Files

Abstract

The precise microenvironments required for optimal expansion or differentiation of stem cells are only beginning to emerge now, and the controlled differentiation of embryonic stem cells based on tissue engineering remains a relatively unexplored field. We have developed a small-volume in vitro system in which 3D neural tissues derived from embryonic stem cells are placed within up to four micro-chambers connected by micro-channels. Multi-electrode arrays (M.E.A.) were designed onto the porous membranes to record and stimulate electrophysiological activities from 3D neural tissues. A dedicated perfusion system based on air pressure was used to allow the circulation of the culture medium to the different micro-organs through a microfluidic system. This human biochip will enable the determination of toxicological profiles of new drug candidates.

Details

Actions

Preview