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Abstract

This paper proposes and tests an approximation of the solution

of a class of piecewise deterministic control problems� typically used

in the modeling of manufacturing �ow processes� This approximation

uses a stochastic programming approach on a suitably discretized and

sampled system� The method proceeds through two stages� �i� the

Hamilton�Jacobi�Bellman �HJB� dynamic programming equations for

the 	nite horizon continuous time stochastic control problem are dis�

cretized over a set of sampled times
 this de	nes an associated dis�
crete time stochastic control problem which� due to the 	niteness of

the sample path set for the Markov disturbance process� can be writ�

ten as a stochastic programming problem� �ii� The very large event

tree representing the sample path set is replaced with a reduced tree

obtained by randomly sampling over the set of all possible paths� It

is shown that the solution of the stochastic program de	ned on the

randomly sampled tree converges toward the solution of the discrete

time control problem when the sample size increases to in	nity� The

discrete time control problem solution converges to the solution of

the �ow control problem when the discretization mesh tends to �� A

comparison with a direct numerical solution of the dynamic program�
ming equations is made for a single part manufacturing �ow control

model in order to illustrate the convergence properties� Applications

to larger models a�ected by the curse of dimensionality in a standard

dynamic programming techniques show the possible advantages of the

method�
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� Introduction

Piecewise deterministic control systems �PDCS� o�er an interesting paradigm
for the modeling of many industrial and economic processes� The theory
developed by Wonham ���	 or Sworder ��
	 for linear quadratic systems� Davis
��	� Rishel ��
� ��	 and Vermes ���	 for more general cases� has established the
foundations of a dynamic programming �DP� approach for the solution of this
class of problems� There are two possible types of DP equations that can be
associated with a PDCS� �i� the Hamilton�Jacobi�Bellman �HJB� equations
de�ned as a set of coupled �functional� partial di�erential equations �see e�g�
��
� ��	�� �ii� the discrete event dynamic programming equations based on
a �xed�point operator �a la Denardo ��	 for a value function de�ned at jump
times of the disturbance process �see e�g� �
	��

The modeling of manufacturing �ow control processes has greatly bene�
�ted from the use of PDCS paradigms� Olsder � Suri ���	 have �rst intro�
duced this model for a �exible manufacturing cell where the deterministic
system represents the evolution of parts surpluses and the random distur�
bances represent the machine failures and repairs� This modeling framework
has been further studied and developed by many others �we cite Gershwin et
al� ���	� ���	 and Akella � Kumar ��	� Bielecki � Kumar ��	 as a small sample
of the large literature on these models� nicely summarized in the books of
Gershwin ���	 and Sethi � Zhang ���	�� When the model concerns a single
part system and the failure process does not depend on the part surplus
and production control� an analytic solution of the HJB equations can be
obtained as shown in ��	� As soon as the number of parts is two or more�
an analytic solution is di�cult to obtain and one has to rely on a numerical
approximation technique� A solution of the HJB equations via the approxi�
mation scheme introduced by Kushner and Dupuis ���	 has been proposed by
Boukas � Haurie �
	� A solution of the discrete event dynamic programming
equations via an approximation of the Denardo �xed�point operator has been
proposed in Boukas� Haurie � Van Delft ��	� Both methods su�er from the
curse of dimensionality and tend to become ine�ective as the number of parts
is three or over� Caramanis � Liberopoulos ��	 have proposed an interest�
ing approach based on the use of a sub�optimal class of controls� depending
on a �nite set of parameters� these parameters being optimized via an in�
�nitesimal perturbation technique� Haurie� L�Ecuyer � Van Delft ���	 have
further studied and experimented such a method based on a combination of
optimization and simulation�

In the present paper we propose another approach combining optimiza�
tion and simulation that will be valid when the disturbance jump process
does not depend on the continuous state and control� The approach exploits
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the formal proximity which exists� under this assumption� between the PDCS
formalism and the stochastic programming paradigm introduced in the realm
of mathematical programming by Dantzig � Wets ��	 and further developed
by many others �see the survey book of Kall and Wallace ���	 or the book of
Infanger ��
	 as representatives of a vast list of contributions�� The proposed
method is based on a two�step approximation� �i� the HJB dynamic pro�
gramming equations for the �nite horizon continuous time stochastic control
problem are discretized over a set of sampled times� this de�nes an associ�
ated discrete time stochastic control problem which� due to the �niteness of
the sample path set for the Markov disturbance process� can be written as a
stochastic programming problem� �ii� The very large event tree representing
the sample path set is replaced with a reduced tree obtained by randomly
sampling over this sample path set� It will be shown that the solution of the
stochastic program de�ned on the randomly sampled tree converges toward
the solution of the discrete time control problem when the sample size tends
to in�nity� The solution of the discrete time control problem converges to the
solution of the �ow control problem when the discretization mesh decreases�
Therefore SP methods can be implemented to solve this class of PDCS and
the recent advances in the numerical solution of very large scale stochastic
programs can be exploited to obtain insight for problems that fall out of
reach of standard dynamic programming techniques�

The paper is organized as follows� In section � we recall a formulation
of the manufacturing �ow control problem proposed by Sharifnia ���	 with
the PDCS formalism and the HJB equations one has to solve in order to
characterize the optimal control� In section � we construct the discrete time
approximation leading to a stochastic programming problem which will be
characterized� usually� by a very large event tree representing the uncertain�
ties� In section 
 we show how to use a random sampling of scenarios to
reduce the size of the event tree and we prove convergence of this Monte�
Carlo method� In section � we compare di�erent approaches on a simple
single part model� In section � we experiment the stochastic programming
approximation method on two instances of a more realistic multi�part model�

� The manufacturing �ow control problem

In this section we recall the model of a �exible manufacturing system which
was proposed by Sharifnia in ���	� We have chosen this model since it was
already linked to linear programming in a discrete time approximation of
the solution of the manufacturing �ow control problem �MFCP�� in the ab�
sence of random disturbances� The random disturbances introduced in many
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Figure �� Flexible workshop producing P parts with M machines

formulations of the MFCP are represented as an uncontrolled Markov chain
that describes the evolution of the operational state of the machines� Under
these conditions� the discrete time approximation proposed in ���	 will easily
lend itself to a formulation as a stochastic linear programming problem�

��� The continuous �ow formulation

We consider a �exible workshop consisting of M unreliable machines� and
producing P part types� We use a continuous �ow approximation to repre�
sent the production process� Each part� to be produced� has to visit some
machines in a given sequence� We call this sequence a route� For a given
part the route may not be unique� therefore there are R routes with R � P �
An input bu�er is associated with each machine� Set�up times are assumed
to be negligible and processing times are supposed to be deterministic� An
instance of this type of organization is represented in Figure �� Assume that
the machines are unreliable� the repair and failure times are exponentially
distributed random variables� The demand is supposed to be known in ad�
vance� The objective is to minimize the expected cost associated with the
work�in�process and �nished parts� inventory�

For a more formal description of the model we introduce the following






variables�

v�t� � �v��t�� � � � � vB�t��
T � bu�er processing rates

w�t� � �w��t�� � � � � wR�t��
T � part release rates

q�t� � �q��t�� � � � � qB�t��
T � bu�er levels

d�t� � �d��t�� � � � � dP �t��
T � �nished parts demand rates

y�t� � �y��t�� � � � � yP �t��
T � �nished parts surplus levels�

The state variables are q�t� and y�t�� while w�t�� v�t� are the control variables�
The state equations are

�q�t� � A�v�t� � A�w�t� ���

�y�t� � A�v�t�� d�t� ���

where the term A�v�t� in Eq� ��� represents the internal material �ows among
bu�ers� the term A��t�w�t� in Eq� ��� represents external arrival into the
system and the term A�v�t� represents the arrival of �nished parts in the last
bu�er� The b�th line of A� is composed of a �� in cell �b� b�� and a �� in cell
�b� b�� if the bu�er b� is upstream to bu�er b� All other entries of row b are �
valued� The incidence matrix A� is of dimension B � R� with f�� �g entries
that determine which bu�ers receive the new arrivals� Eq� ��� represents the
dynamics of �nished parts surplus� The P �B matrix A� has a �� in entry
�b� b�� if bu�er b� is the last bu�er of a route for part b� Otherwise� this entry
is ��

Let �b denote the processing time of parts in bu�er b and B�m� be the set
of bu�ers for machine m� The capacity constraints on the control are de�ned
as follows� X

b�B�m�

�bvb�t� � �m�t� m � �� � � � �M� ���

where f�m�t� � t � �g is a continuous time Markov jump process taking the
values � or �� �m�t� � � indicates that the machine m is operational �up� at
time t� �m�t� � � that it is not operational �down� at time t�

The following inequality constraints have to be satis�ed

v�t� � � �
�

w�t� � � ���

q�t� � �� ���

Notice that ��� represents a state constraint�
Let�s call

x�t� � �q�t�� y�t��
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the continuous state of the system and

��t� � ��m�t��m�������M

its operational state while

u�t� � �w�t�� v�t��

is the control at time t� The operational state ��t� evolves as a continu�
ous time Markov jump process with transition probabilities that are easily
computed from the failure and repair rates of each machine

P ���t� dt� � jj��t� � i	 � qijdt� ��dt� �i �� j�

P ���t� dt� � ij��t� � i	 � � � qiidt� ��dt�

lim
dt��

o�dt�

dt
� �

for i� j � I � f�� �gM � As usual we de�ne qii � �
P

i��j qij�

A production policy � can be viewed either as

� a piecewise open�loop control u��t��t� � t � � that is adapted to the
vector jump process f��t� � ��m�t��m������M � t � �g and satis�es the
constraints ������ when one uses a discrete event dynamic programming
formalism

� a feedback law u�t� � ��t� x�t����t��� when one uses the coupled HJB
dynamic programming equations formalism�

The variable y	�t� � �maxfyj�t�� �g�j�������p represents the inventory of
�nished parts while y��t� � �maxf�yj�t�� �g�j�������p represents the backlog
of �nished parts� The objective is to �nd a policy �� which minimizes the
expected total cost

E��

Z T

�

fhq�t� � g	y	�t� � g�y��t�g dt	� ���

where h� g	 and g� are cost�rate vectors for the work�in�process and �nished
parts inventory�backlog respectively�
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��� The system of coupled HJB equations

To summarize� the optimal operation of the �exible workshop is a particular
instance of a stochastic control problem

J i��� x�� � min
�

E� �

Z T

�

L�x�t�� dt	 ���

s�t�

�x�t� � f�x�t�� u�t�� �
�

P ���t� dt� � jj��t� � i	 � qijdt� o�dt� �i �� j� ����

P ���t� dt� � ij��t� � i	 � � � qiidt � o�dt� i� j � I� ����

lim
dt��

o�dt�

dt
� � ����

u�t� � U��t� ����

���� � i� x��� � x� ��
�

����

where L�x� and f�x� u� satisfy the usual regularity assumptions for control
problems�

De�ne the value functions

J i�t� x� � min
�

E� �

Z T

t

L�x�s�� dsjx�t� � x and ��t� � i	� i � I� ����

If these functions are di�erentiable in x� then the optimal policy is charac�
terized by a system of coupled HJB equations

�
�

�t
J i�t� x� � min

u�U i

f�L�x� �
�

�x
J i�t� x�f�u� �

X
j ��i

qij�J
j�t� x�� J i�t� x�	g�

i � I t � ��� T � ����

J i�T� x� � � 	x� ����

When the value functions J i�t� x� is known� the optimal strategy u��x� t� i� is
obtained as the solution of a set of  static optimization problems

min
u�U i

�

�x
J i�t� x�f�u�� ��
�

In the case of our MFCP these problems reduce to simple linear programs�
The value function di�erentiability issue can be addressed through the

use of the so�called viscosity solution �see e�g� Fleming and Soner �
	�� The
following result is established in Ref� ���	�

Theorem �� The optimal value function is obtained as the unique viscosity
solution to the system of coupled HJB equations ����������
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� A stochastic linear programming reformu�

lation

In this section we de�ne a stochastic programming problem that will be used
to approximate the solution of the MFCP under study�

��� A discrete time reformulation

We discretize time as in ���	� This permits us to replace the continuous time
state equation with a di�erence equation and to approximate the continuous
time Markov chain by a discrete time Markov chain� Let tk denote the k�th
sampled time point k � �� �� � � � � K with t� � � and tK � T � �tk � tk � tk���
!q�k� �� q�tk�� !y�k� �� y�tk�� !w�k� �� w�tk�� !v�k� �� v�tk�� !�m�k� �� �m�tk�
and replace the di�erential state equations with the di�erence equations�

!q�k� � !q�k � �� � �tkA�!v�k� � �tkA� !w�k�

!y�k� � !y�k � �� � �tkA�!v�k�� �tk !d�k��

for k � �� � � � � K� The control and state constraints becomeX
b�B�m�

�b!vb�k� � !�m�k� m � �� � � � �M�

!v�k� � �

!w�k� � �

!q�k� � � � k � �� � � � � K

!q��� � !q�

!x��� � !x��

Denote !x�k� � �!q�k�� !y�k��T the continuous state variables� !u�k� � � !w�k�� !v�k��T

the control variables and !��k� � �!�m�k�m�����M� the discrete state variable
that evolves according to a Markov chain with transitions probabilities

P �!��k � �� � jj!��k� � i	 � qij�tk �i �� j�

P �!��k � �� � ij!��k� � i	 � � � qii�tk�

This time discretization can be envisioned when the average times to repair
and failure are much greater than �tk� The solution of the associated discrete
time stochastic control problem can be obtained through the solution of the
following discrete time DP equations�

!J i�k � �� !x�k � ���

� min

u�k��U i

fL�!x�k���tk �
X
j ��i

qij�tk !J
j�k� !x�k�� � �� � qii�tk� !J

i�k� !x�k��g ����
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for i � I and k � � � � �K� with terminal conditions�

!J i�K� !x�K�� � �� ����

The following result can be established� using standard techniques of approx�
imation of viscosity solutions �see ���	��

Theorem �� The solution of the discrete time DP equation �	
�	�� con�
verges uniformly when �tk 
 � to the viscosity solution of the system of
coupled HJB equation of the continuous time model ��������

��� The scenario concept

Since the disturbance Markov jump process is uncontrolled� the solution of
the discrete time stochastic control problem can also be obtained via the
so�called stochastic programming technique� This is a mathematical pro�
gramming technique based on the concept of a scenario� For our problem we
call scenario 	 a sample path f�!������� � � � � !�

M
� ����� � � � � �!����K�� � � � � !�M� �K��g

of the !���� process� On a time horizon of K periods� as the state in the �rst
period is identical for all scenarios� the discrete time Markov chain will gen�
erate ��M�K�� di�erent scenarios� We denote u���k� the control for period k

when the realized scenario is 	��
For two scenarios 	� and 	�� that satisfy

�!�����k�� � � � �
!�M�� �k�� � �!���

��
�k�� � � � � !�M�

��
�k�� 	k � l ����

the controls u���k� and u�
��
�k� must be equal for all k � l� These conditions

are called the nonanticipativity constraints�
There are two possible ways to take these constraints into account in the

optimization problem

�i� introduce as many subproblems as there are scenarios and couple them
through the nonanticipativity constraints explained above�

�ii� handle the scenario tree on a node by node basis with the nonanticipa�
tivity constraint taken into account implicitly�

The second approach is usually preferable because it reduces the num�
ber of constraints in the associated mathematical program� Let N �k� �
fN��k�� � � � �N�k�k�g be the set of the nodes at period k� For each scenario 	
and for each period k� 	 passes through one and only one node N��k� �that
we denote 	 

 N��k��� If 	� and 	�� are indistinguishable until the period
l� that is if ���� holds� then they share the same node N��k� at all periods






N����

N����

��

N����

N����

N����

N����

N����

��

��

��

� �z �

N ���

� �z �

N ���

� �z �

N ���

Figure �� The scenario tree of a workshop with � machine and � periods

k � l� Note that since all scenarios are indistinguishable in the �rst period�
we have only one node for this period� e�g� N ��� � fN����g� Each node
n� except N���� noted n�� has a direct ancestor� denoted A�n�� in the set
of the nodes of the previous period� If 	 passes through N��k� at period
k � �� then it passes through the ancestor of N��k� at period k� �� The set
of all scenarios passing through the node N��k� is denoted by N��k�� The
probability of the node N��k� is then

p�N��k�� �
X

���N��k�

p�	�

where p�	� denotes the probability of the scenario 	� We must then index
each variable on the node set� !qn�k�� !yn�k�� !in�k�� !vn�k�� !�mn �k� for all n �
N �k��

To illustrate this representation� consider a workshop of one machines
with an horizon of � periods� In the �rst period the machine is up� There
exist 
 scenarios which are listed in Figure �� In the scenario 	� the machine
is up during all periods� In the scenario 	� �resp� 	�� the machine is up
during all periods except period � �resp� period ��� In the last scenario 	��
the machine is down during all periods except period �� For example� the
scenario 	� is de�ned by �!����� !����� !����� � ��� �� ��� N ���� the set of nodes
at period �� contains two nodes� N���� and N����� The direct ancestor of
N���� is N�����
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��� A linear stochastic programming problem

To summarize� we have to solve a stochastic linear program with the objective
function

!J��

��!x�� � min

KX
k��

X
n�N �k�

p�n�fh!qn�k� � g	!y	n �k� � g�!y�n �k�g�tk� ����

For the �rst period the constraints are

!qn���� � !q� � �t�A�!vn���� � �t�A� !wn���� ��
�

!yn���� � !y� � �t�A�!vn����� �t� !dn����� ����X
b�B�m�

�b�!vn��b��� � !�mn�
��� m � �� � � � �M� ����

with the initial conditions

�!�mn�
����m�������M � !�

�!q�� !y�� � !x��

For each period k � � � � �K the following constraints must hold for n � N �k��

!qn�k� � !qA�n��k � �� � �tkA�!vn�k� � �tkA� !wn�k� ����

!yn�k� � !yA�n��k � �� � �tkA�!vn�k�� �tk !dn�k�� ����X
b�B�m�

�b�!vn�b�k� � !�mn �k� m � �� � � � �M� ��
�

For k � � � � �K and n � N �t� the following non�negativity constraints must
hold�

!vn�k�� !wn�k�� !qn�k� � �� ����

The optimal policy !�� is then described by the controls !un�k� � � !wn�k�� !vn�k��
for n � N �t��

��� Identi�cation of hedging points

The stochastic programming formulation will be used primarily for a com�
putation of the control law at the initial time �� Using parametric analysis
we will be able to identify a suboptimal policy for running the FMS in a
stationary �ergodic� environment� The optimal control for an MFCP is often
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an hedging point policy� In the continuous time� in�nite horizon HJB for�
mulation the hedging point corresponds to the minimum of the �potential�
value function� In a �nite time horizon formulation� the minimum of the
value function at time � will tend to approximate the optimal hedging point
when the horizon increases� In our discrete time� �nite horizon formulation�
if we let the initial stocks !q� and !y� be free variables� their optimal values will
give an indication of the hedging points� Actually� the discretization of time
will often elimininate the uniqueness of the hedging points de�ned as the
minimum of the value function� It will be then useful to identify the hedging
point as the initial state for which the actual optimal value of production is
exactly equal to the demand�

� Approximating the stochastic linear pro�

gram by sampling

In this section we propose a sampling technique to reduce the size of the
stochastic programming problem one has to solve to approximate the control
policy�

��� The approximation scheme

To solve the linear stochastic program introduced in section �� we have to
consider the event tree representing the ��M�K�� di�erent possible scenarios�
This number of possible scenarios increases exponentially with the number of
periods and the problem becomes rapidly intractable� To reduce the size of
the problem we extract a smaller event tree composed of randomly sampled
scenarios�

Only the control for the �rst period is really relevant and we want to
�nd the optimal policy ���t� x�t����t�� for t � �� We will solve the sampled
stochastic programming model for di�erent initial states !x� on a given �nite
grid G� Then the control ����� x��������� is approximated by !u����� the
solution for the �rst period in the sampled stochastic programming model
when !� � ���� and where !x� is the nearest point to x��� in G�

��� Convergence of the sampled problems solutions

Let us introduce a few simplifying notations� Consider a discrete probability
space �"�B� P �� where " is the �nite set of possible realizations 	 of the
uncertain parameters and P the corresponding probability distribution� As
" is �nite� the event set is B � ��� Let S � j"j be the number of di�erent
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scenarios� The elements of " are denoted " � f	�� � � � � 	Sg� Let p�	i�
denote the probability of the realization 	i� A generic stochastic optimization
problem can be represented as a convex optimization problem �here x and
y are used to represent generic variables in an optimization problem� they
don�t have the signi�cation given to them in the MFCP�

z � min
X
���

f�x� 	�p�	� ����

s�t�

x � C � Rn ����

We assume that f�x� 	� is convex in x on the convex set C but not necessarily
di�erentiable� This formulation ���� ��� encompasses the classical two�period
stochastic program with recourse

f�x� 	� � cx �min
y

C�	�y

s�t D�	�y � d�	� �B�	�x
y � �

C � fx � Rnj Ax � b� x � �g

In this formulation the variable x represents the decision in the �rst period
and y is the recourse in second period� Once the optimization w�r�t� y has
been done for each possible realization 	� the problem is reduced to the form
���� ����

The stochastic programming problem obtained from the time discretiza�
tion of the MFCP can also be put in the general form ���� ��� through a
nested reduction of a sequence of two stage stochastic programming prob�
lems� The variable x will then represent the decision variables for the initial
period �the one we are particularly interested in��

We now formulate an approximation of the generic problem obtained
through a random sampling scheme� A sampled problem� with sample size
m� is obtained� if we draw randomly m scenarios among the S possible� A
speci�c scenario 	i is selected at a given draw with probability p�	i�� We
denote �m � f�j� j � �� � � � � mg� the scenario sample thus obtained� The
sampled SP problem is de�ned as

z�
m

� min
x

�

m

mX
j��

f�x��j� ����

s�t�

x � C � Rn� ��
�

��



Let 
i be the observed frequency of scenario 	i in the sample �m� If we
denote by wi �

	i
m

the observed proportion of scenario 	i� the problem ����
�
� can also be reformulated as

z�
m

� min
x

SX
i��

f�x� 	i�wi ����

s�t�

x � C � Rn� ����

The convergence of the sampled problem solution to the original solution
is stated in the following theorem�

Theorem �� When m

 the solution z�
m

of the sampled stochastic op�
timization problem ���� �
�converges almost surely to the solution z of the
original stochastic optimization problem ���� �	��

Proof� According to the strong law of large numbers we know that the ob�
served proportions �wi�i�������S converge almost surely to the probabilities
p�	i�i�������S when the sample size m tends to in�nity� Furthermore� one can

easily show that the function minx�C
PS

i�� f�x� 	i�pi is convex� and therefore
continuous� in �pi�i�������S � RS� These two properties lead to the desired
result�

� Empirical veri�cation of convergence

In this section we illustrate the convergence of the SP method on a single�
machine single�part�type MFCP which is the �nite horizon counterpart of the
example treated by Bielecki and Kumar ��	� A solution for the �nite horizon
case has been proposed in ���	 under the rather strong assumption that once
the machine fails it will never be repaired� In the general case with �nite
horizon there is no analytical solution available� however a direct numerical
solution of the HJB equations can be obtained with good accuracy� using
the weak convergence technique proposed by Kushner and Dupuis ���	� This
alternative numerical solution will be used to control the convergence of our
sampled SP models�

Indeed for this example the direct solution of the dynamic programming
equations is more e�cient than the sampled SP method� However� when
there are two or more part�types we expect the sampled SP method to be
more e�cient than the direct dynamic programming method�

�




The problem is�

min
�

E�

�Z T

�

L�x�t�� dt

�

s�t� �x�t� � u�t�� d

P ���t� dt� � jj��t� � i	 � qijdt� ��dt� �i �� j�

P ���t� dt� � ij��t� � i	 � � � qiidt� ��dt�

u�t� � U��t� U� � f�g U� � ��� umax	 � ���
�

�
	

���� � i � f�� �g

x��� � x�

With L�x�t�� � g	x	�t� � g�x��t��
An accurate numerical solution can be obtained via a direct solution of

the dynamic programming equations� This numerical solution shows that
for the �nite�time horizon the optimal control is an hedging point policy but
with a safety stock that decreases when one gets closer to the end of horizon
T � i�e�

u��x� t� �

��
�

umax if x � Z�T � t�
d if x � Z�T � t�
� if x � Z�T � t��

where Z��� is an increasing function called the hedging curve�

��� Accuracy of the SP solution

We solve the �nite horizon model with the following data ����	 p��
��� g	 � ��
g� � ��� d � ���� q�� � ���
 � �q��� q�� � ���� � �q�� and � � ��

To control the convergence of our SP solution� we implemented the method
of Kushner and Dupuis ����	 Chapter ��� on the x�state space grid

G � f������
�

���
�
�� � � � � ��g

and with a time step ������ For the in�nite horizon case� the hedging point
is Z � 
�
��
 �see Ref� ��	�� The solid line in Figure � is the hedging curve
obtained via the Kushner and Dupuis numerical technique� One notices
that� as expected� the hedging curve tends asymptotically to the hedging
point value 
�
��
 when the horizon increases�

The size of the associated stochastic programming model increases ex�
ponentially with the number of periods K� The largest possible value K

��



permitted by the memory on our machine �IBM RISC ����� with ��� Mb
memory� running SP�OSL software� was equal to �� corresponding to 
�
�
di�erent scenarios� For the computations concerning a model with more than
�� periods� we applied the following recursive method� We �rst compute the
value functions !J���� �� and !J���� ��� de�ned in Equation ����� for �� periods�
Then� in the objective function� a piecewise linear approximation of each
value functions is introduced as a terminal cost penalty� The value functions
of this new model are computed and a piecewise linear approximation of each
of this new value function is introduced in the objective function� We can
repeat this recursive procedure as often as desired� This corresponds to a
value iteration on a two stage dynamic programming process�

In the SP approach we have identi�ed the initial stock for which the
optimal policy in the �rst period is to produce the same amount as the
demand d� As noticed previously these values correspond to the hedging
points� We notice that the time discretization yields an approximation of
the exact hedging curve by a discontinuous function which remains however
quite close to Z�T � t��

Figure � compares the value of Z�T � t� obtained via three di�erent
methods

� the solid line corresponds to the solution of the dynamic programming
equations obtained via the Kushner and Dupuis method�

� the dashed line shows the solution obtained with the SP method where
�t � ����

� the dotted line shows the solution obtained with the SP method where
�t � ����

It can be observed that the hedging curve Z�T � t� is approximated in the
SP approach by a discontinuous function with values �t � d � I where I is an
integer and d is the demand rate�

In Figure 
 we have represented the value function J��T � t� x� with a
solid line� when evaluated by a direct solution of the DP equations and a
dashed line when evaluated through the SP approach with K � ���

��� Accuracy of the SP solution with sampling

We investigate now the convergence of the solution of the SP method with
sampling to the solution of the SP method when the whole scenario tree is
taken into account� For all numerical experiments of this subsection we use
�t � �� As we noticed in the previous subsection� the approximation of the

��
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hedging curve Z�T�t� obtained with the SP reformulation is a step function�
Consequently there are times to go T � t at which Z�T � t� is discontinuous�
Therefore we investigated the SP method with sampling for the computation
of Z�T � t� at two possible values of the time to go T � t� one near a
discontinuity �T � t � ��� and one far from a discontinuity �T � t � �
�� We
took di�erent sample sizes to construct the approximating event tree and the
results are shown in Figure � for the time to go T �t � �� and in Figure � for
the time to go T � t � �
� We see that a sample size of ��� is not su�cient
for both cases� A sample size of ���� is su�cient for T � t � �
 but not for
T � t � ��� However a sample size equal to ����� is su�cient for T � t � ���

	 Numerical experiments

In this section we apply the numerical method presented in this paper to two
examples that are closer to a real life implementation� In the �rst subsec�

��



tion we approximate the optimal strategy for a �exible workshop with two
machines and two part types� As the size of the model is not too big� we
display the optimal strategy in full details and discuss the results� In the
second subsection we study a larger system� namely a �exible workshop with
six machines and four part types� Due to the size of the model� the optimal
strategy cannot be fully displayed in a simple �gure and therefore only the
optimal hedging stocks are given�

	�� Implementation

Our approximation scheme leads to the solution of a stochastic program� To
generate and solve the stochastic program we coupled two software tools�
AMPL and SP�OSL� AMPL ���	 is a modeling language for mathematical
programming� which is designed to help formulate models� communicate with
a variety of solvers� and examine the solutions� SP�OSL is an interface
library of C�language subroutines that supports the modeling� construction
and solution of stochastic programs�

We obtain the solution of the stochastic program in four steps�

�i� We describe the �exible workshop topology using the algebraic facilities
of AMPL� First we model the �exible workshop without the stochas�
ticity on the machine availability �all machines are always up�� This
corresponds to a single scenario from the scenario tree which is from
now on called the base case scenario�

�ii� The base case scenario is passed� in an MPS �le� to SP�OSL and the
whole stochastic program is constructed by specifying for every possible
scenario the di�erence with the base case scenario and its probability or
its sampled frequency� All scenarios with null probability are discarded�
The sampled scenarios are then aggregated into a scenario tree�

�iii� The stochastic program is solved with SP�OSL routines� which imple�
ment a Benders decomposition�

�iv� The results are graphically displayed using MATLAB�

	�� Two
machine two
part
type example

The example considered is a �exible workshop composed of two machines
producing two parts� One operation has to be performed on each part on
either the �rst machine or the second one� thus there are four routes� The �rst
machine is specialized on the �rst part and the second machine is specialized

�
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Figure �� Flexible workshop producing two parts with two machines

on the second part� The processing time � for each part� is equal to ����

for the specialized machine and ����� for the other machine� The penalty for
work�in�process� for �nished part inventory and backlog are the following�

h � ��� �� �� ��

g	 � ��� ��

g� � ��� ���

The failure rate is equal to ��� for the �rst machine and ��� for the second
one� The repair rate is equal to ��� for the �rst machine and ��� for the
second one� The demand is supposed to be constant at ��� units per period
for each part� The �exible workshop is represented in Figure �� We consider
a time horizon T � � with K � � periods� The total number of possible
scenarios is about ����� and we took as sample size m � ������

For this simple example� as only one operation has to be performed on
each part� it is penalizing to have non�zero inventory in the internal bu�ers�
So the state !x�k� is reduced to !y�k� and the policy !u�k� is fully determined
by !v�k�� For the �nite grid G approximating !x� we took the following values�

!y� � G � f�!y����� !y�����j !y����� !y���� � f���������� �� ���� � � � � ���gg�

The value function !J

���� !y�� is shown in Figure � for !� � ��� ��� In this

�gure� we see that the value function attains a minimum on a plateau� The
values of !y� that minimize this function can be regarded as hedging points�
Due to the time discretization� the set of hedging points is not� as in the
continuous time case� a curve or a point� but a surface� For other values of
�� the value function presents the same general shape�
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For convenience� the optimal policy in the �rst period is rearranged as
follows� the total amount of part � produced during the �rst period is denoted
by U��!y�� !��� and the total amount of part � produced during the �rst period
is denoted by U��!y�� !��� The functions U��!y�� !�� and U��!y�� !�� are shown in
Figure 
 for !� � ��� �� and in Figure �� for !� � ��� ���

Here again we see a di�erence between the optimal policy of our discrete�
time approximation and a typical  bang�bang optimal policy of the con�
tinuous time model� It can be explained as follows� Suppose that for the
continuous time model the optimal  bang�bang policy is to produce at min�
imum rate from t � � to t � t� and then produce at maximum rate �Figure ��
top�� Suppose that we discretize the time scale the same way as in section �
with tk�� � t� � tk� This optimal policy will translate on the discrete time
scale as follows� produce at minimum for the periods � to k � �� produce
at maximum for the periods k � � to K and produce between minimum
and maximum for the period k �Figure �� bottom�� This is clearly not a
 bang�bang policy�

An interesting result is displayed in Figure �� which gives a cross�section
of the surface shown in Figure 
 for !y���� � �� We see that the priority is
given to the part with the highest backlog� We see also that a high surplus of
part � �above ���� hedges also for part �� However this cross�hedging reaches
a saturation point� a surplus of part � higher than ��� has the same e�ect
as a surplus of ����
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	�� Six
machine four
part
type example

The larger example considered here is a �exible workshop composed of six
machines� among which � are unreliable� and producing four parts� The
workshop topology is pictured in Figure ��� The processing time vector is
given by

� � ������� ������ ����� ������ ������ ������ ������

������ ����� ����� ������ ������ ������ �������

For machines � and �� the failure rate is equal to ��� and the repair rate is
equal to ��
� The failure rate for Machine � is equal to ��� and the repair rate
is equal to ���� The other machines are reliable� The penalty for work�in�
process equals � in each internal bu�er� the penalty for �nished part inventory
�resp� backlog� equals � �resp� ��� for each part type� We considered a time
horizon T � �� The demand is supposed to be constant at ��� units for each
part type�

We solved the model with K � � periods and a sample of ����� scenarios�
Given the size of the state space� it is impossible to describe the optimal
policy with a simple picture� However we give in Figure �
 the hedging
stocks when the six machines are operational� Since upstream from each
route there is a �ctive in�nite bu�er� we obtain� as expected� a zero hedging
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stock for the �rst bu�er on each route� Although we do not show the complete
optimal strategy for this model� we must emphasize that it is possible to do
so�


 Conclusion

We have shown in this paper that a stochastic programming approach could
be used to approximate the solution of the associated stochastic control prob�
lem in relatively large scale MFCPs� As this approach combines simulation
and optimization� it can be considered as another possible method for gaining
some insight on the shape of the optimal value functions that will ultimately
de�ne the optimal control� In fact� the strength of the proposed numerical
method is that it is simulation based although no assumption on the nature
of the optimal policy are made� Consequently the numerical approxima�
tion of the optimal strategy gives insight on the true nature of the optimal
strategy� The stochastic programming approach exploits the fact that the
disturbance Markov jump process is uncontrolled� It also allows the use
of advanced mathematical programming techniques like decomposition and
parallel processing�
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