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ABSTRACT: 
 
Medicine is an increasingly data intensive discipline, with a growing need to link individual patient 
health records to rapidly changing research knowledge for better differential diagnosis, prognosis, 
and prediction of treatment response. Equally, biomedical research will gain massively from the 
integrative analysis of clinical and multi-omics information. Capitalizing on these opportunities must 
be guided by a precise understanding of many complex issues related to the integration of large 
amounts of diverse information. Partly this involves overcoming barriers between different 
disciplines, such as biology, medicine and computer sciences – implying a key role for ‘knowledge 
engineers’. This paper summarizes recent expert debates on such matters, leading to suggestions 
for concrete actions that should improve and better synergize both research and healthcare. 
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“Once upon a time, some engineers, biologists and clinicians realized that a lot of information in 
biomedicine was partitioned into silos that do not intercommunicate. These silos were a side effect 
of the existence of different disciplines required to, for example, develop new drugs.  
 
The engineers decided to make the silos go away, and to put the information in axiomatic form to 
facilitate automatic reasoning over multiple data sources. They also decided to do this in a very 
open way so that effort was not duplicated. This seemed like a very reasonable step and was 
welcomed by all.  
 
After they had done a lot of axiomatization, the engineers found that there were still issues. They 
found lack of agreement on many seemingly uncomplicated ‘facts’. They had to employ curators to 
resolve the ‘facts’, and then people said the curators were losing the plot. They also found out that 
there were not only discipline silos, but also intra-discipline silos. These were the partitions 
between evidence and the assertions developed from the evidence, and the earlier assertions 
these cited, based on even earlier assertions, and so on. There were not only webs of 
disagreement, but also chains of error. And they found that connecting facts from various silos was 
not so uncomplicated after all, even after axiomatization. Why was this? Because the results of 
scientific experiments are not axioms, even if they may be treated in this way to perform isolated 
bits of reasoning.” (T.W. Clark)  
 
This story illustrates the challenge that scientists and clinical practitioners face: the world contains 
a vast array of complex and diverse data, but locating and connecting the information is difficult1-3, 
and deriving definitive knowledge from the data to guide research and/or for clinical practice is 
even harder. The many road blocks that make it difficult to progress this field were recently 
discussed at a scientific debate held in Barcelona on July 3-4, 2012 
(http://www.bdebate.org/debat/beyond-omics-revolutions-integrative-knowledge-management) 
under the general title “Beyond omics revolutions: Integrative Knowledge Management for 
Empowered Healthcare and Research”. The meeting was organized around six topics: “Dealing 
with biomedical knowledge explosion for better healthcare: Identifying actionable knowledge items 
at the point of care”, “Exploiting patient information to enrich basic biomedical research”, 
“Standards for clinical-omics integration: the semantic challenge”, “New IT is supporting massive 
biomedical data management”, “Systems medicine: Making systems biology translational”, and 
“Integrative knowledge management for improving drug R&D”. The main ideas and conclusions 
arising from this event are presented below.  
 
 
Translating research findings into actionable knowledge in the clinical setting  
 
New biomedical discoveries emerge at an ever-increasing rate, but their translation into healthcare 
typically occurs slowly or not at all. There is a lack of sufficient systems that can astutely identify, 
distil and hand on these advances to the relevant practitioners, in useable formats. For example, 
thousands of biomarkers exist, comprising a few truly useful ones intermingled with many other 
less or non-actionable items. Valuable new biomarkers (diagnostic, prognostic or therapeutic) are 
therefore not effectively being taken forward into healthcare. The gamble of knowing which ones to 
progress with is simply too onerous - given the cost of modern clinical trials and a deficiency of 
incentives and expertise amongst researchers who would be best placed to progress markers 
down the development path. Hence, when this translation does happen it is usually because of a 
major ‘pull’ from the clinical world, rather than ‘push’ from researchers.  
  
Clearly then, there is a need for methods and systems that can reliably and routinely identify and 
connect the most informative, reliable, and useful information (not least biomarkers) generated by 
the research community. Efforts to better structure scientific knowledge, for instance by means of 
nanopublications4 or the ISA commons5, could provide key parts of this solution. But the challenge 
is magnified by the fact that the relevant information is spread not only across research resources 
(e.g., literature, patents, laboratory reports, market data, medical reports, biobanks, etc), but also in 
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realms with less professional rigor such as social networks and patient communities (e.g., wikis, 
blogs and other social media platforms). Progress will therefore necessitate addressing cross-
language and cross-jargon barriers, as well as all the traditional targets of interoperability such as 
standards for data syntax and semantics. 
 
Beyond connecting and integrating research findings, there lies the challenge of understanding this 
information. Education is important here, and indeed it has been proposed that a lack of 
appropriate training explains the slow uptake of companion diagnostics into clinical practice6. 
Tackling this will require robust guidelines on how to use pharmacogenomics information, and also 
the provision accompanying pharmacokinetics, metabolic and drug interaction knowledge derived 
from the latest biomedical research. Arguably then, researchers have a responsibility to make their 
clinically relevant research findings more understandable to the healthcare sector, perhaps in the 
form of user-friendly web portals or other software7,8. Electronic Health Record (EHR) developers, 
Computerized Physician Order Entry (CPOE) designers, and Clinical Decision Support Systems 
(CDSS) creators and vendors likewise need to be involved in bringing forth additional content for 
such portals, and in connecting such platforms to the intended end users. 
 
Putting all the above issues together, and thinking also about the core data interpretation 
challenges, several experts concluded that the overall challenge is one of “knowledge 
engineering”, rather than simply a need for better informatics, research, or medical practice. 
Hence, it may be difficult to make real progress with biomedical researchers and clinical 
practitioners alone, and so there is a need for a new breed of multidisciplinary engineers9. This 
echoes back to the tradition of Knowledge Engineering (KE) for Health, a field that stemmed from 
Artificial Intelligence research in the 1990s10. However, contrasting to previous KE approaches that 
aimed at organizing all the data to reveal absolute knowledge (which is a flawed concept, as our 
lead story illustrated), there is a need for a far more pragmatic approach (‘KE 2.0’) – aimed at 
identifying and making directly useful the very limited set of data and knowledge items that are 
both reliably proven and clinically actionable. The aim would be to explicitly address the two core 
information problems faced by clinicians: (i) having too much existing and new data to keep up 
with, and (ii) not having time or resources to discern reliable from uncertain and erroneous 
information. 
 
As listed in Supplementary Table 1, many international projects now exist that aim to integrate 
various types of data related to specific diseases or their pharmacological treatments. In general, 
however, these are not doing KE 2.0 but developing new methodologies and tools for data 
integration and exploitation, or novel strategies for massive data storage and handling. But as 
these sorts of projects make progress in consolidating and unifying the relevant data, KE 2.0 
approaches can then begin explored. However, for this to succeed, the data must be of suitable 
quality and breadth, as discussed in the following section.  
 
  
Data quantity and quality  
 
Sadly, in many situations today, petabytes of potentially useful biomedical data are not captured in 
a structured format and/or made available for use by others. This includes molecular omics profiles 
(genomes, transcriptomes, proteomes, epigenomes, etc.), exposure to environmental chemicals 
(exposomes), phenotype data (e.g., as recorded in clinical settings), and dynamic data (e.g., 
measurements at different time or space points) – all of which could contribute to improved 
research and healthcare. For instance, in the research world, primary data from high-throughput 
studies on a large number of subjects (e.g., genome-wide association studies, GWAS)11 typically 
never escape from the lab where they were generated, and in the healthcare world, molecular 
profiles of individual patients, sometimes recorded per time period, are starting to be recorded by 
then poorly exploited12. Of course, simply handling this diversity and scale of data is a challenge in 
itself, but that should motivate focusing much effort upon it, rather than providing a reason for 
letting the data be lost. 
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Many considerations pertain to the quality, completeness, reliability and reproducibility of primary 
data and the knowledge derived from them. Relevant judgments may well be context dependent – 
such as whether a biopsy from a heterogeneous tumor might be considered usefully representative 
of the whole tumor. Contextual metadata (data about the data) are therefore important, but such 
information is often not properly collected or recorded. This is directly related to current discussions 
about the reproducibility of research findings and the comparability of different analytical 
procedures. Approaches that allow consistent and repeated analysis on datasets are therefore 
becoming important (e.g., Galaxy, GenePatterns). Question about reproducibility concern both the 
data (how it was produced) and the knowledge gleaned from data (how it was derived). In this 
respect, we refer the reader to important studies about statistical and experimental design 
problems in contemporary scientific publications13,14. 
 
One notable problem in applying KE to biomedical research data is the nature of the knowledge 
being engineered. Specifically, active as opposed to consolidated scientific knowledge, consists of 
assertions supported by evidence. What we consider knowledge is a snapshot of the consensus of 
the scientific community on a particular subject at a given time, but this active knowledge is 
subjected to continuous re-evaluation where new findings change our perspective, and ‘facts’ may 
be refuted after some years. Essentially, no knowledge is truly absolute. A particular complication 
here is that of human bias or error underlying citation distortion, not least in review articles. An 
example can be seen in a recent review suggesting a role for inclusion body myositis in the 
etiopathology of Alzheimer disease. Following the chain of assertions to the grounding evidence, it 
was found that in some cases there was no such grounding evidence, and in other cases its 
meaning had been distorted or the results misapplied or misconstrued15. These issues contribute 
to the existence of intra-discipline silos, which disconnect facts and assertions from the underlying 
evidence. In other cases, we face discrepancies between data collected from different sources. 
This clearly argues the need for more information accessibility and structure, and less reliance on 
subjective human opinion. But this itself must be tempered against the risk of drawing too many 
hypotheses from extensive and high-throughput data, which could easily lead to spurious 
associations. 
 
In this context, ongoing multi-party curation efforts from different initiatives are appreciated as a 
way to identify and organize relevant information, but they represent very costly and time-
consuming tasks. Efforts on harmonization and standardization, as well as the development of 
software for supporting curation tasks, are therefore needed to improve and assist curators in their 
work.  
 
An important point to emphasize is that we need very different levels of evidence for CDSS 
compared to what is required for research grade knowledge discovery. Medical reasoning may be 
represented by epistemological models, which are amenable to partial automation16,17, and in all 
cases the data should be generated or chosen to fit a purpose. Researchers, for example, must 
design their experiments and simulations to record as much detailed information as possible, to 
facilitate a comprehensive exploration of the biomedical question. In contrast, clinicians must 
carefully define healthcare questionnaires and register just the salient medical variables pertaining 
to their patients to aid in clinical decision-making. Ideally, however, to avoid continuing with silos of 
data, both groups should always also consider the possible or likely reuse of their data. As part of 
this, data provenance should be carefully recorded to make possible the retrieval of the original 
sources and to ensure its reliability and reproducibility, which will undoubtedly have an effect on 
the generation of useful predictions18. 
 
Time constraints at the Barcelona meeting precluded extending this discussion into areas of ethical 
and legal frameworks, and so further information on the matter can be found elsewhere19,20. It 
should also be noted that the European Parliament is currently discussing a data protection 
directive that will underpin a new legal framework (http://ec.europa.eu/justice/data-
protection/index_en.htm). 
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Standards to facilitate translation  
 
Increasingly, genomic information is likely to be relevant to healthcare, and as such it should 
ideally be stored within medical records. A current use case would be that of personalized drug 
dosing. Some pharmacogenomic tests are now being used in routine clinical practice, however 
they are vastly under-used. Key biological data on individuals should be encapsulated in its native 
format in clinical data structures, with 'bubbled-up' items being associated with phenotypic data 
using clinical data standards. This then spawns the question as to what standards are required to 
allow the efficient translation of key research findings into clinical practice, and what IT paradigms 
will be needed to support biomedical data management. Of course part of the answer concerns 
controlled vocabularies and ontologies for the integration of diverse and heterogeneous biomedical 
information. Fortunately, several initiatives today support the development of ontologies to describe 
different aspects of biology and biomedicine (e.g., NCBO (http://www.bioontology.org/), OBO 
(http://www.obofoundry.org/) Ricordo (http://www.ricordo.eu/)). But yet more needs to be done. For 
instance, it is difficult to reconcile medical records with disease descriptions associated with public 
molecular data. This is due to the inherent complexity of diseases and the way they have been 
traditionally classified and described. Also, disease descriptions are very heterogeneous and often 
dynamic, as in the case of mental illness21. 
 
Beyond ‘standards’ perhaps there is actually an equal need for ‘understandards'. In other words, 
efforts that aim to deliver the standardization capabilities required for KE 2.0, not just standards for 
semantic integration irrespective of common understanding. We need to make sure that the next 
generation of in cerebro and in silico reasoning strategies understands what is 'meant' by any node 
and edge in a network of associations. To resolve the tension that the more expressive a standard 
is the less interoperable it is, constraining the standards is crucial, which also enables capturing 
similarities while preserving disparities. More specifically, health data semantics and context 
cannot be faithfully represented using flat structures (e.g., a list of entries), rather it requires a 
compositional language that meaningfully connects various data entries.  
  
Furthermore, health data standards need to accommodate unstructured data and text (e.g., 
clinician's narrative), while having links to structured data entries. A life-time comprehensive 
recording of personal health information including omics data is certainly desirable. This arguably 
calls for a new model of data stewardship: the Independent Health Record Banks vision 
(http://independenthealthrecordbanks.blogspot.co.il/), which would support the implementation of 
lifelong, cross-institutional and interoperable EHR. This would constitute an escape from 'legacy 
systems' fixation. As long as healthcare providers are also record-keepers, we will continue to 
have poor archives, proprietary-based, isolated in silos, with most of the data semantics not 
represented explicitly – making it hard or impossible for CDSSs to be really effective. So instead it 
is proposed that there should be a limited number of independent and regulated third parties 
specialized in sustaining the individual life-time EHR, continuously curating it and running various 
analyses to prepare the right info-structure for CDSS. These tasks require unique specialization, a 
new kind of archive, which should provide the most complete and coherent information framework 
to support the individual health.  
 
 
Fostering literacy in health information management 
 
The challenge of improving biomedical knowledge management goes hand in hand with the need 
for suitable education and training for all the relevant stakeholders: patients, clinicians, 
researchers, and regulators and policy makers. In particular, clinicians need more support to 
improve their ability to interpret and use research findings, and researchers must learn how to take 
actionable findings closer to the clinicians. Concomitantly, researchers need to better comprehend 
the problems raised in clinical practice that can be solved in the laboratory or by intensive use of 
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information technologies (IT). This reinforces the need for forums of interaction with the active 
participation of biomedical researchers, bioinformaticians and physicians with experience in clinical 
research. Hence, we should move from a one-size-fits-all to a stratified medicine education, and 
from this towards a truly individualized clinical exercise, following the paradigm shift towards the 
predictive, preventive, personalized and participatory medicine (P4) concept22. Finally, the active 
participation of citizens, via blogs and other social networks, provides a way to improve the general 
level of health literacy, and thereby to empower all individuals regarding their role in the health care 
system. 
 
 
OUTCOMES OF THE DEBATES  
 
The experts that took part in the aforementioned debates held in Barcelona, also offer the following 
consensus statements: 
 
• There is an urgent need to promote communication and collaboration between experts from 

different disciplines in order to overcome current information silos and to setup integrated 
knowledge frameworks required for better managing health problems. In this regard, patients' 
voices have to be considered as well. 

 
• The current rate of growth of data exceeds that of computational power (e.g., throughput of 

sequencing instruments will grow faster than the capacity of computers, and this can become a 
limitation for the spread of Next Generation Sequencing data use in medical practice). It should 
be considered malpractice to fund data generation without an adequate data exploitation and 
stewardship plan. Research funding must seriously consider the need for data storage and 
analysis, which may well comparable to the effort needed for data generation. When data is 
generated on human subjects, the stewardship of those data might be handled within each 
subject’s EHR, if a cross-institutional and lifelong record is available. 

 
• Efforts should be made to improve the methodological and technological background to allows 

the integrative analysis of complex information (KE 2.0), with the aim of distilling and delivering 
clinically actionable information and supporting computational predictions to facilitate the 
prevention and treatment of diseases. 

 
• Maximizing data sharing should be an imperative. Not all healthcare data need to be protected 

under a controlled access regime and not all research need to be open access. Most current 
barriers for data sharing and reuse are not technical but social. In this respect, we acknowledge 
novel initiatives (e.g., altmetrics, http://altmetrics.org/manifesto/) that seek to go beyond the 
classical narrative articles as the only source of scientific knowledge to be taken into account. 

 
• It is important to address language and jargon barriers to connect the worlds of traditional 

scientific reporting (peer-reviewed articles) and web sources (patients blogs, twitter) as sources 
for knowledge discovery. 

 
• To facilitate the effective reuse of information, elements of provenance and context along with 

the basic assertions have to be captured from text, databases and EHR systems. 
 
• The current classification of diseases is largely based on signs and symptoms, and in general 

does not take into account current and evolving knowledge on the molecular pathways that lead 
to any particular illness. A diseases classification based on the molecular biology or the 
genomics of the diseases would help in the identification of relevant therapeutic interventions. 

 
• Proper guidelines are needed to help clinicians understand how the results of available genetic 

tests should be used to optimize patient care, rather than whether tests should be ordered. Here 
researchers have a role in preparing these guidelines. Disease and/or domain specific 
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‘Knowledge portals’ could provide a key part of the overall solution, facilitating and driving 
analysis of data, regulating and tracking data access, and providing an optimum balance and 
scale in terms of the centralization-federation challenge. 

 
• Citizens (including health professionals) must be enabled, individually and cooperatively, to 

access, understand, appraise, and apply information that will facilitate the use of genome-based 
information for the benefit of individuals and their communities. In addition, we have also to 
consult with citizens and patients on “donating their data”. 

 
• All clinical and research data related to an individual’s health should be stored in, or linked to, a 

single lifelong personal (electronic) health record, which would overcome current institutional 
borders. The development of independent Health Records Banks may be a way of 
implementing this vision (e.g., http://independenthealthrecordbanks.blogspot.co.il/).  
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