 Intervertebral Disc Compression Simulation739

Simulation Open Framework Architecture (SOFA)19 is an open-source object-oriented software740

toolkit that is targeted towards real-time interactive medical simulations. Several components of a741

model can be combined in hierarchies through an easy-to-use scene file format to represent vari-742

ous model parameters such as material properties, deformable behavior, constraints and boundary743

conditions, which makes SOFA a very powerful and efficient prototyping tool.744

A healthy lumbar intervertebral disc has been modeled using SOFA to simulate the biome-745

chanical and physiological changes of the disc under compression. The tetrahedral mesh of the746

healthy L2-L3 disc has been generated from the segmented surface mesh using the isosurface747

stuffing method.36 This volumetric mesh has been used to define the tetrahedral corotational finite748

element model of the disc, depicted in Figure 22(a), which corresponds to the Behavior Model1
749

of the deformable object. The boundary conditions and external compression forces have been750

defined through the segmented surface mesh, which is linked to the underlying Behavior Model of751

the deformable object (Figure 22(b)). Following the actual anatomy of the simulated intervertebral752

disc, the bottom nodes that are in direct contact with the below rigid vertebral body have been con-753

strained to be fixed to their initial locations, and a prescribed vertical pressure of 100 N/cm2 has754

been applied to the top surface of the disc using SOFA’s TrianglePressureForceField component.755

The tetrahedral models were built using a plugin based on Computational Geometry Algo-756

rithms Library (CGAL) found on SOFA1,2 where the resolution of the mesh could be specified757

with a ”FacetSize” parameter, which relates to an edge length objective of each element, and758

would typically equate with the resolution of the surface mesh. The CGAL tetrahedralization im-759

plementation is based on Alliez’ variational tetrahedralization algorithm,4 which provides support760

for precise resolution control, in addition to alleviating the risk of sliver-like elements. The model761

depicted in Figure 22(a) had a FacetSize d of 5 mm, which based on the formula for volume d3

6
√
2
,762

equates to a volume of 14.7 mm3. A typical disc volume is from 7,300 to 10,000 mm3 in the lum-763

bar region,55 with the L2-L3 disc averaging roughly 8,700mm3, which works out to just under 600764

tetrahedra. A typical FEM system such as this one can be solved on SOFA from 10 to 60 Hz on a765

CPU, depending on the choice of continuum model. For a larger simulation featuring all IVDs and766

with vertebrae modeled as rigid, we would advocate using a GPU-based continuum model, which767

is also supported by SOFA.768

In the simulation phase, we have assumed a uniform isotropic material model for representing769

the intervertebral disc. Our interbertebral disc biomechanical properties are consistent with values770

published by Malandrino et al.42 and Spilker.51 Using these studies, we have chosen Poisson’s ra-771

tio to be 0.4 and Young’s modulus to be 15800 Pa, representing the ratio of disc model expansion772

1https://hal.inria.fr/hal-00681539/document
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Fig 22 3D simulation of a healthy intervertebral disc under pressure. (a) Tetrahedral FEM. (b) Behavioral Model:
The bottom nodes (red) are constrained to be fixed and the Neumann boundary condition is applied to the top sur-
face (green) of the disc model. (c) Visual Model: Comparison of the disc model at rest (red) and deformed (green)
configurations.

versus compression and the stiffness of the elastic model respectively. The effect of the compres-773

sion force on the disc has been captured in terms of the relative displacement of the surfaces of the774

original and deformed configurations (Figure 22(c)), where the uncompressed disc is depicted in775

red and the compressed configuration in green. The simulation results in a slightly bulging disc.776

This implementation is intended as a proof of concept to demonstrate use of segmentation777

results to initiate a patient-specific simulation in SOFA, such that an interactive response is feasi-778

ble. Meanwhile, competing spine modeling methods emphasize dense tetrahedral decomposition779

and onerous finite element computations that preclude an interactive response. In particular, our780

controlled-resolution modeling technique can produce a coarse triangular surface for constraining781

a coarse tetrahedralization for a Behavior Model, a medium-resolution surface mesh for a Collision782

Model, and a fine-resolution surface mesh for a Visual Model, all running on SOFA and mapped to783

each other.784

6 Discussion785

Surgery and biomechanical simulations require patient-specific, high fidelity and robust 3D seg-786

mentation of vertebral and intervetebral disc structures, and existing pathology, of the lumbar787

spine. This paper describes a framework for segmentation of lumbar vertebrae and discs from788
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T2-weighted MR images of the spine. Our segmentation approach is based on Simplex discrete789

deformable models.790

This research initially exploits weak shape priors inherent in Simplex deformable models for791

segmentation. An ellipsoid template mesh and a medial-axis based template is initialized within the792

disc and vertebra volume image respectively using landmark-based affine registration. This tem-793

plate is allowed to deform according to Simplex internal and external forces. In case the Simplex794

mesh fails to capture image boundary in existence of disc pathology, weak shape priors are de-795

graded gracefully and the user is allowed to guide mesh deformation by placing constraint points796

on the image volume. This manually corrected segmentation method has also utilized for gener-797

ating ground truth used for validation of our test results. Segmentation results using weak shape798

priors pertaining to 5 patients yield DICE coefficients of 0.93 for vertebrae and 0.95 for interver-799

tebral discs. Our method demonstrates the ability to successfully segment disc pathology, based800

on minimally supervised, spatially variable weighting of shape prior information. Vertebral seg-801

mentation in MR images posed a challenge due to low image contrast for bone in MR images, as802

well as presence of image artifacts, thus requiring incorporation of strong shape priors in Simplex803

models.804

Statistical shape models of vertebrae and discs were generated using training data of 10 and 8805

patient datasets respectively. Three SSMs of vertebrae: an L1 vertebral SSM, a coupled L2 and806

L3 vertebral SSM, and a coupled L4 and L5 vertebral SSM were constructed. An intervertebral807

disc SSM was generated using 40 training shapes. These vertebrae and disc SSMs were shown808

to faithfully capture variance within a population with few particle outliers, capturing 95% of809

variability within the first 9 modes of variation.810

Strong shape priors incorporated in our deformable model have been utilized for resegmenta-811

tion of MR image testing dataset. PCA-based average shapes were initialized within the structure812

volume boundary through landmark-based affine registration using a multi-resolution scheme. The813

shape model was set as a template mesh that was allowed to deform and capture the image bound-814

ary while constraining the mesh according to expected variation. The PCA shape influence was815

relaxed with increase in mesh resolution for result refinement. The proposed strong shape-based816

deformation method results in robust segmentation with DICE coefficient of 0.979 for interver-817

tebral discs and 0.981 for vertebrae. We also exploit controlled-resolution meshing conducive to818

a multi-resolution approach to segmentation as well as producing anatomical models with low819

element count for interactive simulation.820

Evaluation of the proposed framework can be improved by increasing the size of the training821

dataset utilized for generation of vertebral and intervertebral SSMs. Images of diseased or de-822

generated vertebrae, such as compressed vertebrae or vertebral fractures that may occur due to823

osteoporosis, may be included during SSM construction to increase captured variation within the824

population. Incorporation of intensity based features, such as statistical appearance models along825

with statistical shape models to classify intensity variation between a healthy and herniated disc826

image may assist with identification of disc pathology.827

It should also be noted that the training data requirements for SSMs are not as onerous as828

the number of training samples needed for most voxel-based classifiers, especially in relation to829

deep learning methods that rely typically on thousands of data points. It can be argued that this830

lesser reliance on exhaustive training is partly as a result of the consideration of several forces at831

once, such as continuity-based internal forces and image gradient-based external forces, as well as832

a lesser-dimensionality problem in the form of a model-to-image registration, in comparison with833
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the dimensionality of a low-level voxel-based image classification problem in general, especially in834

a deep learning framework. In addition, the consideration of a coarse-to-fine approach, especially835

if the process begins with a set of homologous point pairs, makes the optimization of an objec-836

tive function more feasible using a small training set, in comparison with any single-resolution837

approach, and to our knowledge, this type of coarse-to-fine framework is not yet a hallmark of838

machine learning techniques. The analysis of compactness, generalization and specificity suggest839

also that a relatively small subset of modes is needed to provide useful shape discrimination.840

7 Conclusions841

This paper presented a deformable multi-surface model that embeds shape statistics force, with842

applications to lumbar spine segmentation for surgery planning and simulation. Our approach843

performs localization of the vertebrae and intervertebral discs within the volume image through844

landmark-based affine registration. This localization is dependent on manual input from the user845

through placement of landmarks on the initialized template, as well as the volume image. This user846

interaction can be eliminated by introducing an automated disc and vertebrae localization scheme847

that identifies the position of the vertebrae and intervertebral discs, which can be further used to848

initialize segmentation. Moreover, the proposed framework is limited by manual interaction for849

segmentation refinement in case disc pathology cannot be faithfully captured.850

An alternate approach to generation of statistical shape models could be a hierarchical shape851

model approach, where one SSM of all lumbar vertebrae, as presented by Rasoulian et al.,47 can be852

utilized to capture vertebral global pose and shape of the entire during low-resolution segmentation,853

and individual SSMs corresponding to each vertebrae can be used at higher resolutions to capture854

local shape variation. However, a large training dataset is required for such implementation that855

was not available at the time of the proposed framework.856

While there are similarities between our work and related research, our work features innova-857

tions essential to the development of an interactive spine surgery simulator, as well as a biome-858

chanical FEM model. First, the proposed anatomical modeling enables a trade-off between shape859

priors and limited user supervision near the pathology of interest to the simulation. Second, our ap-860

proach specifically emphasizes resolution control with the final Simplex surface mesh, which leads861

to a controlled-resolution triangulated mesh by duality; moreover the latter controlled-resolution862

triangulated mesh in turn leads to a like-resolution tetrahedral mesh bounded by it. Both aspects of863

the meshing are essential to the low element count needed for an interactive virtual tissue response.864

8 Disclosures865

No conflicts of interest, financial or otherwise, are declared by the authors.866

9 Biographies867

Rabia Haq, Ph.D. is a post-doctoral fellow at the Department of Medical Physics at Memorial868

Sloan Ketting Cancer Center. She received her Ph.D. from Old Dominion University’s De-869

partment of Modeling, Simulation and Visualization Engineering in December 2015, where870

her dissertation was entitled ”Multi-Surface Simplex Spine Segmentation for Spine Surgery871

Simulation and Planning”. Her current research interests include deep learning and atlas-872

based segmentation in medical images.873

35
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Appendix A: Abbreviations1064

CT: Computed Tomography1065

FEM: Finite Element Model1066

IID: Intervertebral Disc Degeneration1067

ICP: Iterative Closest Point1068

LOO: Leave-one-out1069

MRI: Magnetic Resonance Imaging1070

PDM: Point Distribution Model1071

ROI: Region of Interest1072

SSM: Statistical Shape Model1073

SVD: Singular Value Decomposition1074

GPA: General Procrustes Analysis1075

PCA: Principal Component Analysis1076

MDL: Minimum Description Length1077

Appendix B: Medial-axis based Template Construction and Initialization1078

Medial-axis extraction is the process of reducing dimensionality of the structure without loss of1079

topology. Traditional 3D skeletonization methods, such as binary thinning40 or level-set based1080

centerline extraction26 do not guarantee a connected component. This research modifies and aug-1081

ments the skeletonization approach of Hassouna et al.27 for generating a topologically consistent1082

and connected vertebral 3D medial axis from a binary image, which is subsequently converted into1083

a triangulated and a simplex template mesh.1084
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Hassouna et al. propose the minimum cost path between two medial points as1085

F (x) = eαλ(x), whereα ≥ 0 (11)

1086

λ(x) = λ1(x) + λ2(x) + λ3(x) (12)

1087

λ(x) = D(x) + ω
( 1.0

1.0 + || 5 ||
+ | 5 .5D(x)|

)
(13)

where λ(x) is a medial descriptor function controlling the propagation front of the fast marching1088

method, ω is a weight < 1, and 5 is the gradient operator. λ1(x) is the distance map of the1089

3D image, describing the minimum distance from the structure boundary and provides a smooth1090

transition during fast marching. λ2(x) is the medial descriptor function describing the signed,1091

inverted gradient of the distance map. The gradient of the distance map is zero at local maximum,1092

which is the maximum distance from the image boundary describing the medial points of the1093

image. λ2(x) function is successfully able to identify strong medial points with small gradient1094

values. λ3(x) is the outward flux medial descriptor function defining the gradient of the distance1095

field. The centerline points of the image are the local image maximum, located inwards towards1096

the center of the image. This image traversal can be described as a fluid mechanics problem, with1097

medial axis points having strong negative divergence, and boundary points having strong positive1098

divergence. This research employs Siddiqi et al.49’s modification of divergence theorem as an1099

outward flux from the image boundary to a medial point in the image volume center, making 51100

differentiable.1101

Using a vertebral image (Figure 23(a)) as input, the distance map λ1(x) (Figure 23(b)), the gra-1102

dient of the signedD(x) λ2(x) (Figure 23(c)), and outward flux λ3(x) (Figure 23(d)) are calculated1103

respectively. The image is normalized from 0.0 to 1.0 after every medial descriptor function.1104

Using ω=0.2 in equation B, the resulting, combined medial descriptor λ(x) of the image is1105

depicted in Figure 23(e). This signed distance map is then thresholded (threshold = 60) to extract1106

the medial axis subvolume represented by the maximum intensity values in the image. This sub-1107

volume is smoothed, and a triangulated surface is generated using the Marching Cubes Method, as1108

depicted in Figure 23(f). This method generates a genus 1, toroidal template with smoothed edges1109

and processes to ensure that template can be initialized completely within an arbitrary vertebra1110

image subvolume. A more detailed template representing vertebral transverse processes could not1111

be affinely registered completely within an arbitrary vertebral image volume.1112

The constructed template mesh is initialized within the vertebra MR image volume by placing1113

9 homologous landmark points on the mesh surface as well as the MR image region of interest.1114

These landmarks are placed on the high curvature points of the vertebra, which are the right and1115

left transverse processes, the spinous process, the superior and anterior articular processes, and1116

on the vertebral body itself. The template mesh is placed within the image volume through affine1117

registration, and allowed to deform according to simplex internal and external forces using a multi-1118

resolution scheme. Results of the vertebral segmentation using weak-shape priors are discussed in1119

Section 3.2.1120

While it can be argued that the results are dependent on the accuracy of the identification of1121

these nine landmark points, in practice this potential vulnerability can be addressed a number1122
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Fig 23 Vertebral template construction. (a) Input vertebra image volume: volume-rendering of binarized blob. (b)
Euclidean distance map λ1(x). (c) Normalized gradient of signed distance map λ2(x). (d) Outward Flux λ3(x). (e)
Resulting λ(x). (f) Triangulated medial axis-based template mesh.
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of ways. One approach consists of exploiting surface curvature extrema and determining auto-1123

matically on both the surface and the target image the nine local curvature extrema coinciding1124

with sharply peaked features such as spinous and transverse processes, exploiting a putative affine1125

transformation of the surface model to the target image. In the target image, this would involve1126

determining corner points of anticipated image polarity (peaks comprised of bone pixels of high1127

Hounsfield value pixels in CT surrounded by darker pixels),38 based on a target image processed1128

with a coarse Gaussian filter, or coarse Gaussian-like efficient recursive filter such as pioneered1129

by Deriche.16 Alternately, the surface model can undergo several iterations of global affine trans-1130

form with image forces of the Simplex acting in concert, prior to enabling the Simplex model to1131

deform elastically. The two solutions, automatic curvature extremum detection in the target im-1132

age and global affine transform iteration, can work hand-in-hand to stabilize the transformation.1133

Nonetheless, although we have not pursued a formal analysis of the surface model to landmark1134

point misalignment, as long as our template is designed to be fully contained within the anatom-1135

ical boundary, which is true by design, and we proceed in a coarse-to-fine manner as described,1136

starting from one initial global affine transformation, we obtain stable results in practice.1137

Appendix C: Statistical Shape Model Construction1138

C.1 Alignment1139

A shape is invariant under similarity transformations of rotation, translation and scaling in 2D1140

space. Alignment is the process of calculating the optimal m × m rotation matrix Γ, m × 11141

translation vector T and scale parameter β to align all training shapes within a common coordinate1142

space. Given a shape X in m dimensions (e.g. m = 2) with n points, vectorization of X would be1143

as follows:1144

X = [x1, x2, . . . , xn, y1, y2, . . . , yn]T (14)

The most popular data alignment method is the Procrustes analysis that minimizes the Euclidean1145

mean squared distance between shapes, known as the Procrustes shape distance. The full Pro-1146

crustes ordinary sum of squares (OSS) distance between two shapes is calculated as1147

OSS(X1, X2) = ‖X2 − βX1Γ− 1kT
T‖2 (15)

Procrustes alignment is the minimization of OSS(X1, X2) by removing scaling, translation and1148

rotation effects in the training dataset. To remove the scale β between shapes, the centroid size for1149

each shape is calculated as1150

S(X) =
n∑
i=1

√
(xi − x̄)2 + (yi − ȳ)2 (16)

where1151

(x̄, ȳ) =

(
1

n

n∑
i=1

xi,
1

n

n∑
i=1

yi

)
(17)

Translation between two shapes can be removed by translating the centroid of one shape onto1152

another. The m×m rotation matrix Γ can be represented as1153

Γ = UV T (18)
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U and V orthogonal matrices can be obtained by Singular Value Decomposition (SVD) 2 of the1154

matrix1155

XT
2 X1 = ‖X1‖‖X2‖V ΛUT (19)

where U and V are rotation matrices that superimpose X2 onto X1 and Λ is a diagonal matrix of1156

positive values capturing the correlation between the two shapes. Rotation matrix Γ can then be1157

decomposed as1158

Γ = UV T =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(20)

The optimal scaling factor β can be calculated as1159

rβ =
trace(XT

1 X2Γ)

trace(XT
1 X1)

(21)

Generalized Procrustes analysis (GPA), developed by Gower23 iteratively minimizes the gen-1160

eralized sum of squared norms of pairwise differences for two or more training shapes represented1161

by the equation1162

G(Xi, X2, · · · , Xn) =
1

n

n∑
i=1

n∑
j=i+1

‖Xi −Xj‖2 (22)

where the average centroid size of all shapes is scaled to 1. Each shape Xi has the Procrustes1163

coordinates1164

XP
i = β̂iXiΓ̂i + 1kT̂i

T
, i = 1, · · · , n (23)

represented by the minimizing parameters Γ̂i as the rotation matrix, β̂i as the scaling factor and1165

T̂i
T

as the translation vector for shape i calculated using the method described above. Thus, the1166

generalized mean shape can be calculated as1167

X̄ =
1

n

n∑
i=1

XP
i (24)

The GPA algorithm is as follows:1168

1. Set an arbitrary shape within a population of shapes as the mean shape X̄ .1169

2. Calculate the Procrustes coordinates XP
i , where i = 1 · · ·n − 1 for remaining shapes w.r.t1170

X̄ .1171

3. Set X̄ as the Procrustes mean shape according to equation 24.1172

4. Repeat steps 2 and 3 until sum of squares according to equation 22 cannot be further mini-1173

mized.1174

2SVD of V ΛUT where columns of V are eigenvectors of AAT , columns of U are eigenvectors of ATA and Λ is
the diagonal matrix of positive elements corresponding to the eigenvalues of covariance between shapes X1 and X2.
A is an m × n matrix of R or complex numbers. SVD identifies and orders the dimensions along which the shape
points have maximum variability.
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C.2 Shape Decomposition1175

Variations of shape within a training population can be modeled using Principal Component Anal-1176

ysis (PCA), also known as Karhunen-Lóeve expansion. Assuming that the training dataset covers1177

a set of closely related shapes, correlation between shape points exists that can be represented by1178

a multivariate Gaussian distribution. As a very large number of shape points need to be analyzed1179

for statistical analysis, PCA is utilized to extract the principal modes, which represent data cor-1180

relation along principal directions within the dataset, to reduce problem dimensionality. PCA is1181

the process of determining the set of modes that captures the expected geometric variability within1182

the training set. A shape can be mapped onto another shape in a correlated dataset by a linear1183

transformation. Given N number of shapes represented by shape X according to equation 14 with1184

mean represented by the equation 17, a linear transformation Y of X can be represented as1185

Y = MX (25)

where M is an orthogonal transformation matrix and the shape covariance matrix of X can be1186

represented as1187

ΣX =
1

N

N∑
i=1

(Xi − X̄)(Xi − X̄)
T (26)

Therefore, the mean of Y can be represented as1188

Ȳ =
1

N

N∑
i=1

(Yi) =
1

N

N∑
i=1

MXi = MX̄ (27)

and the covariance of Y can be calculated as1189

ΣY =
1

N

N∑
i=1

(Yi − Ȳ )(Yi − Ȳ )
T

= MΣYM
T (28)

substituting transformation matrix M with eigenvectors Φ and rearranging1190

MTΣY = ΣXM
T (29)

1191

ΣXΦ = ΦΣy (30)

Therefore, since the covariance matrix of the training shapes ΣX is symmetric, if Φ represents the1192

eigenvectors of ΣX , then covariance of the transformed shapes ΣY represents the diagonal matrix1193

of eigenvalues λi belonging to the dataset.1194

Each eigenvector φi represents the modes of variation within the training dataset, and the cor-1195

responding eigenvalue λi captures the amplitude of variation along the corresponding eigenvector1196

direction, with the largest λ corresponding to the largest deformation in corresponding modes. The1197

eigenvalues of Φ are sorted in descending order such that λi > λi+1 and the largest t eigenvalues1198

and corresponding eigenvectors are kept so that1199

Φt = (φ1, φ2 . . . φt) (31)
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A sample shape X can be approximated as a linear combination of the mean shape and first t1200

modes of variation represented by1201

X = X̄ + btΦt (32)

where bt is a t-dimensional vector representing modes of variation. Assuming the mean shape x̄ is1202

located at the origin, 3 standard deviation of λi usually captures expected shape variability with a1203

99.7% confidence interval.1204

The statistical-shape energy functional can be defined as1205

Eshape(S) =
1

2
(S − S̄)TΣ−1⊥ (S − S̄) (33)

where S is the Simplex model, S̄ is the mean Simplex shape and Σ−1⊥ is the inverse of the regular-1206

ized covariance matrix.1207

Statistical shape modeling determines a mean shape and allowed variability within the model1208

as well as construction of new shapes through a combination of the principal modes of variation1209

within the expected shape. This SSM property can be combined with deformable models to con-1210

strain a deformation towards an expected shape during the segmentation process in presence of1211

image noise or artifacts that otherwise hinder object boundary detection. Tejos et al.54 have com-1212

bined statistical knowledge with Simplex meshes and snakes evolution to segment knee structures.1213

Schmid et al.48 augment Simplex meshes with shape and appearance knowledge for segmentation1214

of MRI musculoskeletal structures with limited field of view or presence of image artifacts. Al-1215

though shape models can provide robust segmentation with presence of image artifacts and low1216

contrast, their performance is dependent on initialization. Moreover, they only allow deformation1217

already captured within the modes of variation during model construction and do not consider any1218

image information outside the scope of the estimated model shape during deformation.1219
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