Published in : Proceeding ISEC '14 Proceedings of the 7th India Software Engineering Conference which should be cited to refer
to this work
http://dx.doi.org/10.1145/2590748.2590758

A Three-Layer Model of Source Code Comprehension

Javier Belmonte
Geneva School of Business
Administration
UAS of Western Switzerland

Philippe Dugerdil
Geneva School of Business
Administration
UAS of Western Switzerland

Route de Drize 7 Route de Drize 7 Kanpur
1227 Carouge, Switzerland 1227 Carouge, Switzerland Kanpur, India-208016

javier.belmonte@hesge.ch philippe.dugerdil@hesge.ch agrawala@cse.iitk.ac.in

Ashish Agrawal
Department of Computer
Science & Eng.

Indian Institute of Technology

ABSTRACT 1. INTRODUCTION

In this paper we first propose a source code comprehension
model built as a hierarchy of three abstraction levels from
the source code to the purpose (goal) of the program. The
elements belonging to each layer have been precisely defined
as well as their links to the elements in the adjacent lay-
ers. Consequently this model allows to bridge the semantic
gap between the purpose of the program defined in business
terms and the code that implements it. The model leverages
two ontologies: an action ontology, which is specific to our
approach, and a domain concept ontology. Next this model
has been implemented as a tool under Eclipse and two ex-
periments have been performed to assess the relevance of
our approach in the maintenance of a large-scale program.
The results of this experiment are very encouraging. The
contribution of the paper is the presentation of our program
comprehension model built on a novel approach based on an
action ontology, the description of the tool we developed to
assess the relevance of model and the testing of the latter
with two controlled experiments.

Categories and Subject Descriptors

[Software and its engineering]: Software reverse engi-
neering; [Software and its engineering|: Maintaining
software; [General and reference]: Experimentation;
[Computing methodologies]: Ontology engineering

General Terms

Evaluation, Documentation, Measurement

Keywords

program comprehension; domain knowledge; ontology

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

ISEC ’14, February 19 - 21 2014, Chennai, India

Copyright 2014 ACM 978-1-4503-2776-3/14/02 ...$15.00
http://dx.doi.org/10.1145/2590748.2590758

Program comprehension has been a hot topic in software
engineering for more than three decades with pioneering
work in software psychology [16]. However, since only a few
of the published papers define precisely what is meant by
“program comprehension”, it is hard to assess the relevance
of the published work. But as early as 1983, Brooks pro-
posed that program comprehension be defined as the pro-
cess of re-creating the links between the domain problem
and the program code [4]. The need for domain knowledge
to be taken into account in program understanding is a vi-
sion that has since been increasingly accepted in the software
engineering community [15]. Later, in 1994, Biggerstaff et
al. [3] proposed the slightly more formal definition of pro-
gram comprehension that we use in our work:

“A person understands a program when able to
explain the program, its structure, its behavior,
its effects on its operational context, and its rela-
tionships to its application domain in terms that
are qualitatively different from the tokens used to
construct the source code of the program.”

Indeed, we drew two important insights from this defi-
nition. First, the understanding of something is a capac-
ity to explain some of its characteristics (interestingly, this
statement is backed up by research in pedagogy [6]). Sec-
ond, the explanation must be given with respect to another
knowledge domain we are supposed to know already: the
application domain in this case.

1.1 Comprehension processes

In his paper, Brooks proposed not only a definition of
program understanding but also a bottom-up cognitive pro-
cess by which software engineers reach their understanding
of a program [4]. Brooks’ model is one of those that von
Mayrhauser and Vans [17] integrated into a single meta-
model of program comprehension. This meta-model is built
from 6 components that come in 3 pairs: a top-down pro-
cess and a top-down knowledge structure, a program model
process and a program model knowledge structure, and a
situation model process and a situation model knowledge
structure. The processes build their own knowledge struc-
tures. A person who tries to understand some piece of code
would use these processes in an opportunistic way, therefore
the knowledge structures are built in parallel rather than se-
quentially. Top-down understanding applies when the code
or the type of code is familiar, thus the code is recognized
at a high conceptual level. The program model built by the

dossantosgw
Texte tapé à la machine
Published in : Proceeding ISEC '14 Proceedings of the 7th India Software Engineering Conference which should be cited to refer to this work
http://dx.doi.org/10.1145/2590748.2590758

program model process is a control-flow abstraction and it
is, according to the authors, the first mental representation
a programmer builds when facing some unknown code. This
representation is created bottom up using beacons. The sit-
uation model is a data-flow/functional abstraction of the
program. It is also built bottom up and it is complete when
every code component is connected to the program’s goal.
The construction of the situation model requires knowledge
of the real-world domain since it describes the actual code
in terms of real-world objects.

In our approach, the program comprehension artifact that
supports the program comprehension process is ezplicitly
connected to the source code. This is a key difference with
most of the theoretical work in program understanding since
we not only proposed a model of program comprehension but
also created an artifact that is linked to the source code. We
may suggest this artifact to be close to the model a main-
tenance engineer would build mentally when trying to un-
derstand some unknown program. It provides the engineer
with an abstraction of the program to help him contextual-
ize each component of the program. When trying to under-
stand the source code of a single component, the context of
this component is explicit and the link to the related source
code element straightforward. To comply with the defini-
tion of “program understanding” we adopted, we show that
our program comprehension artifact could indeed explain
the program’s structure, behavior and effects on its opera-
tional context in terms that are qualitatively different from
the programming domain. Indeed, our model is based on the
application domain concepts and, to refer to von Mayrhauser
and Vans [17], could be compared to a situation model.

Between the purpose of the program in the business do-
main and its source code, there is a large semantic gap since
the terms used and the abstraction levels are very different.
To fill this gap we build a three layer model to target the
“why”, “what” and “how” of a program :

1. The first layer represents the purpose of the program,
its goal. This layer explains why the source code was
implemented.

2. In the second layer, each explanation from the first
layer is associated with a set of small tasks describing
what the source code must do to fulfill the program’s
purpose.

3. The third layer contains, for each of the tasks, how
the code implements that task.

1.2 Outline

Section 2 introduces in detail our three-layer model of pro-
gram comprehension. Section 3 formalizes the mapping be-
tween the source code to analyze and the three-layer model.
In section 4 we first present the tool we implemented to
evaluate the power of our program comprehension artifact
in terms of its usefulness in a maintenance context (see sec-
tion 4.1). Then, and after introducing our study case, we
present the testing approach, the experiments and their re-
sults. Section 5 presents research works that relate to ours.
The direction for our future work is presented in section 6
as a conclusion.

2. BUSINESS DOMAIN MODELS

The idea of our program comprehension artifact came of
our study of the maintenance tasks. We realized that the
latter usually involve system functions since problems are

generally explained in terms of program dysfunctions. The
representation of the system’s functions in the context of
the business domain lets us express why the source code is
implemented the way it is. System’s functions must there-
fore be part of our model’s first layer of abstraction, rep-
resenting the purpose of the program. As proposed by our
comprehension model the second layer should describe what
elementary tasks should be performed to fulfill the system’s
function. These tasks are formalized as basic manipulations
of business domain concepts whose sequence of execution
describe what is required to fulfill the functionalities. Fi-
nally, the third layer represents how each manipulation in
the second layer could be implemented in the source code.
Indeed, the third layer’s elements are generic programming
constructs, e.g. loops, conditional statements and assign-
ments, which combined together would represent a possible
implementation for the manipulations. The criterion for the
decomposition of each layer’s model into sets of elements is
“atomicity”: an element of a layer should not be decompos-
able into “smaller” elements of the same layer. The atomicity
criterion helps us to narrow the complexity of our models by
forbidding the use of abstraction hierarchies and composi-
tion structures.

2.1 First Layer

The model of the program’s purpose is a list, its elements
are system’s function i.e. the business level information ma-
nipulation tasks the business user would use the system for.
Enforcing atomicity at this level means that each such func-
tion cannot be further decomposed without loosing its busi-
ness value (i.e. a business user would never execute the
system to perform one of the subtasks only). If a function
did not have a business value it could not explain why its
source code was implemented in the first place. The sys-
tem functions accepted in the first layer are then similar
to candidate services in IBM’s Software Oriented Modeling
and Architecture (SOMA) [1], which are defined as system
functions providing business value to the enterprise.

2.2 Second Layer

In the second layer, we represent each business function as
the sequence of manipulations of business domain concepts
that can carry it out. This information could be documented
using several modeling techniques, e.g. UML’s Activity Dia-
gram or Business Process Model and Notation (BPMN). We
chose BPMN because it is easier to understand for people
not working in software engineering. This is important since
the building of this level of system’s description will heavily
involve people from the business domain. In our models, we
have limited the set of BPMN elements to those in Figure 1.

GATEWAYS EVENTS | CONNEX. ACTIVITIES
<—|> Action concept
O Domain concept
Parallel Start
Sequence Task
OO @
Inclusive Exclusive End

Figure 1: The subset of BPMN components used in
the second layer

2.2.1 Manipulations

We define a manipulation as the representation of an el-
ementary processing of a business level concept, in other
words a task in BPMN since they are the basic work units
of the model notation. A model for the manipulations was
introduced in [2] that we have reused without much mod-
ification. Manipulations are thought of as simple natural
language declarative sentences like “The system computes
the taxes”. In that sentence, the business level information
being manipulated is the “taxes” and the action is “com-
putes”. Since we can ignore the subject in such sentences
(because the subject is the system), manipulations are for-
malized as pairs of concepts: an action concept, Compute and
a domain concept Taxes.

This representation of the manipulations into pairs of con-
cepts allows us to specify a criterion for non-atomicity: a
manipulation is non-atomic if we can further decompose it
into a process-like sequence of manipulations (using BPMN)
based on the same vocabulary of actions and domain con-
cepts. Thus, the atomicity of the manipulations is tightly
related to the granularity of the action and domain concep-
tualizations. It is worth mentioning that the constituent
parts (action and domain concept) are not described in the
same layer since they could not, independently, be used to
answer what does some piece of source code.

Action Concepts. The conceptualization of actions that
we use to build the manipulations is represented through
an ontology. At the root level we find two concepts: In-
formationDelivery and InformationHandling, which represent
the most general actions we believe can be performed on
business level information, either communicate it or handle
it. We limited the specialization of information communi-
cation to Receive and Send. The handling of information
is specialized following the Model View Controller (MVC)
pattern: ManipulationForControl: decision making actions
based on information, ManipulationForView: actions on in-
formation with visible outcome for the user and Manipu-
lationForModel: actions that process the information itself.
The useful specializations of ManipulationForControl are lim-
ited to ValidateInput: check that the data entered by the
user is valid. ManipulationForModel is slightly more complex
and represents the CRUD operations (Create, Read, Up-
date and Delete). Concept ManipulationForView is first spe-
cialized into Configure and RenderView. Configure is the ac-
tion of configuring any view of domain information whereas
RenderView is the action of rendering that view. The sub-
sumption hierarchy under ManipulationForModel and Manip-
ulationForView extends beyond the above-mentioned first
level of concepts; however the full presentation of these con-
cepts hierarchies would go beyond the scope the paper.

Domain Concepts. The action concept hierarchy whose
idea we first introduced in [2] is specific to our work and can
be considered a general contribution of our project, since it
is independent both from the program under analysis and
from the domain concepts. On the other hand, the modeling
of a domain concept hierarchy depends on the application
domain considered. It will then be described as part of the
practical application of our approach in section 4.2.1.

2.3 Third Layer

The third layer of our program comprehension model de-
scribes how the source code carries out the manipulations
i.e. how the action and domain concept could be expressed

in the code. In the description of the layers in section 1.1 we
focused mostly on the action part of manipulations. Actions
are represented in the third layer elements by a set of generic
programming constructs like loops, conditional statements
or assignments. For example, a Search action could be car-
ried out by the following sequence of constructs: a loop and
a conditional statement. The domain concept part of ma-
nipulations are represented by identifiers in the source code
of programs. Indeed, software engineers use combinations
of natural language words to refer to the information han-
dled by their program: variables, functions and class names.
It is very unlikely that developers would willingly obfuscate
their source code because it would then become very hard
or impossible to work with [13]. Not only has this been
agreed on [9], it has also been leveraged to extract domain
knowledge from the source code [14].

In short, the third layer elements are of two kinds: ab-
stract program constructs and generic identifiers, they “in-
stantiate” the action and domain concepts of each manipu-
lation. These layer elements are abstractions of the actual
programming language constructs that we would find in a
specific program to analyze. They are in fact translated into
actual source code (using a specific programming language
constructs) during implementation.

3. MAPPING

Because the source code is an implementation of the ele-
ments of the third layer, an explicit mapping can be made
between them. Moreover, the elements in any layer of our
program comprehension model can be linked to the ele-
ment, from the immediately upper layer, that they describe.
Hence, we are able to link the source code to the business
level function of the program (the first layer), in other words,
we can answer the why question of some source code section.
Then, we have closed the gap between the source code and
the purpose of the program, which is indeed one of the ways
to understand a program [4].

3.1 Mapping Model

The source code directly answers the how question as well.
It follows then that very little could be learned in terms
of programming comprehension by exploring a mapping be-
tween the source code and the elements composing our third
layer model. Thus, the mappings we are interested in work-
ing with link manipulations (the second layer) to the source
code implementing them. Figure 2 presents the model we
developed to guide the development of the tool described in
section 4.1. In our model, the source code is represented by
a collection of text files to stay as general as possible. With
a similar purpose, each syntactically relevant code element
is characterized as a contiguous section of source code iden-
tified by the character numbers at which the section starts
and ends.

Mapping instances link a Manipulation and a CodeSection.
This means that for every mapped code section, we know
the manipulation of information it is supposed to imple-
ment. Since the same manipulation could be involved in
several system functions, the mere mapping from manipu-
lation to source code is not enough. We must also record
the set of code sections belonging to some system’s func-
tion: FunctionalityMapping. The function mappings can
then act as a filter when exploring the mappings. Software
engineers using our system interact only with the mappings

7

| |1—<>| Functionality 0

AN

Gateways Activity

Connecnon

ProcessElement

Section

start : int
end :int

contains

CodeSection File [l Folder

contains

{inv: self.mapping.to
->intersection (self.to)->size()=0}

AN
.

FunctionalityMapping

Figure 2: Model of the mappings

relevant to the system’s function (functionality) they intend
to maintain.

3.2 Automation

The third layer’s program constructs and generic identi-
fiers linked to some manipulation could be used to heuristi-
cally search for occurrences of the manipulation in the source
code:

1. The program constructs representing the action part
of the manipulation can be translated into syntax clues
specific to the programming language.

2. The generic identifiers representing the concept part
of the manipulation can be compared to the actual
identifiers found in the source code.

The hypothesis behind this heuristic is that the presence
of program identifiers matching the concept “within” the
code representing the action is a sign of the presence of the
manipulation in this code. A methodology is being devel-
oped that leverages this technique to locate, in the code, the
manipulations involved in some business function, hence to
automate the production of the mappings. This is part of
future work.

4. EXPERIMENTATION

The goal of this experimentation is to validate our ap-
proach through the demonstration of the usefulness of a
system’s maintenance tool based on our mapping model (see
section 3). The usefulness will be tested by showing that,
using our tool, a developer would reduce the time necessary
to provide a correct answer to a maintenance task requiring
some understanding of the program to maintain. As prereq-
uisite, we verified that the users in our experiment were in-
deed able to use the information in the mapping provided by
our tool. Hence we first ran a small experiment to perform
this verification. Next, we ran the main experiment, assign-
ing the developers some non-trivial maintenance tasks that
would normally require the understanding of the program to
complete properly. The system we used in our experiments
is a large knowledge portal developed at IIT Kanpur, called
Agropedial.

Thttp://agropedia.iitk.ac.in

4.1 The Tool

The tool we developped allows users to navigate mappings
based on our model. It was developed as a set of Eclipse?
plugins with which it is possible to create, modify and nav-
igate the mappings. The manual edition of the mappings is
required since the approach is not fully automated yet.

4.1.1 Ontology representation and use

The design of a manipulation proceeds by manually select-
ing both of its composing parts. In our tool we display two
tree-views, one for each of the two ontologies, from which the
action and domain concepts are selected. The tree-views
comply with the subsumption hierarchy of the ontologies,
such as that of the action ontology. Only one ontology is
displayed at a time to keep the interface simple. However,
the selection made in the hidden tree-view remains visible
in the description of the selected manipulation (Figure 3).

#° Manipulation View 5% 2 = 0

Selected manipulation

Create UserAccount

m Concepts |
¥ 5| Information delivery
|E] Receive
|E] Send
¥ [5] Information manipulation
¥ |=] Manipulation for Control
|=| Validate input
¥ = Manipulation on Model
|Z] Create
|=| Delete
¥ =| Read
|=| Search
|Z| Update
¥ =] Manipulation for View
|Z| Configure
¥ =| Render view
¥ |5 Display content
P |5 Display collection
P |5 Display individual
¥ 5 Management interface
P |5 Content management

Figure 3: Selecting the component concepts of a ma-
nipulation

Zhttp://eclipse.org

s Process View i3

F =0

Process list
i i in vi I Validate
Display library main view Display create . da
Create new wikipage interface Wikipage input Wikipage
Create new Lser)—; @_,
Display create 1 Create T
intertace Tag Read Tac

node.module &3

*/
o [function node_content_form(3node, §form_si

[$type = node_get_types("type", ¥nodel; -
0

$form = array(});

[if (Stype->has_title) {

[$form['title'] = array(

["#type' => "textfield",

["#title' => check_plain{$type->title
| '#required' => TRUE,
|
|
|

'#default_value' => $node->title,
'#maxlength® => 255,
'#weight' =» -5,
VE|
3

common.inc 53

3584 * Foilure to write o record will ret
3505 * SAVED_UPDATED is returned dependir
3506 fobject parameter contains walues
3507 * the $table. For example, $object-=
3508 * a new node.

3509 */

*

® 3510 Function drupal_write_record($table, &1

3511 #/ Standardize $update to an array.|
3512 if (is_string(3update)) {

3513 $update = array($update);|
3514 3

3515
3516 $schema = drupal_get_schema(3table];]
3517 if (empty($schema)) {

3518 return FALSE;)

3519 3

3528

3521| // Convert to an object if needed.|
3522 if (is_array($object)) {

O

Figure 4: Source code mapped to the selected manipulation and function

4.1.2 Function Visualizer

On the top level of our model we represent the system’s
functions. In our tool they are represented as a simple list
of function names in which the user will select the one to
display. Each such function is represented as sequence of
manipulations using simplified version of BPMN (see sub-
section 2.2). Then, the selected function is visualized as a
graph using this very notation in the function visualizer.

4.1.3 Source Code Highlighting

The main purpose of the function visualizer is to allow
the user to select the corresponding manipulation to locate
in the code. Once a selection is made, the code sections
mapped to the selected elements are highlighted in the in-
terface. As explained in section 3.1 there are two mappings
from the model to the code. First we map the code that
implements some selected manipulation. This is identified
with a green (grey) background. Second, we map the code
that implements a system’s function. This is identified with
a grey outline. Of course, when selecting a manipulation
to display, the corresponding code will be highlighted both
with a grey outline and a green (grey) background since it
belongs both to the manipulation and to the function. But
other sections of the code will only be outlined in grey since
they may belong to the function but not to the manipu-
lation. This can be seen in Figure 4: the outlined code in
common . inc is involved in the selected function but not in the
currently selected manipulation. On the contrary the code
with a green (grey) background in node.module is mapped
to both the selected manipulation and the function.

4.2 Study Case

Agropedia is a social knowledge repository website. It is
enriched with a delivery network allowing the information to
be dispatched to the farmers through the mobile network,

when no Internet connection is available. The system has
been developed using several modules added on top of Dru-
pal®, a PHP based open source Content Management Sys-
tem (CMS). Although most of the modules used in Agrope-
dia are open source, some components have been developed
by the Agropedia team of developers; such is the case of the
Agrotagger module which analyzes all the documents stored
in the knowledge base to automatically assign them key-
words. The latter are chosen from Agrovoc, an agriculture
vocabulary managed by the Food and Agriculture Organi-
zation of the United Nations (FAO).

4.2.1 Business Domain

Besides the Action Ontology, the representation of the
manipulations requires the building of an ontology of appli-
cation domain concepts (see section 2.2.1). Although the
knowledge stored in Agropedia’s database belongs to the
agriculture domain, the domain of the system itself (Agro-
pedia) is that of the online communities. This is therefore
the domain to model. Rather than starting from scratch,
we were able to find a pre-defined ontology about online
communities. In the paragraph below, we will describe the
extensions we made to this ontology.

SIOC Ontology. The SIOC Initiative*’s ontology repre-
sents the concept model for Semantically-Interlinked Online
Communities (SIOC). This includes several concepts related
to CMS-based systems like Agropedia. The SIOC initiative
offers a core ontology and three complementary extension
modules: access, services and types. We focused on the
access module, which includes the concepts related to au-
thentication and authorization, e.g. roles, user-groups and
permissions. The two other modules were not relevant to

3http://drupal.org
“http://sioc-project.org

Agropedia. The reuse of ontologies being an important as-
pect in the development of ontologies, the construction of
the Agropedia ontology (our business domain ontology) was
a two-step process:

1. We first produced a conceptualization of online social
repositories that we called the Social Ecosystem On-
tology.

2. We then extended the Social Ecosystem Ontology to
produce the Agropedia ontology.

We split the process in two steps to be able to contribute
to the ontology community by sharing the Social Ecosystem
Ontology (the result of the first step). Indeed, the final
ontology is too specific to be widely sharable. Among the
concepts in the core SIOC ontology and its access module,
the following were reused in our work:

e Container: since the tool is a knowledge repository,
this is the concept representing the different kinds of
repositories. The available specializations of Container
are Forum and Thread.

e Item: something that can be placed in a container. The
existing specialization of Item is Post, a message that
can be placed in a Forum or a Thread.

e OnlineAccount: a user account in an online community
site.

Social Ecosystem Ontology. The most important ex-
tensions to the core ontology to model our domain were
made under Item and Container. The following are the new
kinds of Item:

e File

— Kinds of files: ImageFile, TextFile, AudioFile and
VideoFile.

e Post this already exists in SIOC but we added the fol-
lowing specializations :

— WikiPage which is a Post that can be modified by
multiple authors.

— Comment which is a, usually short, response to an-
other Post.

Consequently, new kinds of Container were added as well:

e Wiki: a container for WikiPage

e Blog: another container for Post, conceptually different
from Forum and Thread.

e FileContainer: a container for File

Besides the concepts related to the managed content, we
added some concepts at the root level (Thing)®:

e Device: the device used to access to the knowledge
repository.

e ComunicationChannel: the medium through which the
information is transmitted to a device.

e Tag: tags or labels associated to content pieces, which
is common in web-based information repositories.

Agropedia Domain Ontology. All Post in Agropedia
can be rated. Although rating systems are present in multi-
ple content repositories we did not consider it to be general
enough to be conceptualized in the Social Ecosystem Ontol-
ogy. We added only one new root concept in our final ex-
tension of the SIOC ontology to represent ratings of Post by
users: UserRating. The contents in Agropedia can be tagged
not only by the Agrotagger (see section 4.2) but also by the
users with terms represented in knowledge models. Then, we
had to represent the conceptualization of the latter in the

SDevice and ComunicationChannel have been further special-
ized into other concepts but they were not directly involved
in the analysis presented in this paper.

ontology. We considered knowledge models as containers for
agricultural domain concepts and relationships. Moreover,
taxonomies also exist in Agropedia and are represented as
a special kind of knowledge models. Then our extensions to
the ontology are as follows:

e Under Item we added DomainKnowledgeElement, which is
specialized into DomainConcept and DomainRelationship.

e Under Container we added DomainKnowledgeModel, a con-
tainer for DomainKnowledgeElement.

— DomainKnowledgeModel is specialized by Taxonomy: a
knowledge model containing only DomainConcept.

The next extension concerns vocabulary words. Although
a vocabulary word refers to a concept it is not itself the
concept. It is a mere string of characters. Hence:

e Under Item we added VocabularyWord, specialized by
VocabularyTag a kind of word that is used as a tag.
Then, VocabularyTag is also specialization of Tag.

e Under Container we added Vocabulary strictly contain-
ing sets of VocabularyWord.

The other extensions concern new types of containers that
are specific to Agropedia. Each one of them has a special
kind of Post it can contain. Here are a couple of examples
of these new concepts:

e CropCalendar, contains CropCalendarPost. This is used
to post an unformatted textual description of the dif-
ferent stages of the crops relevant to the month.

e DoAndDontContainer, contains DoAndDontPost. This con-
veys some very precise information about a particular
crop.

4.3 System’s Functions

In our experiments we focused on three system’s func-
tions, part of the first abstraction layer of our model: “Dis-
play the Library Interface”, “Create a New User”, “Create a
Wikipage”. All of these functions can be carried out by any
user of the system.

4.3.1 Display the Library Interface

The library contains all the documents and other materi-
als available. The display format consists of a graphic and a
table listing the library contents. The function documented
is the display of the library interface. Figure 5 shows the
decomposition of the function into manipulations.

4.3.2 Create a New User

The creation of a new user starts by showing a form to
the user. The user input is received from the interface and is
validated before actually creating the user. The funcion, as
modeled in Figure 6, ends after the sending of a notification
to the new user.

4.3.3 Create a Wikipage

Similar to the user creation, the wiki-page creation func-
tion starts by presenting a form to be filled and validated.
A possibility offered by this interface is to create new tags
simultaneously to the creation of a wiki-page. These tags
will then be attached to the new post. Figure 7 describes
the function as the simultaneous display of the two creation
interfaces, followed both by a validation and creation of the
wiki-page and by the creation of a tag or by the access to
an existing tag.

O__. Read Library @-l::

| Display as graph Librar_\g}i’ E @

| Display as table Library

Figure 5: “Display the Library Interface” function description

Display create Validate
O—D interface User | inputUser L
account acecount

Create User |__ T o2t Notification f—-{ sena Notification I—b@

account

Figure 6: “Create a New User” function description

4.4 First experiment

The test subjects in the first experiment were four stu-
dents of the Computer Science and Engineeering Depart-
ment (CSE) of IIT Kanpur who had no previous experience
with Agropedia. To reduce the effort that would have been
required for us to teach the users the features of our tool, we
designed the maintenance tasks so that they would discover
these features by themselves and learn by doing. This was
particularly important since not only the plugins used by
our tool were new to the students but the Eclipse IDE as
well. Nevertheless, a few minutes were invested before each
individual experiment to introduce the different parts of our
tool’s interface and some useful basic features offered by the
environment.

4.4.1 Tasks

Here are the basic maintenance tasks we asked the stu-
dents to perform:

1. Capitalize the project’s name in the Library view.

2. Fix a string label in the User Creation view.

3. Restrict the email addresses accepted during user cre-

ation to a particular domain.

4. Raise the minimum word policy on new wiki-pages.

The first task involves using the function visualizer to
find the <DisplayAsGraph, Library> manipulation. Before
they started with the second task, we reminded the stu-
dents that our tool allowed the mappings to be visible (high-
lighted in the source code view). However, because of the
nature of the task, a global search is also enough to locate
the code that needs to be changed. Not having used the
manipulation, some students forgot to change the manipu-
lation for the following task. Realizing about their mistake
helped them learn the working of our tool. In the third
task, the selection of the correct manipulation was neces-
sary since there was no indication of any words that could
be searched in the code directly. The fourth task didn’t
require the students to do anything new. We remarked how-
ever that, because the code was particularly obscure, the
students started paying more attention to the comments of
the code.

4.4.2 Evaluation

Because the manual mapping of the manipulations took
us two whole days to perform, we were surprised that all the
students were able to complete the experiment in less than
the allowed 45 minutes (15 minutes per task). This was even
more astonishing given the fact that only one of them had
more than little experience with PHP or Drupal. After the
experiment we asked the students two questions. They all

answered in the same way:
1. How much knowledge of the PHP syntax do you think
was required to complete the tasks?
Answer: Almost no knowledge of PHP was necessary.

2. How important was it to have understood the working

of the program to solve the tasks?

Answer: No particular effort was made to try to under-
stand the program, following the mappings was enough
to understand the code at a syntactic level.

The key result of this first experiment is the answer to
the second question. The fact that the students felt they
did not need to do any effort to understand the program
seem to confirm our hypothesis: the navigation through the
mappings is simple enough to allow a seamless transfer of in-
formation from the tool to the students. This also confirms
our model to be a good program comprehension artifact al-
lowing the users to perform some maintenance tasks that
would, without the tool, require a good understanding of
the program.

4.5 Second experiment

The second experiment assessed the usefulness of the tool
for some non trivial program maintenance. A single null
hypothesis was made:

Hy: The understanding of a program that is ac-
quired through our tool is not useful during main-
tenance tasks.

4.5.1 Variables

Since we know from the first experiment that the knowl-
edge stored in our tool can help the users with the under-
standing of a program, the second experiment must reveal if
this knowledge is useful to perform some non trivial main-
tenance task. This will be measured through the success of
the participants in a couple maintenance tasks. The latter
will be performed with and without the use of the tool. Two
dependent variables are created for each task, one measur-
ing the time each participant took to give an answer to the
task and the second representing our evaluation of his/her
answer. They are listed in Table 1.

The students in the experiment are managed by the con-
trol variable: GROU P, whose possible values are “A” and
“B”. All participants were asked to answer all tasks, how-
ever, participants with GROUP = A used the tool for one
half of the tasks while participants with GROUP = B used
the tool for the other half of the tasks. The generalization
of the results to a larger population of software engineers is
possible if we analyze the dependent variables in relation to
the independent variables in Table 2.

Display create

C interface Wikipage input Wikipag
Display create Q_’ <>_[: Create Tag

interface Tag

Validate

e [—| Create Wikipage

N @

ReadTag

Figure 7: “Create a Wikipage” function description

Table 1: Dependent variables (experiment output)
Name Values Description

TIME Seconds The time it took the participant
to give an answer to the task
DONE | Percentage | Was the answer correct (100%),
incomplete (50%) or incorrect

(0%)?

Table 2: Independent variables (experiment input)
Name | Values Description

PHP | Ordinal | The experience in PHP develop-
ment, measured on a four-level ordi-
nal scale: “None”(0), “Very little”(1),
“Average”(2) and “Expert”(3).

IDE | Ordinal | The frequency of use of the Eclipse
IDE, measured on a four-level ordinal
scale: “Never”(0), “Once”(1), “Multi-
ple times”(2) and “Regularly”(3).

4.5.2 Automation

To reduce the bias created by the presence of an experi-
menter, we documented the experiment using a small web-
site that we presented to the students before the experiment.
Besides giving them the instructions about the tasks to per-
form, the website documented the views and basic features
of the Eclipse environment as well as the new views and
features specific to our tool.

4.5.3 Tasks

The tasks to be performed by the participants of this sec-
ond experiment are based on the same functions as in the
first experiment (see section 4.3). They are categorized in
three groups:

1. Tasks about the “Display the Library Interface” func-

tion
e Task 1: Which line(s) of code should be changed
if we wish to capitalize the first letter of the name
of the project that appears in the header of the
graphic in the main Library page?
2. Tasks about the “Create a New User” function
e Task 2a: Which line(s) of code should be changed

so that only the email addresses from the “iitk.ac.in”

domain are accepted to create a new user?

e Task 2b: For the purposes of migrating the sys-
tem to a new version of Drupal, what module(s)
is/are used to send new users an email with their
passwords?

3. Tasks about the “Create a Wikipage” function

e Task 3a: Where should a change be made to
raise the minimum number of words to 10?7

e Task 3b: For the purposes of migrating the sys-

Table 3: Experiment results

Par. | GROUP | PHP | IDE | w/Tool | wo/Tool
1 A 3 1 2 1
2 A 2 2 2 1
3 A 2 0 2 0
4 A 1 2 2 0.5
5 B 2 3 2 0
6 B 1 1 2 0
7 B 1 0 2 0.5
8 B 1 1 2 0

tem to a new version of Drupal, what module(s)
is/are responsible for managing the tags attached
to Wikipages?

Task 1 being relatively easy, we used it only to famil-
iarize all the participants with the tool and the mappings,
it was left out during the analysis. The availability of the
tool for the other tasks is controlled by the GROU P vari-
able. Participants with GROUP = A answered tasks 1, 2a
and 2b with the tool and tasks 3a and 3b without the tool.
Participants with GROUP = B answered tasks 2a and 2b
without the tool and tasks 1, 3a and 3b with the tool. Ques-
tions were presented to the users in that order and the time
allowed for each task was half an hour.

4.5.4 Evaluation

We evaluate the usefulness of our tool for the maintenance
tasks in relation to the number of correct answers given in
the allowed time. The variable DONFE is used to compute
the correctness of the answers given in each group. If a stu-
dent succeeds in some maintenance task, DONFE =1 for the
task, 0 otherwise. The value displayed in Table 3 under “w/
Tool” (with tool) and “wo/Tool” (without tool) is the sum,
per participant (Par.), of the DONE value of the questions
in each group.

Let’s assume the variables x and y follow a normal distri-
bution and represent “w/Tool” and “wo/Tool”, respectively.
Since both z and y correspond to the same participant, a
paired t-test can be used to reject Hy. To apply this test,
our null hypothesis becomes:

Ho: pa =0, where d; =z, —y;,0=1...8

The alternative hypothesis is that the users with the tool
perform better (Hi : ug > 0). Therefore Hy can be rejected
if [to] > 2.365 (statistical significance at 5%) [18], where

to = #‘l\/ﬁ, Sq being d’s standard deviation. As a result:
Hj is rejected given that the estimated o is 10.3705

Generalization. Although we were not able to com-
pletely control the PH P and I DE variables, we believe their
distribution allows us to make a fair generalization. Figure 8
and Figure 9 show a couple of graphics about the time it took

]
]
]

1000

TIME (s)

F

Figure 8: Analysis of the distribution of the PHP

control variable.

Count

1

[1]
|
1

1

TIME (s)

R
1T
1

o ; . ; . ;
0 1 2
PHP

Figure 9: Analysis of the distribution of the IDFE
control variable.

for the participants to give a correct answer in relation to the
two control variables. The upper sub-graphic in each figure
shows the number of participants for each control-variable
value. For example, 3 participants are reported as having
an “Average” (PH P = 2) experience with the programming
language. The lower graphic shows a box plot of the time the
users in each group spent to give a correct answer. In both
cases we observe that similar amounts of time were spent
by participants in each category. There also seems to be no
relation between the time spent and the reported experience
with the language or the environment: PHP = 3 partici-
pants were faster than PH P = 2 but slower than PHP =1,
IDFE = 2 participants were slower than both IDE =1 and
IDE = 3.

We conclude that the rejection of Hy is likely to be gen-
eralizable to software programmers with different levels of
experience with the programming language and the devel-
opment environment.

5. RELATED WORK

Our approach bears some similarity to that of Gold [8] who
designed a system (HB-CA) to solve the concept assignment
problem. His system uses a knowledge base of programming
concepts that play the same role as the business domain
model in our work. His technique resembles ours since the
programming notions used in his system, such as: “read file”,
“write file” or “compute value” are close to our concept of
manipulation. Gold’s programming notion actions seem to
be the first reference to the use of actions in the concept
assignment problem. However, our approach is much more
sophisticated since our atomic manipulations are grounded

in a 3 levels of abstraction model and are built from two
hierarchies of concepts forming each an independent ontol-
ogy. In particular, the verb list used by Gold remains very
basic and cannot be readily applied to other domains. Very
recently, actions have been modeled as ontological concepts
in robotics. Kobayashi et al. [11] did use the actions ref-
erenced in the Japanese version of Wikipedia as the set of
possible actions that a robot can perform. But the set of
atomic actions in the resulting ontology is extremely ba-
sic. Indeed all but one of the atomic actions are distributed
in a single level. The authors also propose to compound
actions into static sequences of actions. These sequences
might remind us of our second layer describing the manipu-
lation in BPMN, but are much simpler. Using ontologies in
a similar manner, Parisi et al. [12] dealt with the problem
of “animating” a 3D robot model using a script in natural
language. To automate the process, the authors proposed to
parse the scripts using the Standford Parser. Nouns, verbs
and adjectives would then be matched to concepts from the
“ResearchCyc” ontology (an upper ontology). Their work
was not completed in the prototype. A test case was only
proposed as future work. The interest in the use of ontolo-
gies in software engineering is relatively new. Djuric and
Devedzic [7] first explain that the Semantic Web may have
absorbed all the resources in the area of ontology languages
and tools. So, very few people focus on the use of ontologies
in programming or software engineering. However, in their
article the authors describe a new meta-DSL programming
language based on ALL(D) called “Magic Potion”. One ad-
vantage of this language is the possibility of using a reasoner
to answer logical queries on the semantic information repre-
sented in a program. It is worth mentioning that our tool
could take advantage of this possibility as well since ontolo-
gies enable reasoning about concepts. However, it should be
tested whether the use of query languages could represent a
barrier to the smooth transfer of information from our tool
to the user. The management of traceability links can also
be seen as a possible result of our approach. Traceability
links do map requirements to source code. Since require-
ments are expressed as high-level program’s function, our
tool does record traceability links. It is known that the
number of traceability links grows exponentially with the
size and complexity of a system [5]. Tools are therefore re-
quired to manage them. However, Kannenberg et Saiedian
noticed in [10] that manual methods are still preferred in
industry, probably because the tools available are not fully
automated and still need manual intervention, which notice-
ably reduces the reliability of the traceability links.

6. CONCLUSION

In this paper we propose a rigorous source code compre-
hension model built as a hierarchy of three abstraction lev-
els that link the source code elements to the purpose of the
program. This model leverages the notion of action ontol-
ogy that we first introduced in [2]. Indeed we showed how
the high level business-related function of a program can
be decomposed as sequences of manipulations represented
as BPMN diagrams. The model allowed us to design a tool
under Eclipse to help with the maintenance of programs. To
validate our approach we designed two experiments to check
if code maintenance was indeed easier with the help of the
tool. The results of the experiment were very encouraging
since they showed that the users of the tool overperformed

the non users to a large extent. In particular the tool has
proven to be easy to learn and use, and it did improve the
performance of the software engineers in non trivial source
code maintenance tasks of a large system (see section 4.5.4).
Our approach is opened to the automation of the creation
of the mappings from the source code to the manipulations.
This represents our next research goal since, despite its use-
fulness, the manual mapping of the source code is very labo-
rious to produce. The automation would also make our tool
very interesting in the context of traceability management.
Indeed the traceability links could be recomputed anytime
to reflect the changes in the source code (a very time expen-
sive and error prone task to perform by hand).

7. REFERENCES

[1] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah,

S. Ganapathy, and K. Holley. SOMA: A method for
developing service-oriented solutions. IBM Systems
Journal, 47(3):377-396, 2008.

[2] J. Belmonte and P. Dugerdil. Using domain ontologies
in a dynamic analysis for program comprehension. In
2nd International Workshop on Ontology-Driven
Software Engineering, Oct. 2010.

[3] T. J. Biggerstaff and B. Mitbander. Program
understanding and the concept assignment problem.
Communications of the ACM, 37(5):72-82, May 1994.

[4] R. Brooks. Towards a theory of the comprehension of
computer programs. International Journal of
Human-Computer Studies, 18(6):543-554, June 1983.

[5] J. Cleland-Huang, C. K. Chang, and M. Christensen.
Event-based traceability for managing evolutionary
change. IEEE Transactions on Software Engineering,
29(9):796-810, Sept. 2003.

[6] A. de La Garanderie. Comprendre et Imaginer. Les
gestes mentaux et leur mise en ceuvre. Centurion,
Sept. 1987.

[7] D. Djuric and V. Devedzic. Incorporating the
Ontology Paradigm Into Software Engineering:
Enhancing Domain-Driven Programming in
Clojure/Java. Systems, Man, and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on,
42(1):3-14, May 2011.

[8] N. Gold. Hypothesis-Based Concept Assignment to
Support Software Maintenance. PhD thesis, University
of Durham, Aug. 2000.

[9] S. Haiduc and A. Marcus. On the Use of Domain
Terms in Source Code. In 16th IEEE International
Conference on Program Comprehension, pages
113-122, June 2008.

[10] A. Kannenberg and H. Saiedian. Why Software
Requirements Traceability Remains a Challenge.
CrossTalk The Journal of Defense Software
Engineering, 2009.

[11] S. Kobayashi, S. Tamagawa, T. Morita, and
T. Yamaguchi. Intelligent Humanoid Robot with
Japanese Wikipedia Ontology and Robot Action
Ontology. In 6th ACM/IEEE International Conference
on Human-Robot Interaction, pages 417-424, 2011.

[12] S. Parisi, J. Bauch, J. Berssenbriigge, and
R. Radkowski. Ontology-driven Generation of 3D
Animations for Training and Maintenance. In
International Conference on Multimedia and

(13]

(14]

(15]

(16]

(17]

(18]

Ubiquitous Engineering, pages 608-614, 2007.

D. Ratiu. Reverse Engineering Domain Models from
Source Code. In International Workshop on Reverse
Engineering Models from Software Artifacts, 2009.

D. Ratiu, M. Feilkas, and J. Jiirjens. Extracting
Domain Ontologies from Domain Specific APIs. In
12th European Conference on Software Maintenance
and Reengineering, pages 203-212, 2008.

S. Rugaber. The use of domain knowledge in program
understanding. Annals of Software Engineering,
9(1-2):143-192, May 2000.

B. Shneiderman. Software psychology: Human factors
in computer and information systems. Jan. 1980.

A. von Mayrhauser and A. M. Vans. Program
comprehension during software maintenance and
evolution. Computer, 28(8):44-55, Aug. 1995.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson,

B. Regnell, and W. Anders. Experimentation in
software engineering. Springer, 2012.

	Introduction
	Comprehension processes
	Outline

	Business Domain Models
	First Layer
	Second Layer
	Manipulations

	Third Layer

	Mapping
	Mapping Model
	Automation

	Experimentation
	The Tool
	Ontology representation and use
	Function Visualizer
	Source Code Highlighting

	Study Case
	Business Domain

	System's Functions
	Display the Library Interface
	Create a New User
	Create a Wikipage

	First experiment
	Tasks
	Evaluation

	Second experiment
	Variables
	Automation
	Tasks
	Evaluation

	Related Work
	Conclusion
	References

