
Architecting Mobile Enterprise App
A Modeling Approach to Adapt Enterprise Applications to the Mobile

Philippe Dugerdil

Geneva School of Business Administration
Univ. of Applied Sciences of Western Switzerland
7 route de Drize, CH-1227 Geneva, Switzerland

Philippe.dugerdil@hesge.ch

Abstract

Mobile business applications have become the trend of the day.
However, studies suggest that most of the mobile business appli-
cations so far are lightweight, consisting of a few thousand lines
of code. Indeed, most of these mobile business apps are nothing
more than specialized information query engines relying on the
backend server to process the queries. However, we now see a
trend toward making enterprise-size apps mobile1. But if the
“design while coding” approach may have worked for limited size
applications, this is clearly not enough for enterprise-size apps.
Indeed, such applications will encounter the same maintenance
problems as traditional applications. In this paper we propose an
agile architecting approach to adapt the enterprise apps to the
mobile. This approach promotes the code understandability Quali-
ty Attribute to lower the future maintenance cost of the applica-
tion.

Categories and Subject Descriptors 1.2.10 [Software Engi-
neering]: Software Architectures – Languages, Patterns

General Terms Documentation, Design, Theory

Keywords Robustness diagram, Architecture patterns, Quality
Atributes, Tactics, Mobile enterprise app design.

1. Introduction

According to several surveys, mobile business applications are the
trend of the day, although not all surveys agree on the strength of
the trend [3][15] [29]. However, studies suggest that most of the
mobile business apps are lightweight, consisting of a few thou-
sand lines of code [27][15]. Indeed, first generation mobile busi-
ness apps were little more than specialized information query
engines relying on the backend server to process the queries. With
the growing interest in B2B and B2E mobile apps [15], mobile
development becomes mainstream.

1 Such as the IBM’s Mobile First initiative.

But, if the “design while coding” approach may have worked for
first generation mobile apps, this is clearly not enough for the new
generation of enterprise-size apps. Indeed, such application will
likely encounter the same maintenance problems as traditional
distributed application, with a few more specific problems due to
mobility. Therefore, time is right for the adoption of a more for-
mal, but agile, development process such as Scrum [9] that was
lacking so far. The challenge is really to “scale up” mobile devel-
opment [27]. Although many issues must be resolved, in this
paper we concentrate on the architectural issues of migrating
enterprise apps to the mobile device, while keeping the system
“understandable” to lower the cost of maintenance2. Again, this
architecting phase must be compatible with an agile methodology.
This is why we introduce a pattern-based technique supported by
the well-known Robustness Diagrams of UML [22][1]. Both these
approaches are not new, but we found them especially adapted to
the agile architecting of mobile applications. It is worth mention-
ing that some researchers do believe in the MDD/MDE approach
as a solution to the “code once deploy everywhere” paradigm [5]
[21]. However, this approach is controversial since it only speeds
up a tiny part of the software development lifecycle, namely code
generation [10]. Moreover the detailed models required to gener-
ate the code are not compatible with the agile approach.
In section 2, we present the challenges of the migration of an
enterprise application to the mobile platform. In section 3 we
provide a small reminder of the robustness diagram concepts. In
section 4 we show how the semantics of the software components
can be specified using the robustness objects and the CRC cards.
In section 5 we elaborate on the development of distributed and
mobile applications. In section 6 we present the way the mobile
and server part of the application architecture can be modeled
using the robustness diagram. Section 7 addresses some important
quality attributes of the mobile version of the application. Finally
section 8 concludes the paper.

2. Migrating enterprise applications

Enterprises have developed hundreds of applications over the
years. When an enterprise application must go mobile, the engi-
neering question is [24]: “How do I transform my existing enter-
prise application to be mobile enabled”. What people want to
achieve is to offer the same services on the mobile platform as on
the desktop and to allow the users to be immediately comfortable

2 Nowadays it is widely known that the maintenance part of the software
lifecycle amounts to about 60%-80% of the total cost [25], among which
code understanding is estimated to take the the lion’s share (about 50%).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
MobileDeLi’13, October 28, 2013, Indianapolis, Indiana, USA.
Copyright © 2013 ACM 978-1-4503-2603-2/13/10…$15.00.
http://dx.doi.org/10.1145/2542128.2542131.

dossantosgw
Texte tapé à la machine

dossantosgw
Texte tapé à la machine

dossantosgw
Texte tapé à la machine
Published in MobileDeLi '13 Proceedings of the 2013 ACM workshop on Mobile development lifecycle, pp.9-14 which should be cited to refer to this work.

with the mobile version. Some researchers addressed the chal-
lenge of producing mobile app for several mobile platforms while
minimizing the re-development effort through a Model Driven
Development approach [21] [5][19][13][24]. But we targeted
another challenge: how to build the mobile version of an existing
enterprise application while maximizing its understandability. To
support this goal, we propose a new tactic [4] for the Under-
standability Quality Attribute that we call “Mimic Architecture”:
the best way to make some software artifact understandable by a
maintenance engineer is to build it similarly to some other artifact
the maintenance engineer already understands. Consequently we
propose to mimic, on the mobile, the architecture of the client-
server version of the application (below, we call it the desktop
version since the front-end is a desktop machine). Of course plat-
form constraints will somewhat impact the final design of the
technical architecture on the mobile. But our tactic will allow the
maintenance engineer to be comfortable with the mobile version
of the application while enabling him to adapt it to the specifics of
the platform. Now what we need is an agile way to model the
architecture. We found the Robustness Diagrams of UML [22]
(also called the Analysis Diagram) to be a perfect fit for the task,
targeting the right level of detail. The use of the robustness dia-
gram could appear old-fashioned compared with modern software
architecture languages. But Rosenberg et al. wrote [23] in the
context of the Iconix methodology p.41 : “Robustness diagrams:
We “rescued” these from Jacobson’s Objectory work because we
discovered that use case–driven development simply worked
better with these diagrams than without them”. We could say the
same in our context. Hence, starting from a scenario-based archi-
tecting process using the robustness diagram, we show how the
application of well-known patterns helps the mobile application
designer to represent the key design elements. Finally it must be
highlighted that robustness modeling is independent of any specif-
ic implementation technique and operating system.

3. Background : Robustness Diagrams

The Robustness diagram emerged from the work of Ivar Jacobson
in the early 90’s [16]. It is included in UML (the analysis dia-
gram3) and is one of the models of the Unified Process (UP).
Some agile development methodologies have embraced the ro-
bustness diagram as the first (or even the only) step in the building
of the architecture of an application (see for example Agile Mod-
eling [2] and Iconix [23]). Robustness diagrams use 3 UML stere-
otypes called the Boundary, the Controller (or Control Object)
and the Entity which have their own specific icon. They represent
the three fundamental roles software elements could play in a
system: communicating with the outside world (Boundary), stor-
ing information (Entity) and processing information (Controller).
The latter also coordinates the work of the other two elements
(Boundary and Entity) to implement a use-case. Each use-case
could be assigned either a single Controller to manage all the
activities in the use-case or several Controllers to manage each
individual subtasks in the use-case [1]. To represent the external
entities (user or device) with which our own system must com-
municate, UML uses the Actor modeling element. Although Ja-
cobson initially recommended using one Boundary per actor [16],
the trend today for human actors is rather to use one Boundary per
screen or per interaction mode. In figure 1, we present the exam-
ple of a robustness diagram for the Borrow Book use-case of a

3 Robustness diagram are supported in Rational Software Architect when
applying the UML profile : “RUP Analysis” to a model

simple library management system. User and Printer are actors.
QueryScreen and PrinterInterface are Boundary objects, Manage
borrowings is a Controller and finally Book and Borrower are
both Entity objects. The links between the object represent collab-
orations (as identified in the CRC cards [28] of each object).

Figure 1. Robustness diagram

These five objects represent the high level roles of the software
elements required to implement the use-case. It is important to
highlight that Boundaries are only interfaces to communicate with
the actors. If the communication with an actor is complex, the
handshake must be processed by a specific Controller [16]. In the
example above, if the communication with the Printer is complex
we could add a specific Controller to manage it. This diagram is
well suited to the description of architectures at the communica-
tion, data access and processing element level. This is indeed the
right level of description to design distributed application archi-
tectures, without delving into technical details that would hide the
key elements’ responsibilities.
Use case analysis is basically conducted in three phases.
First: identify the candidate objects to implement the use-case:
 Identify the actors and assign one Boundary object for each

actor (one per screen or interaction mode for human actors).
 Identify the information sources accessed in the use-case

and create one Entity object per source.
 Identify the subtasks in the use-case and assign a Controller

to each of them. Also, assign a Controller to each complex
communication with an actor.

Second: analyze each step of the use-case and assign responsibili-
ties to each of the robustness objects involved in the step. The
result of this analysis can be documented using CRC cards [28].
Third, verify that the collaboration of all the analyzed robustness
objects do implement the behavior specified by the use-case.
Sequence diagram are sometimes used to perform this validation.
The integrity rules for robustness diagrams are simple [22]:
 Actors can only communicate with Boundaries.
 Boundaries can only communicate with Controllers.
 Entities can communicate with Controllers and Entities.
 Controllers can communicate with all objects.

This technique works well to represent the responsibilities of the
components of a distributed application [18]. When an application
is split in two or more subsystems distributed over a network,
each subsystem sees the other subsystems it must collaborate with
as actors (Figure 2).

Figure 2. Modeling the environment as actors

Boundaries are therefore used to communicate with these actors.
Following the same idea, from a mobile device the server system
it must collaborate with is considered as an actor. The same is true
for the mobile device seen from the server.

4. Component’s functional semantics

When designing the large grain logical architecture of an applica-
tion, which is done early in a project, one key step is to identify
the components and assign them responsibilities. This is challeng-
ing since the components’ responsibilities come from the con-
tained implementation classes which are unknown at this stage.
However, the robustness diagram can help. Indeed, by assigning
robustness objects to a component we simultaneously define its
functional semantics. The latter will be derived from the contained
robustness objects’ responsibilities. The size of the components
(the number and kind of robustness objects contained) is decided
based on the coupling, cohesion and reuse potential of the compo-
nent. Cohesion and coupling can be determined from the collabo-
ration among the robustness objects that is described in their CRC
cards [28]. In figure 3 we present the way the semantics is as-
signed to a component which comes from the responsibilities of
the contained robustness objects. As we can observe, the Custom-
erMgt component contains two robustness objects. Its responsibil-
ities are therefore those described in the contained objects’ CRC
card. In the CustomerValidation CRC card we see that the Con-
troller must collaborate with the Entities Person, Book and Bor-
rowing located in another component. Therefore this creates some
coupling between both components.

Figure 3. Component semantics

As the next step in the design of a logical architecture, the com-
ponents can be arranged in layers to reflect their reuse potential.
Figure 4 presents the logical architecture of our simple library
application. We only present the borrow book service which uses
the customer validation service. In the application-specific layer
we place the Borrowing component which represents an end-user
service specified by a use-case. This component uses the Custom-
erValidation component whose responsibility is to validate the
information about the customer (display of the customer’s infor-
mation, validate the number of books borrowable simultaneous-
ly,…). Since the latter is potentially reusable by some other appli-
cation-specific component, it is located in the domain-specific
layer. The DOM component (Domain Object Model) contains the
access to the information data sources, in particular the infor-
mation on users, books and borrowings. Finally the System com-
ponent is responsible for the printing services. It contains the
printer interface (Boundary) and a Controller used to manage the

communication with the printer which is supposed to be complex.
In particular, this Conroller would format information before
sending it to the printer.

Figure 4. Logical architecture of a simple library system

5. Distributed vs mobile computing

Traditionally, applications get distributed to satisfy several quality
attributes such as performance, reliability, security, etc [26]. The
implementation is usually distributed among several powerful
server machines in well monitored environments. But in the case
of the mobile version of an enterprise application the situation is
quite different. The motivation is to make information more ac-
cessible by adding a new information distribution channel. But the
mobile devices are neither as powerful nor as seamlessly connect-
ed as the server machines. In particular, when information is
stored both on the mobile and on the server, intermittent network
access may lead to a partition [6]. Therefore, the quality attributes
to address with the mobile version of the enterprise application are

1. Usability
2. Performance
3. Maintainability
4. Consistency of application’s data
5. Availability of service
6. Partition tolerance

Although usability and performance have probably been properly
addressed when building the desktop version of the enterprise
application, they must be reworked to adapt it to the mobile de-
vice’s environment (screen size, specific input devices, low com-
munication bandwidth,…). Maintainability must also be ad-
dressed because it is highly desirable not to worsen the maintaina-
bility of the application when moving it to the mobile. The last
three quality attributes are closely interdependent through the
famous CAP theorem [6]. When the mobile device is disconnect-
ed from the network, users of the enterprise app should nonethe-
less be able to continue working with the device. In this case, the
challenge is to manage the partition explicitly by properly detect-
ing it and recovering it [6]. For example this challenge has been
faced by the designers of Agropedia [20], a big agricultural
knowledge base and social media in India, when moving to the
mobile. Indeed, when working in a rural location in India, the
network may not be available at all but the users must nonetheless
be able to work with the application4. In order to cope with the

4 T.V. Prabhakar, private conversation, 2013.

problem, the first step to architect the mobile version of the appli-
cation is to assess the desired value for each quality attribute. Next
the application must be architected to comply with these quality
attribute values [4]. It is worth mentioning that the Mobile Cloud
Computing approach is not an answer to the network availability
problem since it requires all computation and data storage be
localized in the cloud [11]. This supposes accessibility to the
Mobile Network services. As far as application architecture is
concerned, to enhance maintainability all these constraints and
challenges must explicitly be dealt with in the design. This is an
instance of the Designers’ Paradox [14]: “If you want to be flexi-
ble and independent of something, it must be explicitly covered in
the design; otherwise you risk an implicit coupling that resists
change”. These design constraints will therefore be explicitly
represented in the robustness model and the responsibilities ob-
jects.

6. Robustness diagram for mobile computing

When moving an application to a distributed architecture, a few
concepts from the Pattern community are helpful. First and fore-
most the Proxy pattern followed by the Façade pattern [7][12].
However, to optimize the understandability of the mobile version
of an enterprise app we apply the Mimic Architecture tactic i.e. we
build, on the mobile, a component topology similar to that of the
client-server version and add the communication components on
both sides (on the mobile device and on the enterprise server).
Next, we carefully adapt this logical architecture to account for
the desired quality attributes while trying to maintain the under-
standability of the resulting architecture. Let us consider again the
example of the simple library system architecture (Fig.4). On the
server side we must first add the component that will manage the
remote access from the mobile device (Fig.5, highlighted).

Figure 5. Logical architecture of the desktop version with remote
access

At this level of granularity, the mobile device is modeled as an
Actor connected to a specific Boundary (MobileInerface). Since
the communication is complex, we must manage it explicitly. This
is represented by the Controller object called RemoteFacade.
Indeed this represents a Façade because all the services offered by
the enterprise server will be access through this object. The com-
munication component must be located in the application specific
layer because it will expose services implemented by objects in
the same layer and the layer below (BorrowBook and Customer-
Validation). Therefore it cannot be located in the domain specific

layer to comply with the strict top-down access principle among
the layers. Now we must model the mobile device’s logical archi-
tecture. We start with the same architecture as the desktop version
but replace the Controllers with Controller proxies. At this level
of design, proxies must be understood as responsibility proxies.
Indeed they have the same responsibilities as their server’s coun-
terpart but will actually forward some or all of the responsibility
requests to them. The choice of the request to process locally or to
forward to the server will depend on the desired quality attributes
(availability, performance, consistency of data, partition toler-
ance). Finally we must also add an extra component that will
manage the remote access to the server (Fig.6, highlighted)

Figure 6. Mobile’s logical application architecture

All the Boundaries but ServerInterface represent the UI on the
mobile device and are therefore specific to the device. The Bor-
rowBookProxy and CustomerValidationProxy Controllers expose
the same services as their server counterpart. They process the
requests issued from the screens either locally or by forwarding
the request to their server’s counterpart. However, these proxies
do not communicate with the remote server directly but through
the communication component which contains the RemoteFa-
cadeProxy, the counterpart of the RemoteFacade on the server
The former is the single point of communication with the server.
The RemoteAccess component on the mobile is not located in the
application-specific layer but in the domain-specific layer since it
must be accessible from the component in this very layer too (for
example the CustomerValidation-remote component). This is the
only topological dissymmetry between the logical architectures in
the mobile and in the desktop versions. It must be highlighted that
the mobile application architecture is “lighter” than the desktop
version since most of the processing and data are located on the
server and accessed through the proxies. But the topology remains
globally the same which promotes better understanding by the
maintenance engineer (provided that he knows the desktop ver-
sion of course). The main specific parts in the mobile version of
the application are the user interfaces represented by the bounda-
ries in the Borrowing-remote and CustomerValidation-remote
components. They must optimize the usability quality attribute
(QA) through the relevant use of the UI tools of the device. The
following figure (Fig.7) shows the communication path from a
request issued through the BookScreenRemote on the mobile
device to the book information source which contains the infor-
mation to be displayed (the detailed information on a book).
Although this architecture is simple and optimizes the under-

standability QA hence the maintainability QA, it may not satisfy
some of the other QA’s. In particular, performance may be heavi-
ly impacted in case of poor network connection.

Figure 7. Communication path from the mobile to the server

7. Improving Performance Consistency &
Avalability

In the design presented above, a low network bandwidth will
affect the Performance QA of the mobile application while an
intermittent access to the network will impact its Availability QA.

Figure 8. Mobile’s logical architecture with data cache

To improve these QAs, one must add some extra responsibility to
the proxies. To improve performance problems due to slow net-

work connections, we could implement a data cache managed by
the RemoteFacadeProxy on the mobile device (Cache Proxy
pattern [7]), see figure 8. If however the network connection may
not be available all the time, we may decide to copy parts of the
database on the device which will then lead to a partition. In this
case the logical architecture on the mobile will even be closer to
that of the desktop version (compare with figure 4). Hence, some
of the services of the server application will be replicated to the
corresponding proxies on the mobile, which will therefore become
semi-proxies. The choice of the services to replicate depends on
the required levels of the Performance, Consistency, Availability
and Partition Tolerance QAs. Figure 9 presents such an option.

Figure 9. Mobile’s logical architecture with DB replication

A new Controller (ReplicationMgr) has been introduced in the
DOM-remote component to manage the replication of data from
the server to the mobile device. Finally, on the server side the
multiple accesses from several mobile devices could be controlled
by the RemoteFacade to implement different synchronization
strategies using for example the Proactor pattern [26]. This be-
havior will consequently be documented in the CRC card of the
RemoteFacade object.

8. Conclusion

In this paper we present an approach to model the high level
logical architecture of mobile enterprise applications. We applied
it to the problem of the migration of a desktop-based client server
enterprise application to the mobile. The technique is based on a
well-known modeling technique: the UML Robustness Diagram,
supplemented by architectural patterns. We have showed how this
diagram can help the designers to address and document the key
architectural decision in the process, without delving into tech-
nical details. We found this technique to be at the adequate granu-
larity level to let the designer select the fundamental architectural
options while staying agile. In particular, the distribution of pro-
cessing and data can easily be represented. In contrast with the
approaches based on MDE, our proposal represents a higher level
of abstraction and does not target the same issue. Rather than
trying to generate code from a model, then requiring this model to
include all the specifications to the finest level of logical details,
we stay at a higher level of abstraction to represent only the large
grain options. To increase the software architecture understanda-
bility, we propose a new tactic for the migration of enterprise
applications to the mobile: Mimic Architecture. This tactic sug-
gests that the software on the mobile be architected similarly to

that of the desktop version. Therefore, the maintenance engineers
will be able to immediately understand the role and responsibili-
ties of the components on the mobile since they are supposed to
know already the architecture of the desktop version. Our contri-
bution is therefore:
1. To show how the robustness objects can be used to specify

the functional semantics of the components of some logical
software architecture.

2. To show how the robustness diagram can help with the ar-
chitecting of the mobile part of an enterprise application.

3. The proposal of a new tactic, Mimic Architecture, to im-
prove the understandability hence the maintainability of
mobile enterprise apps.

9. State of the art

Although research papers abound in the domain of code writing
and generation for the mobile platform, there are almost no refer-
ences on the migration of enterprise app to the mobile and on the
high level modeling of such applications. For example Parada and
de Brisolara [21] present and MDE approach for android which
target the very detailed level of application architecture. The same
is true to the approach of Balagtas-Fernandez [5], Khambati et al.
[19], Heitkötter et al. [13] or Roychoudhury and Kulkarni [24].
The proposal of Bowen and Hinze [8] also target the generation of
code from models but the latters are much more formal than in our
approach. Indeed the generated code can be inputted to a device
emulator of their own. Again, in all these approaches, the models
required to generate the code are very detailed and obfuscate the
key decision to satisfy the QAs. Moreover this level of model
design is not very compatible with the agile processes.

Acknowledgement

The author would like to express his gratitude to Prof. T.V. Prab-
hakar from IIT Kanpur, India, for very helpful discussion on the
mobile version of the Agropedia system [20].

References
[1] Ambler S. Robustness Diagrams. http://www.agilemodeling.com/

artifacts/robustnessDiagram.htm. (Accessed in August 2013).

[2] Ambler S. Agile Modeling: Effective Practices for eXtreme Pro-
gramming and the Unified Process. Wiley (2002).

[3] Appcelerator/IDC Q2 2013 Mobile Developer report.
www.appcelerator.com.s3.amazonaws.com/pdf/developer-survey-
Q2-2013.pdf. (Accessed in August 2013).

[4] Bass L., Clements P., Kazman R. Software Architecture in Practice
3rd edition. Addison-Wesley (2013).

[5] Balagtas-Fernandez F.T. Model-Driven Development of Mobile
Applications. Proc. 23rd IEEE/ACM Int. Conf. on Automated Soft-
ware Engineering (2008).

[6] Brewer E. CAP Twelve Years Later: How the “Rules” Have
Changed. IEEE Computer 45(2) (Feb 2012).

[7] Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal M
Pattern-Oriented Software Architecture Volume 1: A System of Pat-
terns. Wiley (1996).

[8] Bowen J., Hinze A. Supporting Mobile Application Development
with Model-Driven Emulation. Proc. of the Fourth International-
Workshop on Formal Methods for Interactive Systems (2011).

[9] Cohn M. Succeeding with agile: software development using
Scrum. Addison-Wesley (2010).

[10] den Haan J. Why there is no future for Model Driven Development.
www.theenterprisearchitect.eu/archive/2011/01/25/why-there-is-no-
future-for-model-driven-development (Accessed in August 2013).

[11] Dinh H.T., Lee C., Niyato D., Wang P. A survey of mobile cloud
computing: architecture, applications, and approaches. Wireless
Communications and Mobile Computing. wileyonlinelibrary.com,
(Accessed in August 2013).

[12] Gamma E., Helm R., Johnson R., Vlisside J. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley
(1995)

[13] Heitkötter H., Majchrzak T.A., Kuchen H. Cross-Platform Model-
Driven Development of Mobile Applications with MD2. Proc of the
ACM Symposium on Applied Computing (SAC) (2013).

[14] Hubert R. - Convergent Architecture: Building Model-Driven J2EE
Systems with UML. Wiley (2002).

[15] IDC Predictions 2013: Competing on the 3rd Platform.
www.idc.com/research/Predictions13/downloadable/238044.pdf
(Accessed in August 2013).

[16] InfoQ Survey: The State of Mobile Development in Q3 2013.
www.infoq.com/news/2013/07/state-mobile-2013. (Accessed in
August 2013).

[17] Jacobson I. Object Oriented Software Engineering: A Use Case
Driven Approach. Addison-Wesley (1992).

[18] Jacobson I., Griss M., Jonsson P. Software Reuse. Addison-Wesley
(1997).

[19] Khambati A., Grundy J., Warren J., Hosking J. Model-driven De-
velopment of Mobile Personal Health Care Applications. Proc.
IEEE Int. Conf. of Automated Software Engineering (ASE) (2008).

[20] Pappu N., Sarkar R., T.V. Prabhakar. Agropedia: Humanization of
Agricultural Knowledge. IEEE Internet Computing 14(5). (Sept.-
Oct. 2010).

[21] Parada A.G., de Brisolara L.B. A model driven approach for An-
droid applications development. Proc. Brazilian Symposium on
Computing System Engineering (SBESC) (2012).

[22] Rosenberg D. Use Case Driven Object Modeling with UML : A
Practical Approach. Adison-Wesley (1999).

[23] Rosenberg, D., Stephens, M. & Collins-Cope, M. Agile Develop-
ment with ICONIX Process. Apress (2005).

[24] Roychoudhury S., Kulkarni V. Mobile Enabling Enterprise Busi-
ness Applications Using Model driven Engineering Techniques.
Proc. 2nd Workshop on Software Engineering for Mobile Applica-
tion Development MobiCase'11 (2011).

[25] Rugaber S. - Program Comprehension For Reverse Engineering.
Proc. AAAI Workshop on AI and Automated Program Understand-
ing. (1992).

[26] Schmidt D., Stal M., Rohnert H., Buschmann F. Pattern-Oriented
Software Architecture Volume 2: Patterns for Concurrent and Net-
worked Objects. Wiley (2000).

[27] Wasserman A.I. - Software Engineering Issues for Mobile Applica-
tion Development. Proc. 2nd Workshop on Software Engineering
for Mobile Application Development MobiCase'11 (2011).

[28] Wirfs-Brock R., McKean A. Object Design: Roles, Responsibilities,
and Collaborations. Addison-Wesley (2003)

[29] Zend Developer Pulse Survey - Second Quarter 2013.
http://static.zend.com/topics/Zend-Developer-Pulse-report-Q2-
2013-0523-EN.pdf (Accessed in August 2013).

