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Abstract—The Pair-HMM forward-algorithm is an essential
algorithm found in many genomic related analyses. The high
number of floating point operations in the algorithm makes it
one of the main contributors to the compute time of analysis
pipelines. To speed-up computations we propose an FPGA based
hardware accelerator for the Amazon AWS F1 Cloud platform.
The accelerator is open source and has been tested within
the popular Genomic Analysis Toolkit (GATK) pipeline. The
accelerator achieved up to 15× speed-up against the software
implementation when used in-pipeline. The accelerator has also
been tested in the experimental Spark (distributed) version of the
GATK HaplotypeCaller tool. An in-depth analysis of the compute
time contributions allowed to point out the main bottlenecks for
accelerators in the GATK pipeline, resulting in a hybrid CPU-
FPGA solution to best exploit both resources.

I. INTRODUCTION

The human genome project was completed in 2003, achiev-
ing its goal to cover over 90% of the human genome with more
than 99.99% accuracy. This project came at a cost of about
$2.7 billion in 1991 dollars [1]. Sequencing has since seen an
extreme decrease in cost, decreasing faster than Moore’s Law
in the last ten years [2] [3]. This decrease in cost has led to the
generation of immense amounts of data. Sequencing data in
itself is not the end, the real intention is drawing conclusions
and answering relevant questions. To this end the data requires
to be processed and the associated costs may now exceed the
costs of sequencing itself [4]. In order to keep pace with the
data generation computing must also scale [5].

To answer ever more complex questions faster requires ever
better computational resources. Researchers in bioinformatics
have traditionally used computers, clusters or even supercom-
puters. The trend of complementing these computing resources
with graphic processing units (GPUs), Field Programmable
Gate Arrays (FPGAs), and other accelerators (e.g., tensor
processing units or manycore processors) allowed to decrease
processing time and achieve better performance per watt.
FPGAs have been shown to be effective candidates to address
these factors [6]. This is the case not only in genomics but
in many other big data related fields. Microsoft has integrated
FPGAs in its data-centers to reduce the power consumption of
their search engine Bing, as well as to provide new services
in their cloud platform [7]. Amazon, IBM, and Alibaba have
been integrating FPGAs in their cloud services as well. FPGAs

allowed Edico Genome, now part of Illumina Inc., to achieve
the fastest-ever analysis of a thousand genomes [8].

Integration of FPGAs in cloud computing allows researchers
to develop new solutions without having to buy exotic hard-
ware and setting up a complex compute cluster. The cloud
framework also provides a normalized environment to share
solutions with other researchers. The problem with FPGA
accelerators in the past was that they were developed for a
very specific platform and would be difficult to port to other
systems or impossible in cases were the source code is not
available. This brings the problem that researchers cannot use
or even replicate the results of others unless they have access to
the code and acquire specific, often very expensive, hardware.
The cloud computing framework alleviates this problem by
giving access to the same FPGA platform to anyone and makes
it possible to share a design with other researchers either as
an encrypted binary or as source code and will eventually lead
to better research. In the same way it has been experienced in
software development with the open-source movement.

It is with this in mind that we present an open-source FPGA
accelerator for the Pair-HMM forward algorithm (FA) with
cloud integration on the Amazon EC2 platform for one of the
most popular genomic analysis pipelines, GATK [9].

A. Background

One of the main processing pipelines in genomic data
analysis is germline variant discovery and analysis. Germline
variants are used in disease gene discovery research as well
as clinical genetic testing. The three main steps of the variant
discovery pipeline are : pre-processing, variant discovery itself,
and callset refinement. Pre-processing consists mainly of map-
ping the raw unmapped sequencing reads to a reference. This
task is common in many analysis pipelines and can be done
once and serve as a basis for different subsequent analyses.
The second step, variant discovery, is the heart of the pipeline
and mainly consists of calling the variants and will be detailed
below. The final step, callset refinement, is mainly filtering and
annotating the variants.

The variant discovery is often the most time consuming
task of this pipeline (over 50% of total time) [10]. Especially
if we consider the first step done since this is common to
other analyses. To discover variants with GATK a tool called
the HaplotypeCaller (HC) is used. The HC is capable of© 2019 IEEE. Personal use of this material is permitted. Permission from 
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calling single nucleotide polymorhpisms (SNPs) and indels
simultaneously. It does so by reconstructing active regions, i.e.,
regions with signs of variations, via local de-novo assembly.
This allows the HC to be more accurate than other solutions.
The reconstructed regions, assembled haplotypes (haploid
genotypes), are then given likelihoods given the sequencing
reads data. This is done by using the Pair-HMM forward
algorithm. Finally for each potentially variant site, the HC
assigns the most likely genotype to each sample [11].

B. Pair-HMM forward algorithm
Given a Pair-HMM model of two sequences, the forward

algorithm allows to compute the probability that a given
pair of sequences are related by any alignment [12]. This
makes it possible to estimate the likelihoods of the assembled
potential haplotypes given the sequencing reads. To compute
the probabilities of the alignments an affine gap model is used
with the finite state machine of Fig. 1 A.

Fig. 1. A) Finite state machine model for affine gap alignment. M : bases
match, X : Insertion of a base, Y : deletion of a base. B) Probability matrix
for the Pair-HMM FA with dependencies shown.

The probabilities for the finite state machine model for
affine gap alignment, δ, ι, ε, are given by the read deletion,
insertion and gap continuation quality scores (d, i, g) in phred
scale on a base per base basis, with the following equations :

δ = 10−Qd/10, ι = 10−Qi/10, ε = 10−Qg/10 (1)

The equations characterizing the Pair-HMM forward algo-
rithm corresponding to the matrix of Fig. 1 B are :

Initial conditions :
M−1,j = 0, X−1,j = 0, Y−1,j = IC,

Mi,−1 = 0, Xj,−1 = 0, Yj,−1 = 0 ∀i, j
M0,0 = 1, X0,0 = 0, Y0,0 = 0

(2)

Recursion :
i = 0, ..., |read| − 1, j = 0, ..., |hap|− 1 except (i = 0, j = 0)

Mi,j = priorj · ((1− (ι+ δ)) ·Mi−1,j−1+

(1− ε) · (Xi−1,j−1 + Yi−1,j−1))

Xi,j = ε ·Xi−1,j + ι ·Mi−1,j

Yi,j = ε · Yi,j−1 + ι ·Mi,j−1

(3)

priorj =

{
1− (10−Qb/10) read and hap bases match
(10−Qb/10)/3 read and hap bases don’t match

Termination :

L = log10(

|hap|−1∑
j=0

M|read|−1,j+X|read|−1,j)−log10(IC) (4)

Where L is the read likelihood for a given haplotype for all
paths ending in the M (match) and I (insertion) states, ignoring
all paths that end in deletions. IC is an initial condition, a
high constant to prevent underflow, e.g., 22010 in the Java
implementation. Qb is the base quality (estimated base call
accuracy) of the given read base in phred scale. The higher
L is for a given read-haplotype pair the more likely the two
sequences are related.

II. STATE OF THE ART

The high cost of the forward algorithm, due to the high
amount of floating point operations, led researchers to develop
accelerated implementations of the algorithm.

A. Software acceleration

The original Java version was compared to a C++ version
of the algorithm in [10] and single instruction multiple data
(SIMD) versions were experimented with. Collaboration be-
tween Intel and the Broad Institute led to the development
of the Intel Genomic Kernel Library (GKL) which contains
accelerated versions of algorithms used in genomics including
the Pair-HMM FA.

1) SIMD implementations: The current SIMD implemen-
tations were developed by Intel and are integrated in GATK
through the GKL. The GKL is open source and can be found
at https://github.com/Intel-HLS/GKL. They provide single and
double precision implementations of the algorithm using AVX
and AVX-512 SIMD instructions.

2) Multi-threaded implementations: Intel also provided a
multi-threaded implementation allowing parallel computation
of the forward algorithm. This version is implemented through
the OpenMP framework and is also available in the GKL.

3) Distributed Version: The GATK developers have been
creating distributed versions of their tools using the Spark
framework. This allows to distribute the computing tasks
on multiple compute nodes, which can be local cores or
a distributed compute cluster. The use of the Map-Reduce
paradigm and distributed datasets makes it possible to scale
the computation over several nodes. The Spark versions of the
tools, e.g., HaplotypeCallerSpark, deliver better performance,
but are still in development and don’t necessarily produce the
same results as the non Spark versions of the tools.

B. Hardware acceleration

Several hardware accelerators have been developed to ac-
celerate the computation of the pair-HMM forward algorithm
on FPGA as well as on GPU. The only hardware accelerator
that is currently integrated in GATK is the FPGA accelerator
by Intel [13]. The FPGA version is not officially supported
(marked as “experimental”) but can be used with either a
Nallatech 385a or Inspur F10A FPGA card [14] (both Intel
Arria 10 GX based) . To the best of our knowledge this is the
only accelerator publicly available. However, no source code
is given. Other FPGA implementations were explored in [15],
[16], [17], [18], [19], and [20]. GPU solutions include [21]
and [22]. Solutions that provide a common benchmark will
serve as references for the results section.



C. Integration discussion

While the software accelerated versions are well integrated
in GATK and already provide a significant speed-up, the hard-
ware accelerators are not. Most have only been benchmarked
outside of the GATK, or any other, pipeline. This is important
because the benchmark will not reflect the real impact of
the accelerator in a typical workflow and may mislead users.
Albeit the speed-up numbers seem impressive (up to 4000×),
typical workflows will not necessarily scale as much. Intel
reported an overall speed-up of the pipeline of 1.2× when
comparing their FPGA solution to the AVX implementation
[13]. The fastest GPU solution also achieved an in-pipeline
speed-up of 1.2× over the AVX solution [22].

The limiting factor for the speed-up of the FA is how
GATK implements the pipeline. Computations for the FA are
generated sequentially one region at a time (batch). A batch is
comprised of the possible haplotypes and the sequencing reads
(amount relative to coverage). The only parallelism possible
given this constraint is at the batch level. The small size of
a batch makes it hard to fully exploit the accelerator given
the overhead costs of transferring data to the accelerator. This
is further explored in section V. When software architecture
is not created with accelerators in mind the addition of an
accelerator can result in loss of performance or mitigated
results. This was explored in [23] were FPGA accelerators that
could achieve a speed-up of 120× were actually slowing down
the pipeline by three orders of magnitude when integrated.
Finally once the integration was finely tuned and optimized
speed-ups of 2.6x were achieved. This gives us a warning that
even if an accelerator is extremely fast it may under-perform
in a real software unless integration is done carefully.

III. CONTRIBUTIONS

The contributions of this work are the following :
1) An open-source hardware accelerator for the Pair-HMM FA
of the GATK HaplotypeCaller tool. 2) Integration within the
GATK pipeline without modification to GATK itself. 3) Sup-
port for cloud based FPGA as a Service (FaaS) in the Amazon
compute cloud. 4) The possibility to configure the parallelism
levels of the accelerator with multiple levels of granularity.
5) Support for both the sequential and distributed (Spark)
versions of the HaplotypeCaller. 6) “in-pipeline” benchmarks
followed by a discussion and ideas for future integration of
hardware accelerators in genomic pipelines.

IV. IMPLEMENTATION

The FPGA bitstreams, source code (SystemVerilog), and
documentation can be found in the following git repository :

https://github.com/rick-heig/PHMM-F1

A. Hardware accelerator overview

A hierarchic diagram of the accelerator can be seen in
Fig. 2. The PC will transfer read and haplotype data to the
DDR4 through DMA over PCIe. The PC will also give job
instructions to the FPGA over a 32-bit AXI bus mapped over
PCIe. The FPGA has access to the DDR4 through a 512-bit

AXI bus in order to retrieve the data for the computations
and will generate an interrupt to notify the PC once all the
computations are done.

Fig. 2. Overview of the FPGA accelerator.

1) Pair-HMM Controller: For a given batch of pair-HMM
computations this module will generate jobs for the work-
groups to compute. The jobs consist of meta-data comprised
of an ID, the read and haplotype lengths as well as their
position in the DDR4 memory, and the initial conditions for
the computation. The jobs go in a job queue to be processed
by workgroups.

2) Workgroups: The workgroups are the entities that will
take jobs (PHMM FA computations) and compute the results.
The number of workgroups is generic and can be parametrized
at the FPGA image generation giving us a first level of
granularity for parallelization.

Workgroups, as can be seen in Fig. 3, consist of several
workers and a controller. The controller has the responsibility
of taking jobs in the queue and assign them to idle workers.
The controller will also get the sequence data (bases and
probability values) from the DDR4 and stream it to the
assigned worker. Once the worker has all the required data
it is started and the controller can assign a job to another
worker. The workers are linked to a compute engine for the
FA floating point operations (cell updates). When a worker
finishes a job the result is written to a “round-robin result
propagator”, which takes the results from the workers and
writes them to the output FIFO. The workgroup has a 512-bit
AXI-Full bus to the DDR4 while the data buses from controller
to workers are 32-bit AXI-Stream.

Fig. 3. Workgroup - Controller and workers with their compute engine

The number of workers in a workgroup is also generic,
giving us a second level of granularity for parallelization.

3) Workers: The workers compute the result of the FA
for a given read-haplotype pair. They do so by computing



insertion, deletion, and match probability scores for all cells of
the read-haplotype pair matrix. The dependencies restrict the
order in which the operations are done. The workers compute
the matrix cell by cell following a “zig-zag” pattern in order
to fulfill the dependencies as can be seen in Fig. 4.

Fig. 4. Computation order of the forward algorithm in worker.

For each cell a compute request is sent down to the compute
engine pipeline. In order to realize this, two “crawler” pro-
cesses were created that travel through the matrix following the
computation order shown above. One crawler is responsible
to issue compute requests checking that the dependencies are
fulfilled (results came back from the compute pipeline). The
other crawler is responsible to get and store the results. Each
crawler advances to the next cell when it has accomplished its
task for their current cell as can be seen in Fig. 5. Once results
have fulfilled their dependencies and are no longer needed they
are discarded, requiring to keep at most one diagonal of results
at any given time.

Fig. 5. Worker inner process generating compute requests.

The crawler processes can execute their task every clock
cycle if the dependencies are met.

4) Compute Engine: The compute engine is responsible for
computing the probabilities of a cell in the forward algorithm,
i.e., compute the values Mi,j , Xi,j , Yi,j in Eq. 3. A compute
request to the compute engine is comprised of all the values
needed to compute Mi,j , Xi,j , Yi,j .

The diagonal dependency computation (upate of Mi,j) is
split between the cell to the top and the current cell in order
to reduce the depth of the compute pipeline, therefore reducing
the latency. Splitting the compute pipeline this way has also
been done in [18] and [20]. The lower the latency of the
pipeline the better the performance as will be explored in the
next subsection. The compute engine is roughly equivalent
to what is referred to as processing engine (PE) in other
implementations, they both compute the Mi,j , Xi,j , Yi,j in Eq.
3 but may differ in implementation.

5) Compute Engine pipeline against parallel Processing
Engines: Several other solutions [15], [17], [18], [20] use
parallel arrays of PEs to compute partial diagonals of the

matrix. While this solution may seem faster, this is not
necessarily the case, and has some other drawbacks as well.
Fig. 6 is used to illustrate this.

Fig. 6. PE array computation of PHMM FA matrix.

With a parallel array of PEs, partial diagonals of length
equal to the number of PEs are computed one after each other.
Each cell on this diagonal is computed in parallel. Fig. 6 shows
some situations with an array of 4 PEs.

Situation 2© is the typical case, 4 cells will be computed and
the PE array will advance to the next 4 cells thereafter. While
these four computations are done in parallel, they require a
number of cycles equal to the pipeline depth (latency) to finish.
The next diagonal cannot be sent down the pipeline before the
dependencies are met. Therefore, the PE pipelines only get one
computation from this matrix and remain empty for the rest of
their depth. This problem is usually solved by sharing the PE
array between multiple instances of the algorithm, typically
as many as the pipeline depth. While this solves the problem
of the pipelines being underutilized, it also requires providing
data from several instances of the algorithm to the PE array,
data consisting of multiple floating point (32-bit) values. This
can lead to difficulties routing the architecture inside an FPGA.

Situations 1©, 3©, 4© show the PE array being underutilized
because of the geometry of the matrix. 1© cannot be avoided
because of the initial dependencies. The first result requires
to be computed in order for the two next computations to
be started, and so on, until the N th diagonal, where N is the
number of PEs in the array. 3© can be avoided with some clever
buffering of results as is done in [18]. 4© can be mitigated,
as is done in [20], by joining matrices that share a common
haplotype, and have the idle PEs overlap over on the next
matrix.

The number of cycles required to calculate a whole matrix
can be computed with Eq. 5. Where #PE is the number of
PEs and N is the PE pipeline depth (latency).

cycles = (|hap|+ 2 · (#PE − 1)) · d|read|/#PEe ·N (5)

Eq. 5 shows us that the number of cycles will be divided
by the number of PEs, but also that the number of cycles
will grow relative to the pipeline’s latency. In contrast, using
a single pipelined compute engine (a single PE) can actually
achieve higher performance while being much simpler to map
to an FPGA. The traversal of the matrix is not done by partial
diagonals of length #PE but full diagonal by full diagonal



as can be seen in Fig. 4. Because there are no dependencies
between elements on the same diagonal, computations can be
issued each clock cycle. The problem of dependencies for
the first diagonals remain, i.e., it is necessary to wait for
the first result to come out of the pipeline before issuing
the two computations of the second diagonal. However once
the diagonal length is greater than the pipeline depth, a
computation can be launched every clock cycle. A graph of
the pipeline usage over time can be seen in Fig. 7. It shows
a pipeline of depth 5 and its usage over time t. 1© For the
first 5 cycles the pipeline has only one computation going
trough it (first diagonal with 1 element). Then when the result
comes out, 2© the second diagonal can be computed and its
two elements can be put into the pipeline one cycle after each
other since they both only depend on the first element. The
pipeline usage (duty cycle) continues to grow until the size of
the diagonal is greater than or equal to the pipeline depth.
At this point the pipeline will provide results every clock
cycle and therefore subsequent computations can be put in
the pipeline every clock cycle. Note that the time where the
pipeline is full ••• is not necessarily a multiple of the pipeline
depth. Fig. 7 also shows that the cost due to latency is constant.

Fig. 7. Compute engine pipeline usage (duty cycle) over time

The total number of cycles required to calculate a matrix
is given by Eq. 6. (Assuming that the length of the sequences
|read| and |hap| ≥ N , where N is the depth of the pipeline).

cycles = |read| · |hap|+ �2 ·
(N − 1) ·N

�2
(6)

The number of cycles is the product of the read and
haplotype lengths plus the cycles spent waiting for the pipeline
in the N − 1 first and last diagonals (white cells in Fig. 7).

While the impact of the pipeline depth (latency) grows with
the length of the sequences in Eq. 5, it is a constant number of
cycles for Eq. 6. This relation remains true even if optimization
to reduce the number of idle PEs are in place. This and the fact
that the PE array is unused by the current matrix for N − 1
cycles (cycles in which the array is possibly used by other
matrices) are the main differences between the two solutions.
Therefore if the latency is bigger than the number of PEs a
parallel solution can actually be counterproductive. Having the
impact of the latency be a constant relative to the matrix size
also makes it less of a problem to use high latency pipelines
and therefore may allow for higher frequencies of operation.
Note : The pipeline depth is typically a dozen cycles or more
(19 in our implementation, but is parameterizable). This is why
it was chosen to use a single compute engine per worker.

6) Write-Back: The write-back module reads results from
the result FIFO and writes them back in the DDR4 memory.
The results are stored in an array of 32-bit single precision
floating point values. The position of the results is given by
an ID. The ID follows the formula readindex ·#haplotypes+
haplotypeindex. This value is the same index than where the
results are stored in software and therefore the results can be
transfered directly by DMA from the DDR4 to the software.

B. Resource utilization

Resource utilization is shown in Table I and shows the
utilization for an accelerator with 8 workgroups of 12 workers.
The first column shows the total usage including the DDR4,
PCIe, and shell logic. The second column shows the acceler-
ator itself. The main limiting resource are block RAMs. The
required quantity of BRAMs could be reduced by encoding
bases with 4 bits instead of 8 and phred quality scores on 6.
Lowering the resource usage would allow more workers but
this does not scale linearly because of shared resources such
as the DDR4 memory (see result sections).

TABLE I
AMAZON F1 - XILINX XCVU9P - RESOURCE UTILIZATION

Resources Full FPGA 8w12w Accelerator 8w12w
LUT 631,232 / 1,181,768 (53.41%) 452,375 (38.25%)
LUTRAM 41,888 / 591,840 (7.08%) 29,946 (5.06%)
FF 939,695 / 2,363,536 (39.76%) 733,782 (31.05%)
BRAM 1,725 / 2,160 (79.86%) 1,526.5 (70.65%)
DSP 2,516 / 6,840 (36.78) 2,513 (36.78%)

C. Software

The FPGA is utilized through a modified version of the
Intel GKL. The GATK pipeline is left untouched but requires
to be recompiled with the new version of the GKL. GATK
was left as-is in order to avoid adding any bugs and introduce
unnecessary complexity or dependencies.

1) Precision: As the computations are done using single
precision floating point values, it is possible for the values
to become too small and the computation lose any meaning.
This is detected in software and a double precision compu-
tation will be launched for the specific read-haplotype pair
that failed. This problem is common to all single precision
implementations and is therefore already taken care of in the
GKL. Note that if for any reason a computation would fail
on the accelerator (e.g., failure to communicate with the card)
the software will run the failed computation with the next best
software solution available.

2) Calling accuracy: The results of the accelerator were
compared to the AVX versions for correctness and will
consequently produce the same results (they both implement
the same algorithm). Therefore the variants called by the
GATK HaplotypeCaller will be the same regardless of the
implementation (AVX, OpenMP, or FPGA).

D. Scalability

Multiple accelerators can be instantiated on a single FPGA
board to be shared between multiple runs of the GATK



pipeline or multiple threads of a Spark run as can be seen
in Fig. 8.

Fig. 8. Multiple accelerators on the same FPGA board.

Sharing accelerators between multiple instances of
GATK was accomplished with system wide POSIX
named semaphores. The semaphores reflect the number
of accelerators available on a system and handle mutual
exclusion. Effectively creating a “shared accelerator pool”.
When a computation of the forward algorithm is launched
it will try to acquire an accelerator from the pool, if an
accelerator is available it will be used, if there are none, the
computation will be done using the next best software method
available (e.g., AVX or OpenMP). This makes for a hybrid
solution that allows better use of the accelerators. It also
allows for integration of FPGA enabled nodes with standard
nodes (without an FPGA) in the same Spark framework. This
solution allows the system to scale seamlessly in distributed
Spark setups composed of heterogeneous compute nodes.

As will be discussed in the results section, it is more inter-
esting to do some computations (small batches) on the CPU
due to the overhead of transferring data to the accelerators. A
hybrid solution (CPU+FPGA) is also more desirable since it
takes advantage of all available resources.

V. RESULTS

A. Benchmarks

1) Datasets: The chosen dataset for the benchmarks comes
from the NA12878 sample of the 17 member CEPH pedigree
1463 from the Illumina Platinum Genomes [24]. The sequenc-
ing data as well as the validated phased variants are publicly
available and therefore make this a perfect benchmarking
dataset. The benchmarks were run on the exome sequencing
data of the first three chromosomes of NA128781.

2) Benchmarks results: Most benchmarks of the existing
accelerators rely on a small dataset that was used in [10] when
evaluating C++ over Java. The so-called “10s” dataset, because
it took ≈10s to run on the Java implementation at that time.
Although the dataset has been widely used for benchmarks it
does not reflect the size of a typical dataset. Another problem
is that every benchmark is done in their own way e.g., in how
data is provided to the accelerator. Some benchmarks are also
only simulated and not run on real hardware. The problem is
that there is no standardized way of running the benchmarks.

1ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/
20101201 cg NA12878/

This is why the benchmarks presented here are done “in-
pipeline” and the reported executions times are those given
by the HaplotypeCaller tool in GATK. The tool provides the
total execution time as well as three internal measures. The
time spent in setup for JNI call (time to call C/C++ from
Java) which is extremely small. The time spent in PairHMM
computeLogLikelihoods() which is the application of the FA
and likelihoods computations, and finally the time spent in
the Smith-Waterman algorithm. Using the time spent in the
PairHMM section for our benchmarks allows for a standard
method of measuring the impact of the accelerator in the
GATK pipeline. (The Spark version only gives total time).

Table II reports the time results from running the Haplo-
typeCaller on the three first chromosomes of NA12878. All
runs were done on an Amazon F1 instance. The sequencing
reads are from the full exome aligned to NCBI36 using BWA.
Instructions for replicating the benchmarks as well as running
extra benchmarks are available at :

https://github.com/rick-heig/PHMM-F1

TABLE II
COMPUTATION TIMES FOR PAIR-HMM AND THE HAPLOTYPECALLER

chr1 chr2 chr3

Java (reference) PHMM : 1,252s 1x
Total : 31.70m 1x

531.2s 1x
17.31m 1x

314.8s 1x
12.02m 1x

AVX PHMM : 432.5s 2.3x
Total : 18.14m 1.8x

184.9s 2.8x
11.77m 1.5x

111.5s 2.8x
8.70m 1.4x

OpenMP 4t PHMM : 121.5s 10.3x
Total : 13.33m 2.4x

54.02s 9.8x
9.77m 1.8x

33.5s 9.4x
7.45m 1.6x

OpenMP 8t PHMM : 101.8s 12.3x
Total : 13.14m 2.4x

48.63s 10.9x
9.91m 1.8x

31.1s 10.1x
7.75m 1.6x

Spark 4t +
OMP 4t

PHMM : Not Available
Total : 6.33m 5.0x

N/A
4.35m 4.0x

N/A
3.63m 3.3x

OpenMP 4t
FPGA 24w

PHMM : 160.8s 7.8x
Total : 13.89m 2.3x

46.33s 11.5x
9.57m 1.8x

23.2s 13.6x
7.31m 1.6x

OpenMP 4t
FPGA 96w

PHMM : 132.8s 9.4x
Total : 13.30m 2.4x

45.0s 11.8x
9.47m 1.8x

21.0s 15x
7.31m 1.6x

Spark 4t +
FPGA 4x24w

PHMM : Not Available
Total : 5.87m 5.4x

N/A
4.08m 4.2x

N/A
3.26m 3.7x

B. In-depth analysis

1) Pair-HMM compute time in the HaplotypeCaller: With
the original Java implementation of the Pair-HMM FA, its
contribution to the total HC compute time was significant. In
our benchmarks it took over 65% for chr1, 50% for chr2, and
43% for chr3. With AVX acceleration this was reduced to 39%,
26%, and 24%. With the OpenMP (4 threads) implementation
it was further reduced to 15%, 9%, and 7%. With our hybrid
FPGA (96w) solution the contributions are 16%, 7%, and 4%.
While this is dataset dependent, the compute time contribution
of the Pair-HMM FA in the HC tool is now less than 20%,
meaning that in order to achieve further speed improvements
of the HC tool it may be better to work on the other parts.
E.g., local de-novo assembly. The contribution of the Smith-
Waterman algorithm in HC however was negligible when it is
AVX accelerated, less than 1% on all runs.

2) DMA Overhead: Benchmarks to compute the DMA
overhead alone were run to show the cost of transferring
data at the batch level by GATK. Since GATK generates a
small batch and waits for the results before issuing another



batch there is no way to cancel the transfer overhead by
grouping all the data in a single transfer without modifying
GATK itself. From Fig. 9 we can see that under 5,000,000 cell
computations the cost of transferring the data to the accelerator
alone is bigger or equal than the cost of computing the result
in software. Therefore it is counterproductive to solely rely
on the accelerator. The solution taken was to precompute the
number of cell computations, which is the sum of the matrix
sizes, and use the accelerator only above a threshold.

Fig. 9. DMA overhead compared to running jobs with OpenMP 4t

While this overhead is specific to this implementation and
the FPGA platform used (Amazon F1), it is probable that
other implementations will suffer similarly. This is especially
problematic for runs that consist of numerous small batches.

3) Compute time relative to number of operations: Fig. 10
shows the compute time of the FA relative to the number
of operations (total cell updates in all matrices of batch). It
also shows the threshold at which the FPGA enabled. The
threshold was set at 10,000,000 operations to avoid the DMA
overhead. While the FPGA solutions can be much faster than
the OpenMP solution the cumulative time is quite similar
because of the job distribution as can be seen in Fig. 11. The
FPGA outperforms the OpenMP implementation on bigger
batches by quite a margin, however the sheer number of small
batches that are not run on the FPGA limits the potential gains.

Fig. 10. Computation time relative to number of cell updates in Batch.
Cumulative (total) time of all the Batches in region 10,000,000 to 10,200,000
on chromosome 20 of NA12878. And asymptotic relative speed-ups. Lines
are the least square regressions given the data points.

4) Comparison with other solutions: The common bench-
mark to most accelerators is the 10s dataset. It is used to
compute the number of giga cell updates per second (GCUPS)
capabilities of the solution. This measure is equal to the
number of operations required to compute the Pair-HMM
FA over the whole dataset divided by the runtime. Table III

Fig. 11. Cumulative computation time of Batches binned by number of
cell updates (ops) in region 10,000,000 to 10,200,000 on chromosome 20
of NA12878. And number of batches in bin ×.

reports the different GCUPS values. Our computation kernel
achieves close to 24 GCUPS, 96 compute engines running at
250 MHz, the full system however performs around 7 GCUPS
on this dataset due to the data transfer overhead. The GCUPS
performance is dependent on the dataset, this relation has been
studied in [20]. Results from [20] were used for the Intel values
since Intel changed their dataset in [13]. Finally, only [13]
and [22] gave overall “in-pipeline” measures which both gave
1.2× improvements on the execution time compared to the
AVX solution. Our solution achieved a similar overall speed-
up of 1.3× on chr1, and 1.2× on both chr2 and chr3.

TABLE III
GCUPS PERFORMANCE COMPARISON WITH OTHER ACCELERATORS

Technology Hardware #PE GCUPS
Java [10] CPU - 0.0058
C++ [10] CPU - 0.049
Intel AVX (1 core) [13] [20] Intel Xeon - 0.45
Nvidia GPU [10] Nvidia K40 - 0.89
Intel AVX 24 core [13] [20] Intel Xeon - 4.16
Nvidia GPU [22] Nvidia K40 - 4.87
RS [17] XC7VX690T 32 5.32
FPGA 96w w/ DMA (ours) XCVU9P 96 7.04
Intel OpenCL [13] [20] Stratix V 64 7.52
PE Ring (simulation) [18] Stratix V 64 11.77
PE Chunks [20] XCKU060 64 12.48
Intel OpenCL [13] [20] Arria 10 208 22.28
FPGA 96w kernel (ours) XCVU9P 96 23.54
PE Ring (simulation) [18] Arria 10 128 23.99

VI. DISCUSSION AND FUTURE WORK

The premise for hardware acceleration of the Pair-HMM
FA was that it was the major contributor to the compute
time in the HC tool. However with multi-threaded software
accelerated versions the contribution is now less than 20%
meaning that hardware accelerators can only improve the
tool overall compute time to that extent. Although small
contributions are still valuable, especially with big workloads,
in order to further improve the HC other sections of the tool
need to be revised. The impact can be seen with the parallel
Spark implementations of the tool, resulting in overall speed-
ups of the HC tool of 2.9×, 2.8×, and 2.4× on chr1-3 over
AVX and 3×, 2.9×, and 2.7× when FPGA accelerated.

While the FPGA accelerator can improve the time of Pair-
HMM FA and achieve speed-ups of 3×, 4×, 5× on chr1-3 over



the AVX solution, the smaller contribution relative to the full
tool mitigates the overall gains on the HaplotypeCaller tool.

The accelerator itself could be improved by bypassing the
external DDR4 memory completely. Having the CPU stream-
ing the batches to the workers directly instead of generating the
jobs in the FPGA and having the workgroups query the data
from the DDR4. This the main bottleneck since all workers
compete to access the DDR4, the latency from the DDR4 also
adds up to the computation time.

VII. CONCLUSIONS

We proposed a hybrid FPGA - CPU solution for the Pair-
HMM FA that is up to 15× faster than the original Java
implementation and up to 5× faster than the AVX accelerated
version. Our solution was integrated in the GATK pipeline.
We not only managed to speed-up computations but also
provided means to share the accelerator between instances
of the pipeline or in a Spark distributed setup. While FPGA
solutions can achieve extremely high speed-ups against CPU
solutions when comparing the compute kernels alone, data
locality is the real problem. Depending on the size of the
batches and given the current design of the GATK pipeline
it is not possible to have them perform at peak performance.
Therefore, a hybrid solution, using the accelerator only when a
significant gain is possible seems the best option. This solution
also benefits from the fact that CPU and FPGA can be used
in tandem, exploiting both strengths.

The accelerator was implemented for Amazon F1 cloud
instances in order to provide an accelerator which can be
used without requiring to buy specific equipment. In order to
achieve better performance increments a rework of the GATK
pipeline is required. Sequential processing of small batches
makes it difficult to take advantage of hardware co-processors.
The development of the Spark parallel implementations of
the GATK tools could be an opportunity to integrate co-
processors in a more optimal way. E.g., by applying the pre-
processing of the data in parallel (map) then generate a batch
with all required data for computation (reduce) and send it
to a hardware accelerator in one go. Retrieve all results and
post-process them in parallel again (map).
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