
Implementation of tiled vector services:
a case study

Jens Ingensand1, Marion Nappez1, Cédric Moullet2, Löıc Gasser2,
Olivier Ertz1, and Sarah Composto1

1University of Applied Sciences Western Switzerland
Route de Cheseaux 1, 1401 Yverdon-les-Bains, Switzerland

2Swiss Federal Office of Topography Swisstopo
Seftigenstrasse 264, 3084 Wabern, Switzerland

{jens.ingensand,marion.nappez,olivier.ertz,sarah.composto}@heig-vd.ch

{cedric.moullet,loic.gasser}@swisstopo.ch

Abstract. Vector tiling aims at cutting vector data into smaller en-
tities. It offers several opportunities, especially for the development of
web-mapping systems, such as the possibilities to apply different styles,
to access attributes or to render 3D data. Today no open and widely
adopted standard exists for the implementation of web services involv-
ing vector tiles. In this paper we investigate several important param-
eters that need to be considered for the implementation of vector tile
services. We then present a case-study where several tiled vector services
are implemented. The results of this case study are useful for further
implementations of tiled vector services and discussions regarding stan-
dardization.

Keywords: Vector tiling, web services, generalization, standardization

1 Introduction

The idea to tile vector data is very similar to raster data tiling where large raster
data sets are tiled into smaller pieces and stored in hierarchical structures, either
in databases or in file systems. Tiling in general allows for an efficient consump-
tion of data through a network connection, for instance using the standardized
OGC protocol WMTS (Web Map Tile Service, www.opengeospatial.org) imple-
mentation standard.

Vector data, as compared to raster data, has several advantages: it allows
for more flexibility for rendering maps, such as the possibility to apply differ-
ent styles or to render data in 3D. Moreover it is possible to store and transfer
not only geometries, but also an entity’s attributes. A third advantage is that,
depending on the data layer, the features’ attributes, the feature density and
the level of detail, data can be compressed using different methods [3]. A fourth
advantage is that data can be re-utilized and transformed on the client side; for
instance using coordinate transformation, spatial analysis, and so forth. [7] On
the other hand, vector tiling also has disadvantages e.g. the fact that the features

Published in Proceedings of the Workshop on Spatial Data 
on the Web (SDW 2016), 27-30 September 2016, Montreal, 
Canada, which should be cited to refe to this work.



2 Implementation of tiled vector services:a case study

must be reassembled on the client side (e.g. a polygon that has been cut into sev-
eral pieces) or the problem that data can be illegally downloaded and reused for
other purposes that were not intended by the administrators of a server infras-
tructure. The idea of a tiled vector data service is to combine both the advantages
of vector data with the advantages of tiled raster data services. Today several
commercial web map providers, for instance Google (http://maps.google.com)
or MapBox (https://www.mapbox.com) have started using this concept.

In the following section we will discuss the key issues that need to be ad-
dressed for the generation of vector tiles. Thereafter we will present a case study
where vector tile services have been created within the infrastructure of the Swiss
Federal Geoportal map.geo.admin.ch. Finally we will discuss the results of this
case study and suggest perspectives for further investigations.

2 Tiled vector services - key issues

Tiled vector services are more complex than tiled raster services due to several
facts - for instance raster data uses a regular grid for storing information, while
vector data does not, there are fewer (spatially exploited) raster data formats
than vector data formats and vector data allows for storing attribute informa-
tion. We have therefore chosen to list key issues that need to be addressed for
the creation of tiled vector services.

Formats and standards Compared to common raster data formats such as
jpeg, gif, png or tiff, far more different vector formats exist. Some vector formats
are open standards (e.g. OGC’s GML), some are proprietary (e.g. ESRI’s File
Geodatabase) and some formats are already used within a web-mapping context
(e.g. the GeoJSON format). The choice of format is therefore more difficult since
data needs to be compact and easy to create and to consume.

Tiling scheme Creating vector tiles implies cutting a vector layer into smaller
pieces. One possibility is to set a fixed spatial extent (e.g. all generated tiles for
one level of detail include features within a square of 500*500 meters). Depend-
ing on the vector layer to be tiled and the extent of a tile this might result in
large quantities of empty tiles. This method has been used by Antoniou et al.
[1] for instance. The other possibility is to create tiles depending on their weight
(e.g. in terms of vertices per tile: a tile should for instance contain between 3
and 100 vertices) and thereby to use varying spatial extents for each tile. One
drawback of this method is that it becomes more difficult to recalculate tiles if
the original data layer changes frequently. Another drawback is the implementa-
tion on the client side (e.g. using a Javascript API) - the irregular organization
of tiles needs to be communicated to the client and thereby the client needs to
be able to request the right tiles for each level of detail at a given spatial extent.
An implementation of this method has been created by Dufilie and Grinstein [5]

Levels of detail and generalization Vector tiles can be organized in dif-



Implementation of tiled vector services: a case study 3

ferent levels of detail (LOD). This allows clients to request tiles that fit a spe-
cific level of zoom. Creating vector tiles at different LOD’s implies decreasing
the complexity of a feature according to a certain level of detail. This can be
achieved using generalization algorithms such as the Visvalingam algorithm [9],
the Douglas-Peucker algorithm.[4] or Zhao-Sallfelds sleeve-fitting polyline sim-
plification algorithm. [10]. Another common approach to generalization is to
utilize semantics. For example if several levels of detail need to be created for an
original road-layer which contains a classification, the classification can be used
to include (or not) several classes of roads in different levels of detail.

Basic geometry types The basic 2D and 3D geometry type (point - line,
etc) has an impact on the way data can be generalized and cut into pieces. For
line and polygon features generalization algorithms can create tiles at different
levels of detail. For point features, things get more complicated since reducing
the level of detail implies reducing the number of vertices and thereby delet-
ing features. In this case clustering algorithms at different zoom levels can help
reducing the number of features. The drawback is the loss of features and/or
attributes.

Grouping layers in one tile A vector tile on a web server equals a piece
of data (e.g. a data file). If different layers are requested by a client, this can
result in several queries to a web-server. One possibility to decrease the number
of requests is to group layers (e.g. point - polygon and line-based layers) in one
tile and thereby in one data file. This approach could potentially decrease overall
data size by minimizing the replication of data headers, standard tags and so
forth.

Update frequency If a data layer is updated frequently, vector tiles need to
be recalculated for the updated regions. This has an impact on the management
of vector tiles - in order to recalculate tiles a management system needs to keep
track of changes.

Attributes Vector data generally consist of both vector features and associ-
ated attributes. If a feature (except point features) is split in two parts (see
Figure 1), the question arises where to store the attributes. The following three
options can be considered:

– A feature’s attributes are simply copied in each of the parts. The advantage is
that all attributes are directly available for all parts; even if all the parts have
not been downloaded on a client all attributes are available. The drawback
is the fact that information is duplicated.

– Only one part contains the attributes. The advantage is that no information
is duplicated. On the other hand if a feature (e.g. a motorway ranging over
thousands of kilometers) is split into several parts it becomes difficult to
find the exact part containing the attributes. This problem however could
be addressed if the exact location of the tile containing the attributes is



4 Implementation of tiled vector services:a case study

Fig. 1. The problem of attribute handling - a polygon feature is split in two parts

defined in all tiles. Nordan [8], for instance suggests a manner of storing this
information in vector tiles so that a client can reassemble information.

– Attributes are stored in separate files or made available through a separate
web-service. The advantage is that the attributes are not stored in the vector
tiles anymore (and thereby vector tiles are lighter). The disadvantage is the
fact that another web-service (or another data file) needs to be created - this
can result in more queries and are more complex web-services and system
architecture.

3 Case study: tiled vector services for the Swiss Federal
Geoportal

3.1 Context

Map.geo.admin.ch is the official geoportal of the Swiss state, serving almost
400 data layers. The open-source framework MapFish (mapfish.org) which itself
consists of several Python and Javascript libraries are the main components of
the system. The geoportal uses the Amazon EC2 and S3 (aws.amazon.com) cloud
computing infrastructure. A majority of the available data layers are generated
using WMTS web services; some layers are available as WMS web services. About
2’500’000’000 WMTS unique raster tiles are stored in the cloud infrastructure.
In 2015 a 3D web-interface based on CesiumJS (cesiumjs.org) was created.

3.2 Goals

The goal of this case study was to build and investigate tiled vector services
within the infrastructure of the Swiss Federal Geoportal map.geo.admin.ch and
to build a working prototype in order to consume these services. The main
objectives of this case study were:

– tiled vector service should co-exist with existing web-services (such as WMTS)
– tiled vector service should use the existing server and client infrastructure
– tiled vector service should use existing standards as far as possible

Another important goal was to compare vector tiles with raster tiles considering
their weight in terms of bytes and kilobytes. The tile weight is an important indi-
cator for the efficiency of features’ storage and transfer and thereby an important
factor for a web-mapping system’s performance.



Implementation of tiled vector services: a case study 5

Fig. 2. The structure of a TopoJSON-tile

3.3 Case study settings

Constraints The infrastructure of the Swiss Federal Geoportal mainly uses
PostgreSQL and Python-scripts for storing and manipulating vector data. A
constraint of the project was therefore the utilization of these technologies for
the production of vector tiles.

Test data For our tests we utilized the following data-sets. Each data-set covers
the whole of the country:

– Polygons: the zip-code-area dataset (4’166 objects, 1’874’382 vertices)
– Lines: the road network ”vector 25” (1’342’108 objects, 12’800’516 vertices)
– Points: labels ”SwissNames Vector 200” (19’086 objects and vertices)

Tiling scheme We decided to use the regular WMTS tiling scheme for address-
ing vector tiles - mainly for the two reasons that it is less difficult to address tiles
with a regular tiling scheme and that the WMTS standard is already supported
in several clients (desktop and mobile/web-based clients). The implementation
a client that consumes both vector and raster data using the same tiling scheme
appeared to be less difficult.

Vector tile format One goal of the project was to find a format that could
be easily consumed by several clients. Various open standards were discussed for
storing vector data such as XML-based formats (e.g. GML) and JSON-based for-
mats (e.g.GeoJSON). We decided to utilize TopoJSON, (see Figure 2) a JSON-
based format, that stores topological information; e.g. if two polygons share the
same boundary, the boundary is just stored once. We chose this format mainly
for its compactness and the easiness to interpret it using Javascript. We did not
include any attributes in the tiles.

Generalization and simplification In order to create vector tiles at different
levels of detail, data needs to be generalized and simplified. Due to the con-
straints of the infrastructure (PostgreSQL/PostGIS and Python) we were able
to test and utilize Visvalingam algorithm [9] and Douglas-Peucker algorithm.[4]



6 Implementation of tiled vector services:a case study

for line- and polygon-based features. Due to the fact that the Swiss Federal Geo-
portal utilizes (and will utilize) raster tiles, we used raster maps as a benchmark
in order to find the best parameters for the two algorithms as well as for the
comparison of the results. For point-features we tested the simplification based
on attributes (e.g. selecting point-features based on an attribute that was used
in order to define a point features’ importance.)

3.4 Web Service Implementation

Commonly used OGC web-services such as WFS or WMS implement standard
queries such as GetCapabilities (to get information about the data and formats
etc) or queries such as GetMap or GetFeature to receive the information. In our
case the goal was to create a webserver that simply handles vector files instead of
raster files according to the WMTS file organization scheme. A common WMTS
file-query such as
https://wmts.geo.admin.ch/1.0.0/roads/default/21781/17/7/3.jpeg

would be replaced by:
https://wmts.geo.admin.ch/1.0.0/roads/default/21781/17/7/3.json

The generation of vector tiles was implemented in the PostgreSQL/PostGIS
database using SQL-queries that were executed with Python-scripts:

– All different levels of detail were computed as new tables in the database
using the aforementioned algorithms.

– Each level of detail was cut into tiles according to the same WMTS tiling
scheme that has been used for the generation of all raster tiles.

– Each tile was exported in the TopoJSON format and written in a web-server
directory using the WMTS hierarchy and nomenclature.

3.5 Client Implementation

The native OpenLayers library already had implemented support for TopoJSON-
files. The implementation of a prototype using OpenLayers was therefore more
of a configuration issue. We were able to implement a prototype that renders
vector tiles according to specific attributes, however the implementation of a
client that also aggregates features from several tiles (e.g. a polygon that had
been cut in two pieces) into the original feature remained to be implemented at
the time of writing.

3.6 Results

Generalization and simplification In order to identify the best generaliza-
tion algorithm and parameters, we visually compared the output of one algorithm
with the corresponding raster-tiles that had been pre-produced by Swisstopo.
For instance if a zip-code border on a specific raster tile had a certain shape we
tried to identify the best algorithm and corresponding parameters in order to



Implementation of tiled vector services: a case study 7

Fig. 3. Boxplot showing tile sizes (kiloBytes) at four different WMTS zoom levels for
the communities-layer in raster- and vector format. Empty tiles (i.e. tiles without any
features) have been omitted

make vector features (at a given zoom level / level of detail) overlap the cor-
responding raster features as far as possible. Using our method of raster-vector
overlay we discovered that the Douglas-Peucker-algorithm is well adapted for the
generalization of line-features (such as roads) since it tries to identify the most
prominent vertices using distances between vertices. The Visvalingam-algorithm
on the other hand appeared to be well-suited for the generalization of polygon
features such as boundaries. The algorithm classifies the prominence of a vertex
using the area of the triangle that is formed with its two neighboring vertices.
The output of this algorithm thereby appears to be smoother.

Weight We compared the weight (in terms of kilobytes) of vector tiles with
the weight of the corresponding raster tiles. Raster tiles used the png-format.
Figure 3 shows a boxplot of the weight of raster tiles at four different zoom
levels. We discovered that at lower zoom levels raster tiles are clearly lighter on
average than vector tiles while vector tiles show a larger range of light and heavy
files. At higher zoom levels vector tiles become lighter than raster tiles. These
observations have been made for all data layers that were analyzed. An empty
raster tile (0.18 kB) is on average twice as heavy as an empty vector tile. (0.09
kB).

4 Conclusions

This case study demonstrated the feasibility of the implementation of tiled vector
services using the given existing infrastructure. The weight of tiles is a crucial



8 Implementation of tiled vector services:a case study

point since it influences storage size, bandwidth usage and rendering speed.
Compared to vector tiles, raster tiles theoretically have an upper size limit due
to the fact that raster tiles are based on a regular grid and each raster cell can
only store a certain amount of information, however vector tiles do not have this
limit. This consideration also explains why the weight of vector tiles shows a
larger range than raster tiles.

A major difficulty for the generation of vector tiles (and thus for the mini-
mization of tile weight, storage and bandwith usage) is the generalization and
simplification of features. Generalization can be automated to a certain degree,
however if the data layer to be generalized is complex and if topology needs to
be preserved too there is a limit to how much a data layer at a certain level of
detail can be compressed. A solution is to use semantics (e.g. only certain types
of features are included), but this needs to be configured manually.

Another important point is the absence of open and widely adopted stan-
dards. Within this case study we have made certain choices in order to re-utilize
existing basic standards such as the WMTS tiling scheme. These choices were
also influenced by the existing infrastructure. Due to the complexity of vec-
tor tiling the establishment of a standard that fits different configurations and
themes (e.g. systems with a limited number of data layers) appears to be difficult.

5 Perspectives

Within the scope of this case study we did not address the handling of attributes
and the dynamic aggregation of features that have been split. This subject will
be part of further investigations. Another perspective for future work is the
creation and utilization of vector tiles containing 3D data with different clients
such as CesiumJS in order render 3D features. For each layer generalization and
simplification need to be taken into account with care in order to minimize file
size. If a vector data layer is very dense, the files containing vector features can
get very heavy at certain zoom levels. We suggest two approaches to address
this subject in future projects:

As suggested by Feixiang et al [6] vector features can be progressively trans-
ferred - a possibility is therefore to decompose the contents of a single vector
tile into even more pieces and to transfer these pieces progressively. A drawback
of this method is the complexity of tile generation and client implementation.
A final possibility to address the problem of heavy vector tiles is to mix raster
and vector tiles (e.g. raster tiles are visible until a certain zoom level and vector
tiles after that). The advantages of this method would be that the size of the
tiles can be kept low and that it becomes easier to automatically create tiles,
the drawback is that vector features are only available at a certain zoom level
and that the rendering of raster and vector tiles needs to be visually equal.

Another field of investigation are variations in spatial data; e.g. how does
vector tiling react to data layers that show large variations in terms of vertex
density. Furthermore other formats such as the MapBox Vector tile specification
(www.mapbox.com) are worth to consider and to compare.



Implementation of tiled vector services: a case study 9

Standardization perspectives about styling may also be important to con-
sider. Vector tiles are rather prepared geodata benificial to visualization since
tiles can be styled when requested, allowing for many map styles. With classical
webmapping using pre-drawn image tiles, the client does not have to deal with
styling as the web map server does apply an internally defined style. In order to
render tiled vector data, styling needs to be done on the client. We may imagine
the tiled vector service offering a kind of GetStyle(s) method (e.g like the OGC
WMS/SLD 1.0 profile) in order to get a default style that the client can apply.
Or the symbology instructions may be shared and retrieved through a web cat-
alog of styles. In this context, interoperability does matter and a standardized
styling language is desirable to allow sharing of cartographic instructions (just
like OGC Symbology Encoding). But given the large variety of client types, such
a styling standard shall also consider various encodings such as XML, CSS-like
or even JSON encodings [2]. Therefore a common encoding-neutral symbology
model should be used.

References

1. Antoniou, V., Morley, J., Haklay, M.: Tiled vectors: A method for vector transmis-
sion over the web. In: Carswell, J., Fotheringham, A., McArdle, G. (eds.) Web and
Wireless Geographical Information Systems. Lecture Notes in Computer Science,
vol. 5886, pp. 56–71. Springer Berlin Heidelberg (2009)

2. Bocher, E., Ertz, O.: Towards cartographic portrayal interoperability. the revi-
sion of ogc symbology encoding standard. In: 1st ICA European Symposium on
Cartography; Proceedings. pp. 116–119 (November 10-12 2015)

3. Chen, F., Ren, H.: Comparison of vector data compression algorithms in mobile
gis. In: Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE
International Conference on. vol. 1, pp. 613–617 (July 2010)

4. Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. The Canadian Cartographer
10(2), 112122 (1973)

5. Dufilie, A., Grinstein, G.: Feathered tiles with uniform payload size for progres-
sive transmission of vector data. In: Web and Wireless Geographical Information
Systems. 13th International Symposium, W2GIS 2014, Seoul, South Korea, May
29-30, 2014. Proceedings. pp. 19–35. Springer (2014)

6. Feixiang, C., Xiao, M., Haiyan, R.: Progressive transmission of vector spatial data.
Journal of Networks 8(5), 1065–1072 (May 2013)

7. Gaffuri, J.: Toward Web Mapping with Vector Data, Lecture Notes in Computer
Science, vol. 7478, pp. 87–101. Springer Berlin Heidelberg (2012)

8. Nordan, R.P.V.: An Investigation of Potential Methods for Topology Preservation
in Interactive Vector Tile Map Applications. Master’s thesis, NTNU Norwegian
University of Science and Technology, Trondhein (2012)

9. Visvalingam, M., Whyatt, J.: Line generalisation by repeated elimination of the
smallest area. Cartographic Journal. 30(1), 46 – 51 (1992)

10. Zhao, Z., Saalfeld, A.: Linear-time sleeve-fitting polyline. Autocarto 13,
ACSM/ASPRS97 Technical Papers, Seattle, Washington (5), 214223 (April 1997)


