
Benchmarking Deep Classifiers on Mobile Devices
for Vision-based Transportation Recognition

Sebastien Richoz
sr569@sussex.ac.uk
University of Sussex

Brighton, United Kingdom

Andres Perez-Uribe
Andres.Perez-uribe@heig-vd.ch

Uni. of Applied Sciences Western Switzerland (HEIG-VD)
Yverdon, Switzerland

Philip Birch
p.m.birch@sussex.ac.uk
University of Sussex

Brighton, United Kingdom

Daniel Roggen
daniel.roggen@ieee.org
University of Sussex

Brighton, United Kingdom

ABSTRACT
Vision-based human activity recognition can provide rich
contextual information but has traditionally been compu-
tationally prohibitive. We present a characterisation of five
convolutional neural networks (DenseNet169, MobileNet,
ResNet50, VGG16, VGG19) implemented with TensorFlow
Lite running on three state of the art Android mobile phones.
The networks have been trained to recognise 8 modes of
transportation from camera images using the SHL Locomo-
tion and Transportation dataset. We analyse the effect of
thread count and back-ends services (CPU, GPU, Android
Neural Network API) to classify the images provided by the
rear camera of the phones. We report processing time and
classification accuracy.

CCS CONCEPTS
• Computing methodologies → Activity recognition
and understanding; • Theory of computation → Dis-
crete optimization; • Software and its engineering→ De-
signing software.

KEYWORDS
Human activity recognition; embedded classifier; embedded
convolutional neural network; deep learning; smartphone
characterization.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
UbiComp/ISWC ’19 Adjunct, September 9–13, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6869-8/19/09. . . $15.00
https://doi.org/10.1145/3341162.3344849

ACM Reference Format:
Sebastien Richoz, Andres Perez-Uribe, Philip Birch, and Daniel
Roggen. 2019. Benchmarking Deep Classifiers onMobile Devices for
Vision-based Transportation Recognition. In Adjunct Proceedings
of the 2019 ACM International Joint Conference on Pervasive and
Ubiquitous Computing and the 2019 International Symposium on
Wearable Computers (UbiComp/ISWC ’19 Adjunct), September 9–13,
2019, London, United Kingdom. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3341162.3344849

1 INTRODUCTION
The mode of transportation and locomotion of users - such
as whether a user is still, walking, running, cycling, driving
a car, taking a bus, a train or a subway - is an important in-
formation to provide contextual services on mobile devices.
This knowledge could assist context-aware applications such
as health monitoring, parking spot detection or content de-
livery optimization.
A user often carries a wearable device (e.g smartphone,

smartwatch) during travel, which is embedded with multi-
modal sensors including motion sensors, GPS (global posi-
tioning system), microphone and camera. While most work
on locomotion and transportation recognition has used mo-
tion sensors [1, 2, 8–12, 14] or sound [4, 5, 13], our recent
work has shown that vision is also an important modality
to recognise modes of locomotion and transportation [6].
We showed that 8 activities (Still, Walk, Run, Bike, Car, Bus,
Train, Subway) can be recognised with an F1 score of 82.1%
for the best classifier.

Vision becomes particularly interesting as embedding cam-
era is gaining traction: faster and smaller processing units
and improved hardware implementations have made this
modality available in much more devices including smart
glasses, smartwatches and action cameras. Due to privacy
issues and power consumption, however, processing has ide-
ally to be done locally.
This paper provides a benchmark of deep learning algo-

rithms for vision-based locomotion and transportation mode

803

https://doi.org/10.1145/3341162.3344849
https://doi.org/10.1145/3341162.3344849

UbiComp/ISWC ’19 Adjunct, September 9–13, 2019, London, United Kingdom Richoz et al.

recognition on smartphone devices. Our contributions are
the following:

• We introduce the large scale Sussex-Huawei Locomotion-
Transportation (SHL) dataset, which is used to train
machine learning models.

• We summarize five classifiers - DenseNet169,MobileNet,
ResNet50, VGG16, VGG19 - and their characteristics,
which we identified from our previous work and which
we have trained on the SHL dataset.

• We present an Android mobile application based on
Tensorflow Lite framework that embeds these classi-
fiers and which is wrapped by our performance evalu-
ation tool.

• We benchmark the system on 3 phones: Huawei Mate
9, OnePlus One, Samsung Galaxy S9. We analyse the
computation time in function of the thread count (from
1 to 8) and computing back-end (CPU, GPU, NNAPI).

• Wediscuss the impact of classifiers size from the bench-
mark results and the feasibility of deploying such deep
learning architectures on constraint mobile environ-
ments.

2 DATASET
The Sussex-Huawei Locomotion-Transportation (SHL) dataset
is one of the biggest multimodal dataset for transaportation
and locomotion mode recognition [3]. It was recorded over
7 months by 3 users and includes 8 different transportation
modes: Still, Walk, Run, Bike, Car, Bus, Train and Subway.
As a result, the dataset contains 16 sensors modalities in-
cluding motion, GPS (global positioning system), sound and
image. The images were recorded with a body-worn camera
mounted on the chest and facing forward. Fig. 1 shows a
sample of the images available in SHL dataset, capturing one
image every 30 second. In total, 14600 images out of 86075
were used.

3 CLASSIFIERS
In our previous work [6], we selected five convolutional neu-
ral networks as deep learning classifiers with a variety of
architecture, size and number of parameters, which were
pre-trained on ImageNet [7]. Fig. 2 illustrates the general-
ized pipeline for the five classifiers, as each architecture can
be expressed in term of blocks, where each block is made of
convolutional, max-pooling and dropout layers. We modi-
fied the original architectures by replacing their final output
layers with one global average pooling (GAP) layer to reduce
the number of parameters, one fully connected layer of 512
neurons (FC1) and one fully connected layer of 8 neurons
with softmax activation (FC2) to predict the eight transporta-
tion modes. Then, we optimized them for the SHL dataset

Figure 1: SHL images for each transportation mode.

by applying transfer learning on all or part of their archi-
tecture. The original input image of size 1024x576 pixels is
preprocessed into a 224x224 pixels square image and fed to
the classifiers which infer specific features of the image to
recognise the transportation mode. More processing details
can be found in [6].

Mobile implementation
In order to implement the classifiers in the Android applica-
tion presented in Section Mobile Application, each classifier
must be converted in the appropriate format. The classifiers
stored as a Keras HDF5 model are converted with the Ten-
sorFlow Lite Converter tool into an optimized ‘FlatBuffer’
format, so that they can be interpreted by the TensorFlow
Lite framework. ‘FlatBuffer’ is an efficient serialization li-
brary originally created by Google for performance-critical
applications like games. After conversion, the classifiers are
stored as ‘.tflite’ file. Table 1 describes the characteristics of
the classifiers and compares the sizes between a HDF5 file
and an optimized FlatBuffered file.

4 MOBILE APPLICATION
We sought to characterize the classifiers on a constrained
yet realistic environment. Smartphones provide powerful
computational resources and enough memory storage to em-
bed the classifiers in. We developed an Android application

804

Benchmarking Deep Classifiers on Mobile Devices... UbiComp/ISWC ’19 Adjunct, September 9–13, 2019, London, United Kingdom

Table 1: Characteristics of the CNNs. HDF5 and FlattBuffer are encoding libraries. The values within these columns refer to
the size of the file encoded with. A HDF5 file is converted into a FlatBuffer with the TensorFlow Lite Converter tool. Depth
refers to the maximum depth of the classifiers calculated as the maximum number of kernels for all convolutional layers.
CPU, NNAPI and GPU are the median classification time recorded across the 3 phones with 8 threads.

Classifier SHL F1-score [6] HDF5 FlatBuff #Param. Depth Layers Blocks CPU NNAPI GPU

DenseNet169 76.2 ± 0.2 % 67 MB 53 MB 14.3 k 169 595 5 490 ms 1695 ms 221 ms
MobileNet 77.0 ± 0.4 % 27 MB 15 MB 4.3 k 88 87 13 71 ms 172 ms 72 ms
ResNet50 79.1 ± 0.5 % 172 MB 98 MB 25.6 k 152 168 16 319 ms 145 ms 349 ms
VGG16 81.4 ± 0.9 % 120 MB 60 MB 138.4 k 23 19 5 1468 ms 2481 ms 1840 ms
VGG19 82.1 ± 0.2 % 162 MB 81 MB 143.7 k 26 22 5 1524 ms 3135 ms 2528 ms

Input image
1024 x 576

Image pre-
processed
224 x 224

Original pipeline of the model
(e.g. VGG19 or pre-trained on ImageNet)

B1 Bn

GAP

FC1
FC2

512

8

Added layers

Re
Lu

So
ftm

ax

B2

L1,1

L2,1

Lj,1

L1,2

L2,2

Lj,2

L1,n

L2,n

Lj,n

Figure 2: Generalized Pipeline. Each classifier has B blocks
which contains j layers Lj,n according their architecture (see
Tab. 1)

based on Tensorflow Lite 1 with tensorflow-lite version ‘0.0.0-
gpu-experimental’ to provide GPU support and the Android
Neural Network API (NNAPI) on top of the CPU.
Fig. 3 shows a screenshot of the application which let us

select the number of threads, the classifier and the backend.
The classifier continuously classify the feed of images pro-
vided by the rear camera. For each classification, the ranking
of the 8 activities is displayed with the corresponding pre-
diction and the time taken to perform the classification. The
application was developed on Android Studio 3.4.1 in Kotlin
1.3.40 and targets Android API levels from 21 (Lollipop, 5.0)
to 28 (Pie, 9.0). It is publicly available on the Github reposi-
tory of the Sensor Technology Research Centre 2.

The TensorFlow Lite framework provides delegates, such
as the GPU, which allow running all or part of the classifier
on dedicated hardware of the mobile device. To reduce the
workload on the CPU, the framework will delegate simple
yet repetitive calculations, such as 2D convolutions, to the
GPU. As a result, a gain of computation time is expected.
On our application, if ‘CPU’ device is selected, then all the
classification will run on the CPU only.

The Android Neural Network API (NNAPI) is an Android
C API available on all devices running Android 8.1 (API level
27) or higher. It is designed for running computationally
1https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/
java/demo
2https://github.com/sussexwearlab/SHLVisionApp

intensive machine learning classifiers on mobile devices 3.
Based on the hardware capabilities of the device, it will effi-
ciently distribute the workload of classification across avail-
able hardware such as neural networks hardware, GPUs, and
digital signal processors (DSPs).

Figure 3: Mobile Application. Legend: 1 = Image to classify, 2
= Predicted classes with score and duration of classification,
3 = Number of threads, 4 = Classifier, 5 = Device.

Experiments
To characterize the classifiers, we observe the effect of thread
count from 1 to 8 and backend variation between CPU,
NNAPI and GPU across three smartphones described in Ta-
ble 2. The Android application is installed on each phones
and they are set on airplane mode for performance purposes.
The time to classify one image is recorded and saved in a
file. The battery consumption is recorded but not used as
the phones were charging during the whole experiment to
avoid running out of power. Each classifier performs the
3https://developer.android.com/ndk/guides/neuralnetworks

805

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/java/demo
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/java/demo
https://developer.android.com/ndk/guides/neuralnetworks

UbiComp/ISWC ’19 Adjunct, September 9–13, 2019, London, United Kingdom Richoz et al.

classification task over a minimum of 60 seconds for a given
thread count and device. We ensured to classify different
images by facing the camera of the phones towards dynamic
videos containing a variety of transportation modes.

5 RESULTS AND DISCUSSION
Fig. 4 shows the result of the experiment. The median classi-
fication times for each classifier and device are indicated in
Table 1. We report the main results as follows:

• Globally, MobileNet is the fastest classifier and VGGs
are the worst, despite they achieve the best classifica-
tion on SHL.

• The GPU of the Huawei Mate 9 reduces drastically
the classification time and outperforms the CPU and
NNAPI.

• The CPU of the Samsung Galaxy S9 is as fast as the
GPU of the Huawei Mate 9 (for this specific task).

• Increasing thread count from 1 to 4 reduces the clas-
sification time for the Huawei Mate 9 and Samsung
Galaxy S9 for all classifiers except DenseNet169 and
MobileNet. The OnePlus One does not perform bet-
ter with more threads. The computational time stays
the same or increases with thread count after 5 threads,
possibly because all phones have only 4 high-performance
cores (S9 andMate have 4 high-performance and 4 low-
powered).

• The NNAPI achieves the same computation time as
the CPU for the Huawei and OnePlus. For the Sam-
sung, NNAPI is faster than the CPU only for ResNet50.
For the remaining classifiers, the CPU is faster than
NNAPI, probably because of the overhead generated
from the split of the computational workload across
the processing units.

We expected faster computation time with the NNAPI but
overheads might have been introduced due to the distribu-
tion of the computational workload which might penalize
lightweight models like MobileNet. NNAPI is probably not
ready for prime time, latest mobile devices are just embed-
ding the hardware dedicated to neural networks. Overall,
we noticed high battery decrease even though the phones
were in airplane mode and all other applications were closed.
Most of concurrent operations were then reduced but some
background tasks might still perform.

6 CONCLUSION
In this work, we compared the classification time of five con-
volutional neural networks across three smartphones and
noticed that MobileNet is the fastest on mobile devices with
an average classification time of 71 ms using the CPU and
72 ms with the GPU for an input image size of 1080x1920
pixels. The NNAPI achieved the second fastest classification

time on ResNet50. The GPU reduces significantly the clas-
sification time of all classifiers on the Huawei Mate 9. The
experimental GPU version of TensorFlow Lite caused few
crashes with VGG networks on the Samsung Galaxy S9 and
on the OnePlus One.

In the future, we might consider different optimization for
the GPU by changing the floating precision from float-32 to
float-16 or by using 8-bit quantization to approximate the
float value on a 8-bit integer. Therefore, we might reduce the
computational time as more operations could be done at a
time. Also, most of the new hardware implemented in recent
mobile devices integrates SIMD instructions which allows to
process multiple mathematical operations on a single instruc-
tion, which could as well reduce the classification time but
might also reduce the accuracy of the classifier. Comparing
different versions of Android on a single phone will provide
indication on the software-side impact.

REFERENCES
[1] S. Fang, Y. Fei, Z. Xu, and Y. Tsao. 2017. IEEE Sensors Journal 17, 18.

6111–6118.
[2] T. Feng and H.J.P. Timmermans. 2013. Transportation Research Part C:

Emerging Technologies 37. 118 – 130.
[3] H. Gjoreski, M. Ciliberto, L. Wang, F. J. Ordonez Morales, S. Mekki, S.

Valentin, and D. Roggen. 2018. IEEE Access 6. 42592–42604.
[4] S. Lee, J. Lee, and K. Lee. 2017. VehicleSense: A reliable sound-based

transportation mode recognition system for smartphones. In 2017
IEEE 18th International Symposium on A World of Wireless, Mobile and
Multimedia Networks (WoWMoM). 1–9.

[5] H. Lu, J. Yang, Z. Liu, N.D Lane, T. Choudhury, and A.T Campbell. 2010.
The Jigsaw continuous sensing engine for mobile phone applications.
In Proceedings of the 8th ACM conference on embedded networked sensor
systems. ACM, 71–84.

[6] S. Richoz, M. Ciliberto, L. Wang, P. Birch, H. Gjoreski, A. Perez-Uribe,
and D. Roggen. 2019. Human and machine recognition of transporta-
tion modes from body-worn camera images.

[7] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. 2015.
International Journal of Computer Vision (IJCV) 115, 3. 211–252.

[8] P. Nurmi S. Hemminki and S. Tarkoma. 2013. Accelerometer-based
Transportation Mode Detection on Smartphones. In Proceedings of the
11th ACM Conference on Embedded Networked Sensor Systems (SenSys
’13). ACM, New York, NY, USA, Article 13, 14 pages.

[9] P. Siirtola and J. Röning. 2012. Int. J. of Interactive Multimedia and
Artificial Intelligence 1. 38–45.

[10] X. Su, H. Caceres, H. Tong, and Q. He. 2016. IEEE Transactions on
Intelligent Transportation Systems 17, 10. 2921–2934.

[11] L. Wang, H. Gjoreski, M. Ciliberto, S. Mekki, S. Valentin, and D. Roggen.
2018. Benchmarking the SHL Recognition Challenge with Classical
and Deep-Learning Pipelines (UbiComp ’18). ACM, New York, NY, USA,
1626–1635.

[12] L. Wang, H. Gjoreskia, K. Murao, T. Okita, and D. Roggen. 2018. Sum-
mary of the Sussex-Huawei Locomotion-Transportation Recognition
Challenge (UbiComp ’18). ACM, New York, NY, USA, 1521–1530.

[13] L. Wang and D. Roggen. 2019. Sound-based Transportation Mode
Recognition with Smartphones. 930–934.

[14] H. Xia, Y. Qiao, J. Jian, and Y. Chang. 2014. Sensors (Basel, Switzerland)
14. 20843–20865.

806

Benchmarking Deep Classifiers on Mobile Devices... UbiComp/ISWC ’19 Adjunct, September 9–13, 2019, London, United Kingdom

Table 2: Characteristics of the smartphones.

Phone Model Android CPU Number of cores RAM GPU

Huawei Mate 9 MHA-L29 7.0 (24) AArch64 2.4 GHz 8 (4+4) 4 GB ARM Mali-G71
OnePlus One A0001 6.0.1 (23) ARMv7 2.4 GHz 4 3 GB Qualcomm Adreno (TM) 330
Samsung Galaxy S9 SM-G960F 9.0 (28) ARMv8 2.7 GHz 8 (4+4) 4 GB ARM Mali-G72

Figure 4: Results of the experiment. Some records are missing because the application crashed for these specific parameters.

807

	Abstract
	1 Introduction
	2 Dataset
	3 Classifiers
	Mobile implementation

	4 Mobile Application
	Experiments

	5 Results and Discussion
	6 Conclusion
	References

