
Published online 12 November 2019 Nucleic Acids Research, 2020, Vol. 48, Database issue D269–D276
doi: 10.1093/nar/gkz975

DisProt: intrinsic protein disorder annotation in 2020
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di Ricerca Pediatrica (IRP), Città della Speranza, Padova 35127, Italy, 21Instituto de Biologia Molecular e Celular
(IBMC) and Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto 4200-135, Portugal,
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ABSTRACT

The Database of Protein Disorder (DisProt, URL:
https://disprot.org) provides manually curated anno-
tations of intrinsically disordered proteins from the
literature. Here we report recent developments with
DisProt (version 8), including the doubling of protein
entries, a new disorder ontology, improvements of
the annotation format and a completely new web-
site. The website includes a redesigned graphical
interface, a better search engine, a clearer API for
programmatic access and a new annotation inter-
face that integrates text mining technologies. The
new entry format provides a greater flexibility, sim-
plifies maintenance and allows the capture of more
information from the literature. The new disorder on-
tology has been formalized and made interoperable
by adopting the OWL format, as well as its structure
and term definitions have been improved. The new
annotation interface has made the curation process
faster and more effective. We recently showed that
new DisProt annotations can be effectively used to
train and validate disorder predictors. We believe the
growth of DisProt will accelerate, contributing to the
improvement of function and disorder predictors and
therefore to illuminate the ‘dark’ proteome.

INTRODUCTION

About 20 years ago, the concept of the intrinsic structural
disorder of proteins came into being (1,2). Since then, the
field has reached adulthood, with the concept of protein
disorder gaining wide acceptance in the community. Intrin-
sically disordered proteins/regions (IDPs/IDRs) are now
often being referred to without a citation, the term hav-
ing become as common as the ‘globular’ structure of a
protein, or the ‘active site’ of an enzyme. Yet, the field is
still accelerating and has not reached its climax, as sig-
naled by several recent breakthroughs and high-impact
stories (3,4).

For example, it was recently recognized by ‘omics’ data
analyses that about half of eukaryotic proteins are ‘dark’,
in the sense that we have no information on their 3D struc-
ture (5), which poses a serious bottleneck in their func-
tional characterization and annotation. Similarly, only 45%
of the residues of all human proteins are covered by multi-
ple sequence alignment-based Pfam-A protein family anno-
tations (6). These values suggest that we have only a vague
notion about the structure and function of the majority of
proteins in our databases. As a significant fraction of the

dark proteome and non-Pfam annotated proteins and pro-
tein regions are intrinsically disordered (the concepts hav-
ing become almost synonymous), our best approach for il-
luminating the dark proteome is to predict disorder from
sequence, and experimentally characterize the underlying
structural ensembles (7).

The prediction of protein disorder from sequence was on
the menu of the Critical Assessment of Protein Structure
Prediction (CASP), a community-wide experiment of pre-
dicting protein structures from sequence (8), for many years.
A new initiative, the Critical Assessment of Intrinsic pro-
tein Disorder (CAID), has now reached maturity and will
be reintegrated into the CASP programme, with a clearer
IDP perspective. New annotations in DisProt have already
been used to provide a blind evaluation of disorder predic-
tors (9).

Several recent breakthroughs have also signaled the vi-
tality of the field. An unsettled question with IDPs/IDRs is
whether their structural disorder persits in the crowded inte-
rior of cells. Whereas diverse indirect evidence indicates that
this is the case (10), only in-cell NMR seems currently avail-
able to address this issue. For example, it was recently ap-
plied to study Parkinson’s disease protein �-synuclein (Dis-
Prot DP00070), once suggested to have folded, oligomeric
structure in cells (11). In-cell NMR has clearly shown that
�-synuclein preserves its disordered, monomeric state in
non-neuronal and neuronal cells alike (12).

Another aspect of the functionality of IDPs is that they
often mediate protein-protein interactions, mostly by fold-
ing upon partner binding (13), but sometimes by preserv-
ing their structural disorder (fuzziness) in the bound state
(14). This was recently shown to occur in the extremely
tight (picomolar) interaction between two human IDPs, hi-
stone H1 (DisProt DP01156) and its nuclear chaperone,
prothymosin-� (DisProt DP01677). These proteins asso-
ciate while retaining their highly dynamic, fully disordered
state (15). Functional regulation of another type may also
arise from structural disorder, via the entropic force gen-
erated by the structural ensemble of an IDP/IDR. In the
enzyme UDP-�-D-glucose-6-dehydrogenase (UGDH, Dis-
Prot DP02338), the C-terminal disordered tail has such a
role, fine-tuning the energy landscape of the protein and sta-
bilizing a sub-state that has a high affinity for an allosteric
inhibitor (16,17).

It is without doubt that we cannot afford to ignore this
intrinsically disordered, yet functionally important part of
the proteome. Not only does structural disorder play an
exquisite role in cellular signaling and regulation (18), it is
also often implicated in disease (19,20). Consequently, IDPs
also represent important drug targets: a largely unexplored
frontier in developing molecular medicine is the rational de-
sign of drugs against IDPs (21,22).
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Due to these challenges, it is important to update and up-
grade DisProt, the primary database of protein disorder.
Whereas predicted disorder features are available in Mo-
biDB (18), which has recently been integrated in UniPro-
tKB (23), the crux of understanding protein disorder is the
availability of manually curated, experimentally verified dis-
order annotations. The previous release of the database,
DisProt 7 (24), held data of ∼800 entries of IDPs/IDRs.
Other databases, like IDEAL (22), ELM (25), DIBS (26)
and MFIB (27), also include curated disorder information
but are somehow different capturing specific functional as-
pects, or protein classes, and the overlap with DisProt is
minimal (28). To reflect on the above-noted breakthroughs
and the recent explosion of the related liquid-liquid phase
separation (LLPS) field (29), we present a significant update
and upgrade of the DisProt database, which is now at ver-
sion 8. DisProt 8 holds almost two-times as many entries as
DisProt 7, including the majority of those available in afore-
mentioned databases.

DisProt has been completely redesigned with an extended
and updated functional classification scheme that relies on
functional/structural aspects of annotated regions and in-
corporates a novel functional class ‘biological condensa-
tion’. Annotation concepts have been formalized in a new
Disorder Ontology (DO), which is maintained by the entire
DisProt community.

DisProt 8 also has many novel features that make it eas-
ier to search. The graphical interface has been redesigned
and a new entry format provides greater flexibility, simpli-
fies maintenance and allows the capture of more informa-
tion from the literature.

Lastly, we made significant improvements on the new
annotation interface used by DisProt curators to populate
the database. It is now easier to use and leverages cura-
tors’ work by enabling text-mining technologies, integrating
third-party information on-the-fly and implementing sev-
eral validation checks.

In recent work, specific sequence features have been as-
sociated with different disorder ‘flavours’ and mapped on
a large scale (30). This information has been used to im-
prove protein function prediction from sequence (31). We
believe the growth of DisProt will accelerate, contributing
to the improvement of function and disorder predictors and
therefore to illuminate the ‘dark’ proteome.

PROGRESS AND NEW FEATURES

Database structure and implementation

The way disorder information is represented in the litera-
ture is inherently complex. Articles describe functional and
structural aspects, where IDPs are strictly connected to dy-
namic behavior. DisProt tries to capture as much biologi-
cal knowledge as possible while at the same time providing
simple and clear annotations. The idea is to optimize user
experience and improve data exchange with other major an-
notation resources.

Database records

The major change compared to the previous release is
the new annotation paradigm. In DisProt 7, experimen-

tal methods represented the annotation core of a DisProt
region and function terms were used as attributes. Now
the core of an annotation is the functional/structural as-
pect of a region and the experimental method is an at-
tribute representing the quality of the annotation. Both
functional/structural aspects and the type of evidence are
encoded in a controlled vocabulary, in line with other core
data resources (e.g. UniProtKB). In the new DisProt region
format, a ‘statement’ field has been introduced to track the
literature text supporting the evidence. When the text is too
long or complicated, a curator statement is provided in-
stead. All ‘statements’ are available from the website and
could be used to train text-mining algorithms and to high-
light sentence-based annotations on abstracts and full text
articles. A new ‘obsolete’ field has been introduced in order
to track regions which have been excluded from the current
release. It also includes the reason for obsolescence, usu-
ally changes in the reference sequence due to UniProKB
updates or curator errors.

At present, functional terms can be associated to a subset
of disordered residues, i.e. to a region shorter than the one
for which disorder has been experimentally evaluated. For
example, a paper describing a folding upon binding event
can provide two DisProt records, one region spanning the
folding residues and another showing the interacting ones.
All regions have now a region identifier field which is unique
and stable, i.e. it is never reused and becomes obsolete if the
reference sequence changes. Functional and structural vo-
cabulary terms along with experimental methods have been
encoded in a new Disorder Ontology (DO).

Disorder ontology

In order to describe the different functional aspects of IDPs
and the experimental methods used to characterize them,
an annotation scheme was introduced in DisProt 7. A more
formalized version of the disorder ontology was imple-
mented in DisProt 8, to move towards a descriptive, interop-
erable and collaborative ontology of IDPs. This is the first
release of the Disorder Ontology in the specific Biomedical
Ontology (OBO) or the Web Ontology Language (OWL)
formats (32,33). Besides improving the ability to reuse and
share the ontology, these formats allow definition of la-
bel attributes such as ‘xterm’ (cross-references to external
databases or ontologies) and ‘synonym EXACT’ (alterna-
tive names). They also support assignment of relationships
among terms (including for example ‘disjoint from’ to mark
terms that should not be linked together).

An identifier was assigned to each term in the on-
tology. It gives each label an 8-character accession code
(e.g. ‘DO:00001’), with the string ‘DO:’ to indicate the dis-
order ontology and five numeric characters to indicate the
term unambiguously. Mirroring the Gene Ontology, acces-
sion numbers are assigned incrementally and there is no re-
lationship between accession codes and the ontology topol-
ogy.

We have reviewed the terms and organization of the whole
ontology, paying particular attention to the ‘Function’ cat-
egory. We made some straightforward changes, for exam-
ple, we split ‘Fatty acylation (myristoylation and palmity-
lation)’ into a renamed parent class ‘Fatty acylation’ and
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its new children terms ‘Myristoylation’ and ‘Palmitoyla-
tion’. A new functional term was also introduced to anno-
tate different phenomena related to ‘Biological condensa-
tion’ (DO:00040). It describes proteins that undergo phase
separation from a solution, e.g. either to form a dynamic
liquid droplet (DO:00041, ‘liquid–liquid phase separation’)
or a hydrogel (DO:00042). It also includes cellular protein
condensates (DO:00045 and DO:00046 describe ‘granule’
and ‘cellular puncta’, respectively), regardless of their ex-
istence in physiological or pathological states (as in ‘Amy-
loid’, DO:00046). This class provides an initial scheme to
annotate the relevant but still scarce information available
about protein condensates, and we expect this subset of the
hierarchy to be modified (possibly by conforming its own
sub-ontology) as the field matures.

The distinction between structural states and dynamic
events, like disorder-to-order transitions, has been made
clearer. Previously ‘Structural state’ terms were part of
the ‘structural transition’ category and ‘disorder’ was only
used implicitly. Now, a new ‘structural state’ category has
been created and it includes ‘disorder’, ‘order’, ‘pre-molten
globule’ and ‘molten globule’ terms. In the future, struc-
tural states will be annotated in conjunction with the cor-
responding environmental conditions affecting the confor-
mation (pH, post-translational modifications (PTMs), tem-
perature, etc.).

All experimental methods are now encoded under the ‘de-
tection method’ branch. An overlap with other ontologies
exists, but it is not complete or the definition of the same
experiment is often slightly different. For example, in Dis-
Prot the term ‘crystallography’ includes ‘missing electron
density’ as a child. In other ontologies ‘crystallography’ al-
ways indicates methods for structural determination. A new
‘electron cryomicroscopy’ (DO:00128) term has been also
introduced in DisProt 8.

The Disorder Ontology (version 0.1.0) is maintained by
the DisProt consortium and is available to be adopted by
other databases for general use. In the future, it will be made
available also from third party dedicated repositories.

Curation process and updates

DisProt data is provided by a community effort and annota-
tions are collected through a web interface, which has been
improved drastically compared to the previous version in
terms of field validation, autocompletion and Named En-
tity Recognition (NER). In particular, curators can use a
dedicated service from the NextA5 literature triage infras-
tructure (34) to rank relevant literature starting from a gene
name. In complement, when curators start from an article,
the DisProt interface exploits the SciLite software through
the EuropePMC API (35) to automatically retrieve biolog-
ical entities and identifiers in the manuscript.

The annotation interface implements the concept of own-
ership and user privileges. DisProt distinguishes two types
of users, curators and reviewers. Curators can edit only en-
tries that they have created, while reviewers can modify all
entries. Before release, the reviewers check all annotations
to ensure high quality of the data. Curators are experts in
the field and trained to meet DisProt annotation standards.
As a community database, DisProt looks for new curators.

Curator candidates are enrolled upon an evaluation of the
curriculum and curation skills.

Access to the annotation interface is restricted to regis-
tered curators and provided through Google Authentica-
tion (based on the OAuth 2.0 protocol) or the ELIXIR au-
thentication and authorization infrastructure system (36).
In the past, the DisProt interface had been kept open for
limited time slots. Now the new DisProt interface is always
open and new releases will be delivered more frequently, i.e.
every six months.

DisProt versioning has been improved. A numeric identi-
fier indicates the version of the database entry, e.g., version
‘8.0’ and a ‘<year> <month>’ code indicates the version
(timestamp) of annotated data, e.g. ‘2019 09’.

Database content

Since the last release, both the number of proteins and re-
gions has almost doubled. DisProt 8 contains 1556 pro-
teins and 3511 sequence segments annotated as disordered,
which cover 19.7% of the number of residues. These num-
bers become 1390 proteins, 3041 regions and 18.7% of dis-
order content when ambiguous evidence is not considered.
Previous annotations have been fixed and updated. Regions
shorter than ten residues are no longer allowed and existing
short regions were marked as obsolete as the majority are
flexible loops annotated from X-ray experiments that do not
represent disorder-related functional sites. Regions ending
outside the sequence, regions with a start index of zero in-
stead of one and entries for which the reference sequence in
UniProtKB changed, were corrected and, when necessary,
new records were created manually.

Figure 1 shows the distribution of regions based on
their length and experimental detection method. Com-
pared to the previous version, the distribution shape has
not changed. Secondary methods, which include all ‘de-
tection methods’ terms except ‘missing electron density’
(DO:00130) and ‘nuclear magnetic resonance’ (DO:00120)
dominate experiments used to identify longer (>100
residues) regions.

The statistics on annotation data for the main branches
of the disorder ontology are reported in Figure 2. Only
terms one node away from the ontology root are considered
and more specific annotations are propagated following the
‘true path rule’, i.e. following the ontology hierarchy, so that
parent terms account for children counts.

Different ontology aspects (‘namespace’ field in DisProt
records), are shown with different colors. In red the ‘struc-
tural state’ terms show as the majority of region records
in DisProt are annotated as disordered. Only five proteins
are annotated with the ‘order’ term. In the future, curators
will be encouraged to also track information about order,
in particular when relevant for structural transitions. Tran-
sitions are mainly covering folding events (‘disorder to or-
der’), 365 proteins and 36 200 residues, and not the contrary.
The majority of interaction partner annotations refers pro-
tein and nucleic acid binding. Binding residues are, how-
ever, overestimated since in the previous DisProt version,
due to hard constraints in the database schema, it was not
possible to narrow region boundaries to real interacting po-
sitions. Binding positions will become more precise in the
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Figure 1. Distribution of region length. Regions shorter than 100 residues (left) are binned in groups of 10 residues. Regions longer than 100 (right) are
binned in 100 residues. The tick labels indicate the lower bound which is included. Gray bars refer to the previous release (DisProt 7).

Figure 2. Distribution of disorder annotation terms. Terms belong to the Disorder Ontology and only those one node away from the ontology root are
shown. Annotation counts for child terms are propagated to parents up to the root. The dark segments correspond to proteins (left) or residues (right) for
which more than one piece of evidence is available. Different ontology aspects (namespaces) are grouped and have different colors.
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future. The new term introduced in DisProt 8, ‘Biological
condensation’ (DO:00040) has been assigned to a total of
20 proteins, 29 regions and 2610 residues. The new ‘elec-
tron cryomicroscopy’ (DO:00128) term, which is a child of
‘crystallography’, covers 34 proteins, 67 regions and 4726
residues.

Darker segments in Figure 2 indicate the fraction of pro-
teins (left plot) and residues (right plot) for which more
than one experimental evidence is available. At the bottom
in orange the distribution of ‘Detection methods’ terms.
‘Proteins’ and ‘residues’ distributions have a similar shape.
‘Crystallography’, which is a parent of ‘missing electron
density’, covers less residues compared to ‘spectrometry’
and ‘optical analysis’, indicating that regions identified with
crystallographic techniques are shorter on average. More-
over, ‘crystallography’ has less residues covered by multi-
ple experimental evidence compared to other techniques. In
general, disorder annotation is well supported with 44.4%
of disordered proteins and 43.2% of the disordered residues
backed by two or more literature references.

DisProt website

The DisProt website has been completely redesigned, im-
proving the user experience, visualization and functionali-
ties. Additionally, a big effort was made to develop the Dis-
Prot Application Programming Interface (API) to enable
users to retrieve a single entry or a region and to perform ad-
vanced searches via RESTful endpoints (URLs). The new
API and distribution formats are extensively documented
in the help page.

Entry page

The entry page is composed of three main sections. On the
top, general information of the protein including name, Dis-
Prot ID, organism, sequence length, MobiDB and UniPro-
tKB accession numbers are provided. On the top right,
it is possible to select the DisProt version and hide/show
ambiguous/obsolete evidence. A download dropdown but-
ton allows saving the whole entry data in JSON, TSV (tab-
separated) or the corresponding sequence in FASTA for-
mat.

A new dynamic feature viewer allows to visualize DisProt
evidence mapped onto sequence. The feature viewer shows
two tracks by default, DisProt consensus and domains, the
latter including Pfam (37) and Gene3D (38) annotation.
DisProt consensus is generated by merging region annota-
tion following the hierarchy of the ontology terms. In the
last step, when merging the four main ontology branches,
priority is given to ‘interaction partner’, ‘structural transi-
tion’, ‘structural state’ and ‘disorder function’, respectively.

The feature viewer can be expanded to see sub tracks
and it is possible to zoom in and out specific regions, cus-
tomize the view and download a high quality image. Region
tooltips are activated on mouse over and provide detailed
information about the corresponding annotation.

Region details are also provided on the bottom of the
page, organized in a dynamic list of boxes. A search box,
which supports regular expressions, allows to filter the list
of regions. The filter is also applied to the feature and se-
quence viewers (right) in real time, for example, by typing

‘nuclear magnetic resonance’ it is possible to select only re-
gion evidence from NMR experiments.

Browsing and searching data

DisProt implements both a database and a BLAST search
(39), both available from the ‘browse’ page. The database
search allows to compose a query against several fields,
which can be combined to meet multiple criteria. All search
fields accept regular expressions, and ‘Free text’ allows to
search against the entire database content. For example, by
searching ‘p53’ in ‘free text’ and ‘homo | mus’ in ‘organism’
will return all human and mouse proteins with the ‘p53’
string somewhere in the corresponding database records
(protein name, annotation reference title, etc.). Query re-
sults are displayed in the table below the search box. Table
columns are customizable and the result can be downloaded
in JSON, TSV or FASTA format.

DisProt API

DisProt provides programmatic access to perform a search
through REpresentational State Transfer (or RESTful)
Web Service API. A single entry or evidence can be retrieved
by using DisProt or UniProtKB identifiers. Additionally, a
text search against the entire database can be performed
by specifying query fields (name, organism, etc.) directly
as URL parameters in the HTTP request. JSON, TSV and
FASTA formats are supported.

CONCLUSIONS AND FUTURE WORK

In the previous release, DisProt disorder annotations were
polished and major errors were fixed but the number of
newly annotated proteins was limited. In DisProt 8, dis-
order annotations doubled and a robust infrastructure has
been put in place to leverage and accelerate the annotation
process. The database format has been improved to be flex-
ible enough to capture essential information from the liter-
ature but, at the same time, keeping disorder representation
simple and clear. A new disorder ontology has been formal-
ized with the aim of improving maintenance and data ex-
change with core data resources. The new ontology is ver-
sioned and provides a hierarchy to facilitate term traversal.
Article sentences tracking statements about disorder exper-
imental evidence are now captured providing a corpus for
the implementation of new text-mining models. New pro-
tein examples are used as ground-truth to evaluate predic-
tion methods as in the Critical Assessment of Disorder An-
notation (CAID). DisProt long term sustainability is guar-
anteed by the centrality of DisProt in several initiatives in-
volving large communities of bioinformaticians working on
disorder, such as the IDPfun Marie Curie RISE and the
ELIXIR IDP User Community.
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Mészáros,B. (2018) DIBS: a repository of disordered binding sites
mediating interactions with ordered proteins. Bioinformatics, 34,
535–537.
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