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 26 

ABSTRACT 27 

The use of computational fluid dynamics (CFD) to model and predict surgical outcomes in the nasal cavity 28 

is becoming increasingly popular. Despite a number of well-known nasal segmentation methods being 29 

available, there is currently a lack of an automated, CFD targeted segmentation framework to reliably 30 

compute accurate patient-specific nasal models. This paper demonstrates the potential of a robust nasal 31 

cavity segmentation framework to automatically segment and produce nasal models for CFD. The 32 

framework was evaluated on a clinical dataset of 30 head Computer Tomography (CT) scans, and the 33 

outputs of the segmented nasal models were further compared with ground truth models in CFD simulations 34 

on pressure drop and particle deposition efficiency. The developed framework achieved a segmentation 35 

accuracy of 90.9 DSC, and an average distance error of 0.3 mm. Preliminary CFD simulations revealed 36 

similar outcomes between using ground truth and segmented models. Additional analysis still needs to be 37 

conducted to verify the accuracy of using segmented models for CFD purposes.  38 

Keywords–nasal cavity; image segmentation; computational fluid dynamics; computed tomography 39 

 40 

1. Introduction 41 

The nasal cavity’s primary role is to provide humidified, warmed, filtered air before entering the lungs. 42 

Secondary functions include facilitating olfaction, along with ventilation of the paranasal sinuses. To 43 

achieve these specific but varied functions, the nasal cavity has a complex anatomical structure. 44 

Physiological and anatomical conditions in the nasal cavities can result in significant sequelae in the lower 45 

respiratory system. In addition, nasal airway disorders can also disturb other homeostatic systems, such as 46 

sleep and cardiovascular health [1, 2]. Each year, more than 340,000 patients in North America undergo 47 

surgery to correct nasal airway obstruction [2]. However, up to 37% of patients report unsatisfactory or no 48 

improvement after such surgery [3-5]. One of the key reasons for this high failure rate is the lack of objective 49 

methods to predict surgical outcomes [5].  50 
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In recent years, computational fluid dynamics (CFD) has been proposed as a potential tool for modelling 51 

and predicting surgical outcomes using patient-specific nasal models [5-7]. Through the use of computer-52 

assisted numerical analysis and simulations, it is possible for CFD to accurately model and derive key 53 

metrics, such as nasal resistance, airflow rate, wall shear stress and heat fluxes. While previous studies have 54 

demonstrated the validity and effectiveness of CFD in modelling the nasal airway [6, 8-10], the process of 55 

patient-specific model creation remains time and labour intensive. There is a critical need for an efficient, 56 

reliable and automated framework to generate patient-specific nasal models to conduct CFD. 57 

CFD outcomes are heavily reliant on the accuracy of the patient-specific model used. In order to produce 58 

an anatomically accurate model of a patient’s nasal cavity, high quality segmentation is essential. However, 59 

due to the complexity of the nasal cavity anatomy and its connectivity to other airway components of similar 60 

intensity values, such as the paranasal sinuses, it is often difficult to differentiate and segment just the nasal 61 

cavity alone, without performing manual delineation [11]. Figure 1 exemplifies the close proximity of the 62 

paranasal sinuses to the nasal cavity and highlights the connectivity between the two regions. The majority 63 

of existing nasal segmentation methods have either included nearby airway components as part of the 64 

segmentation [12-18], or require some form of manual intervention in order to derive results [17-22].  65 

 66 

Figure 1: Examples illustrating the issues involved in segmenting the nasal cavity due to the lack of boundary 67 
distinction to other airway regions. 68 
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In the work of Bui et al. [12], a multi-step level-set segmentation procedure was utilised to automatically 69 

segment the nasal cavity and the surrounding paranasal sinuses from cone-beam computed tomography 70 

(CBCT). Whereas Last et al. [13] utilised a level-set based deformable model to segment the nasal cavity 71 

and paranasal sinuses. Other works have used more traditional methods such as thresholding [15, 16] or 72 

region growing [14, 17, 18], where they rely on the similar voxel intensity range, as well as the 73 

interconnectivity of the upper airways to make the segmentation. While these methods were effective at 74 

segmenting airway regions within the human body, they were not able to identify individual components 75 

nor separate them based on anatomical information. Currently, it is difficult to accurately label the 76 

boundaries without manual intervention. This is evident among studies that focused on segmenting just the 77 

nasal cavity itself, such as in the works of Kimura et al. [20] and Alsufyani et al. [22] where thresholding 78 

was used to segment the upper airway, and large amounts of manual delineation was required in order to 79 

separate the nasal cavity from the rest of the airway regions.  80 

Keustermans et al. [21] made use of an active shape model (ASM) to semi-automatically segment the nasal 81 

cavity. An ASM is a landmark based statistical shape model (SSM) segmentation method which makes use 82 

of anatomical knowledge derived from a set of training data to segment a particular organ or structure [23, 83 

24]. By modelling the shape variability of the nasal cavity beforehand, they were able to use that 84 

information to significantly reduce the amount of manual intervention required during segmentation when 85 

compared with other literature works, demonstrating the powerful capability of an SSM.  86 

In order to achieve a faster and more efficient way of segmenting the nasal cavity, an SSM is essential for 87 

determining the boundaries between the nasal cavity and other airway components. Although [21] made 88 

use of a landmark based SSM for segmentation, it is limited due to the reliance on point correspondence 89 

for shape model representation. As ASMs require every training shape to be constructed with the same 90 

number of points (landmarks) that corresponds, it is difficult to include and model features or shapes that 91 

exist outside the norm. For our goal of establishing patient-specific nasal models for CFD, where a large 92 

majority could likely to be those with diseased or obstructed airways, we require a method which can 93 
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reliably segment all kinds of cases. Level-set approaches, which are based on evolving contours do not 94 

require point correspondence and can still incorporate statistical and anatomical knowledge as shape priors 95 

into its energy formulation [25, 26]. Although there are known weaknesses for level-set methods during the 96 

segmentation process such as becoming trapped inside a local minimum, these weaknesses can be avoid 97 

when combined with other segmentation methods [27]. As region-based segmentation methods like region 98 

growing have been shown to be effective at segmenting airway regions, combining shape priors from a 99 

level-set SSM with a more advanced region-based method would be the most logical approach for nasal 100 

cavity segmentation.  101 

In this study, we demonstrate the efficiency of an automated segmentation framework at optimizing the 102 

nasal model creation process for CFD. Compared with our previous work [11], our proposed framework 103 

makes the following distinctions: (i) the initialization process through the use of superpixels has been 104 

improved [28], in combination with a multi-atlas for seed derivation; and (ii) the framework has been 105 

optimized to reduce the number of manual steps needed for the CFD, by incorporating post-smoothing and 106 

cleaning algorithms, as well as automating the process of pressure inlet and outlet creation using spatial and 107 

anatomical information. The framework was evaluated on a clinical dataset of 30 head CT scans, and the 108 

outputs of the nasal models generated using the segmentation framework were further tested against ground 109 

truth models in CFD simulations. Statistical tests were performed to assess the outcome of the segmented 110 

models against ground truth models for pressure drop and particle deposition. 111 

2. Methods 112 

Our algorithm requires the use of a statistical shape model (SSM) which needs to be constructed prior to 113 

segmentation. The segmentation framework can be divided into three main sections: initialization, 114 

segmentation, and post-processing.  115 
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2.1 SSM Construction 116 

SSM construction was based on the method of Leventon et al. [25], where a mean offset matrix of the nasal 117 

training data, denoted as {𝑥𝑥1 − �̅�𝑥, 𝑥𝑥2 − �̅�𝑥, … , 𝑥𝑥𝑛𝑛 − �̅�𝑥} is constructed, with 𝑥𝑥1 to 𝑥𝑥𝑛𝑛 being the signed distance 118 

representations of the training shapes and �̅�𝑥  being the mean denoted as �̅�𝑥 = 1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 . The resulting 119 

eigenvector 𝑼𝑼 and eigenvalues obtained from the singular value decomposition (SVD) of the mean offset 120 

matrix holds the decomposed features of the nasal cavity shape. An estimate of a novel nasal shape 𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒, 121 

can be represented by 𝑘𝑘 principal components in a 𝑘𝑘-dimensional vector of coefficients, 𝛼𝛼:  122 

 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑈𝑈𝑘𝑘𝛼𝛼 + �̅�𝑥. (1) 123 

For the selection of the training data, we assigned a weight 𝑤𝑤 to each nasal shape 𝑡𝑡, where 𝑤𝑤 =  |𝑃𝑃∩𝑒𝑒|
|𝑃𝑃|+|𝑒𝑒|−|𝑃𝑃∩𝑒𝑒|

. 124 

Nasal shapes that scored below the third quartile were removed from the training dataset. 125 

2.2 Initialization 126 

An atlas consists of a Computed Tomography (CT) image and a corresponding ground truth segmentation. 127 

Affine and Bspline registration using Elastix [29] was first applied to align 𝑛𝑛 atlas CT images to the input 128 

target image. The transformation parameters of the registration were then applied on the atlas segmentations 129 

to warp them to the same reference frame as the target image. A probabilistic multi-atlas 𝐴𝐴 was constructed 130 

as the average of the registered segmentations {𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝑛𝑛} over the total number of atlases 𝑛𝑛, denoted 131 

as 𝐴𝐴 = 1
𝑛𝑛
∑ 𝐺𝐺𝑗𝑗𝑛𝑛
𝑗𝑗=1 . 132 

Thresholding was applied on the input image to extract the position of the airway voxels. By overlaying 𝐴𝐴 133 

on top of the thresholded image 𝑇𝑇, an estimate 𝑃𝑃 of the nasal cavity was obtained from the union of the 134 

thresholded image and the atlas, defined as: 𝑃𝑃 = 𝐴𝐴 ∪ 𝑇𝑇. The input image was further cropped in order to 135 

better localize the nasal cavity and to reduce the computation time. Smaller and detached airway regions 136 

captured by 𝑃𝑃 were removed to ensure accurate seed derivation. We applied the SLIC superpixel [28] 137 

algorithm on the cropped image. Foreground seeds are derived from the cluster centres of the superpixels 138 
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on the largest airway region that lay within 𝑃𝑃 at a slice by slice level. Background seeds were derived from 139 

the cluster centres of tissue regions and airway regions a distance 𝜎𝜎 away from 𝑃𝑃, with 𝜎𝜎 being a numerical 140 

parameter specified during initialization. Once the required seeds were derived and an estimate of the nasal 141 

cavity 𝑃𝑃  was obtained, the shape priors to capture the statistical variances of the nasal cavity were 142 

constructed. 143 

2.3 Segmentation 144 

The constructed SSM was embedded in a graph-based segmentation framework and an image was 145 

formulated as a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where each vertex 𝑣𝑣 ∈ 𝑉𝑉 corresponds to an image voxel and each edge 146 

𝑒𝑒 ∈ 𝐸𝐸 connects two vertices in 𝑉𝑉. We utilized the base method of random walk (RW) and formulated the 147 

Dirichlet energy as 𝐸𝐸𝑟𝑟𝑟𝑟 = 𝑧𝑧𝑇𝑇𝐿𝐿𝑧𝑧, where 𝐿𝐿 is the Laplacian matrix defined in [30] and denotes the pairwise 148 

affinities among the vertices in 𝑉𝑉 , and 𝑧𝑧 ∈ 𝑅𝑅|𝑉𝑉|×2  is a labeling vector indicating voxel foreground 149 

(background) probabilities. In our nasal cavity segmentation problem, we defined a new energy term which 150 

holds the captured shape variances from the nasal SSM to the labeling vector of image voxels. The labeling 151 

vector can be optimized by solving a graph Dirichlet problem to produce the final probabilistic labeling. 152 

The proposed energy term was defined as: 153 

 𝐸𝐸 𝑝𝑝𝑟𝑟𝑖𝑖𝑝𝑝𝑟𝑟𝑒𝑒 = (𝑧𝑧 − (𝑈𝑈𝑘𝑘𝛼𝛼 + �̅�𝑥𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝))T(𝑧𝑧 − (𝑈𝑈𝑘𝑘𝛼𝛼 + �̅�𝑥𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝)) (2) 154 

where �̅�𝑥𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 = 1
1+exp (�̅�𝑥)

 and 𝑧𝑧 = �
𝑧𝑧𝑀𝑀
𝑧𝑧𝑁𝑁� , where 𝑧𝑧𝑀𝑀  denotes the predefined labels, i.e. foreground and 155 

background seeds, and 𝑧𝑧𝑁𝑁  denotes other labels. Given the definition of 𝐸𝐸𝑝𝑝𝑟𝑟𝑖𝑖𝑝𝑝𝑟𝑟𝑒𝑒 , the complete energy 156 

function is formulated as 𝐸𝐸𝑒𝑒𝑝𝑝𝑒𝑒𝑡𝑡𝑡𝑡 = 𝐸𝐸𝑟𝑟𝑟𝑟 + 𝐸𝐸𝑝𝑝𝑟𝑟𝑖𝑖𝑝𝑝𝑟𝑟𝑒𝑒. 157 

An estimation of the nasal cavity shape was obtained by minimizing the proposed functional 𝐸𝐸𝑒𝑒𝑝𝑝𝑒𝑒𝑡𝑡𝑡𝑡(𝑧𝑧𝑁𝑁 ,𝛼𝛼), 158 

iteratively, with respect to each of its variables 𝑧𝑧𝑁𝑁  and 𝛼𝛼 . Starting from 𝛼𝛼 = 0 , the mean shape was 159 

initialized over the input image. Since 𝐸𝐸𝑒𝑒𝑝𝑝𝑒𝑒𝑡𝑡𝑡𝑡 is convex, we differentiate 𝐸𝐸𝑒𝑒𝑝𝑝𝑒𝑒𝑡𝑡𝑡𝑡 with respect to 𝑧𝑧𝑁𝑁 and find 160 

the critical point yielding: 161 
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 𝑧𝑧𝑁𝑁 = (𝐿𝐿𝑁𝑁 + 𝐼𝐼)−1(2�𝑈𝑈𝑘𝑘𝛼𝛼 + �̅�𝑥𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝� − 𝐵𝐵T𝑧𝑧𝑀𝑀) (3) 162 

where I is an identity matrix, L is the Laplacian matrix of the image and B is the matrix partitioned from L 163 

which correlates the labeled set to the unlabeled set. Secondly, we use the updated 𝑧𝑧𝑁𝑁 to differentiate 𝐸𝐸𝑒𝑒𝑝𝑝𝑒𝑒𝑡𝑡𝑡𝑡 164 

once more with respect to 𝛼𝛼, which yields the following: 165 

 𝛼𝛼 = (𝑈𝑈𝑘𝑘T𝑈𝑈𝑘𝑘)−1𝑈𝑈𝑘𝑘T(𝑧𝑧𝑁𝑁 − �̅�𝑥). (4) 166 

In order to reduce the amount of over-segmentation while still maintaining the effects of our shape priors, 167 

the output of 𝐸𝐸𝑒𝑒𝑝𝑝𝑒𝑒𝑡𝑡𝑡𝑡 was constrained to remain within the boundaries of the nasal airway by computing a 168 

probability of the estimated foreground voxels and removing those that were located in the tissue regions 169 

based on their intensity value at each step of the differential iteration. 170 

2.4 Post-Processing and CFD preparation 171 

Post-processing smoothing and cleaning were required in order to prepare the output segmentations for 172 

CFD modelling. An adaptive smoothing algorithm was applied to smooth the edges that contained rough 173 

and jagged surfaces. A connected regions tool was applied to filter out displaced segmentation noise to 174 

ensure a single solid object was outputted to STL which could then be meshed for flow simulation. The 175 

entrances and exit of the nasal model were automatically detected using spatial and anatomical information, 176 

and automatically extended by the algorithm in order to clearly establish the inlet and outlet locations 177 

needed in the CFD model. The final segmentation output was converted into STL ready to be meshed for 178 

CFD simulation.  179 

2.5 CFD Model Creation 180 

ANSYS Fluent Meshing (version 17.0) was used to create the mesh. The inflow and outflow regions of the 181 

nasal geometry were first separated from the wall region. Once imported, a wrapping algorithm was applied 182 

with minimum and maximum surface mesh sizes of 0.1 mm and 2.5 mm, respectively. These parameter 183 

values were selected empirically after a dimensioned rectangular prism was introduced as a body of 184 
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influence which acted as a secondary sizing control limiting the size of surface mesh to a maximum of 185 

0.1 mm in regions of the nasal cavity that were separated by narrow gaps. Once the volumetric region was 186 

computed it was automatically meshed using polyhedral elements growing according to the local size field 187 

of the region. Inflation was applied at all walls with the Fluent Meshing default algorithm, which uses a 188 

first aspect ratio of 10, last aspect ratio of 4.8, growth rate of 1.2 and is set to generate five layers at the 189 

walls. Node locations were then automatically adjusted by systematically reducing the threshold for the 190 

maximum skewness to approximately 0.6. The final nasal mesh was imported directly into the ANSYS 191 

Fluent solver ready for simulation.  192 

3. Materials and Evaluation Setup 193 

3.1 Materials  194 

Our dataset which consisted of 30 de-identified head CT scans was acquired from the Department of 195 

Radiology at the Royal Prince Alfred hospital (Camperdown, NSW, Australia), following approval from 196 

the Sydney Local Health District Ethics Committee. The subjects of the 30 CT scans were all males of 197 

Caucasian descent over the age of 40 with different nasal or sinus related complaints. The scans were 198 

acquired using a GE Lightspeed-16 CT Scanner using Helical CT imaging protocols with an average 199 

exposure time of 707 ms. The resulting images maintained a resolution of 220 by 220 mm (512×512 voxels) 200 

and a voxel depth of 1.25 mm. The ground truth data were semi-automatically segmented using Geodesic 201 

Image Segmentation [31] by an experienced operator under the guidance of a nasal surgeon. Each 202 

segmentation took approximately 15 minutes to complete. The segmented data were further re-examined 203 

by a clinical doctor with expertise in CT scan interpretation. The resulting ground truth segmentations were 204 

used in our algorithm as both training data for the level-set SSM and for the construction of the probabilistic 205 

atlas. 206 
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3.2 Segmentation Evaluation Setup 207 

The leave-one-out cross validation was performed on 30 CT images (30 folds), where 29 ground truth labels 208 

were used each time for the creation of the PA and SSM. The initialization parameter was set to 𝜎𝜎 = 5, 209 

which was derived empirically based on experiment validations. We compared our framework with the 210 

locally constrained statistical shape model (LC-SSM) [11] and evaluated our method on both segmentation 211 

accuracy and time. We conducted our experiment on a Windows 8.1 64-bit Desktop PC with i5-3470 212 

3.2 GHz processor and 16 GB DDR3 RAM.  213 

The following metrics were used for the evaluation of segmentation results: (i) dice similarity coefficient 214 

(DSC) calculated as the overlap between the two volumes according to: 𝐷𝐷𝑆𝑆𝑆𝑆 =  2 |𝑋𝑋 ∩ 𝑌𝑌|
|𝑋𝑋|+|𝑌𝑌|

 , where X is the 215 

segmentation label and Y is the ground truth label; (ii) average symmetric surface distance (ASSD in mm); 216 

(iii) average symmetric root mean square surface distance (ASRSD in mm); (iv) maximum surface distance 217 

(MSD in mm); and (v) volumetric overlap error (VOE in %). Further details on the evaluation metrics can 218 

be found in Heimann et al. [32].  219 

3.3 CFD Evaluation Setup 220 

Of the 30 nasal segmentation outputs, the best and worst segmentation case based on DSC along with 8 221 

additional segmentation outputs were selected and CFD simulation constructed using ANSYS Fluent solver 222 

(version 17.0). The outcomes of the CFD simulation using the nasal segmentation models were directly 223 

compared against the corresponding ground truth nasal models. Two-tailed paired t test was utilized to 224 

assess the mean difference between using segmented and ground truth nasal models, and a p value less than 225 

0.05 was considered statistically significant.  226 

We based the parameter setting for CFD on Engelhardt et al. [33] which models airflow and particle 227 

deposition in the nasal cavity and presents calculated Reynolds (Re) numbers for various flow rates. For 228 

the breathing rate of 30 L/min a Re > 3000 was calculated, indicating turbulent flow. A flow rate of 229 

30 L/min was selected to replicate fast nasal inhalation as would practically occur with administration of 230 
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therapeutic nasal sprays. As such, the flow was modelled using the realizable k-ε turbulence model and a 231 

target mass flow rate of 6.13×10‒4 kg/s (30 L/min) set at the pressure outlet. The total pressure at the inlet 232 

was set to 0 Pa (gauge). The coupled solver was used with convergence achieved when the locally scaled 233 

residuals fell below 10‒4, which typically required 200 iterations.  234 

Once the simulation was converged, Lagrangian particle tracking with a turbulent dispersion model was 235 

applied. The particle diameter size distribution was described using the Rosin-Rammler distribution, with 236 

the distribution parameters determined from laser diffraction experimental data obtained by analyzing water 237 

plumes from a spray bottle using a Malvern Spraytec®. The minimum and maximum diameters were set to 238 

0.12 µm and 1000 µm, respectively, with a mean diameter of 85.8 µm and a spread parameter of 1.92. After 239 

the flow had converged, water droplets were injected from each inlet and the simulation completed when 240 

all the particles had either escaped from the outlet or collided with the rigid walls of the nasal cavity, which 241 

was set to trap particles upon contact.  242 

4. Results  243 

4.1 Segmentation 244 

Table 1 presents the segmentation results of our framework compared with the LC-SSM, evaluated based 245 

on the metrics described in section 3.2. Our method achieved an averaged Dice Similarity Coefficient (DSC) 246 

of 90.9%, an averaged Surface Distance error of 0.3 mm, and an averaged Volumetric Overlap Error (VOE) 247 

of 16.6%. Figure 2 contains the DSC for each individual segmentation case, with case 23 achieving the best 248 

result (97.1%) and case 9 the worst (85.1%). 249 

Segmentation 
Accuracy DSC ASSD ASRSD MSD VOE 

Our method 𝟗𝟗𝟗𝟗.𝟗𝟗 ± 𝟐𝟐.𝟗𝟗 𝟗𝟗.𝟑𝟑𝟗𝟗 ± 𝟗𝟗. 1 𝟗𝟗.𝟖𝟖𝟖𝟖 ± 𝟗𝟗.𝟑𝟑 𝟕𝟕.𝟓𝟓 ± 𝟏𝟏.𝟕𝟕 𝟏𝟏𝟖𝟖.𝟖𝟖 ± 𝟒𝟒.𝟖𝟖 

LC-SSM 90.4 ± 3.1 0.31 ± 0.1 0.86 ± 0.3 7.8 ± 2.0 17.2 ± 5.4 

Table 1: Comparative evaluation of our segmentation framework with the LC-SSM. 250 
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 251 

Figure 2: DSC results of each nasal segmentation 252 

Table 2 illustrates the average segmentation speed of our framework. The initialization process took on 253 

average 328 seconds to complete, where most of the time was spent on image registration. An average of 254 

11.5 seconds was required for the segmentation process to complete. When combining initialization, 255 

segmentation, and post-processing, the total average time was 339.6 seconds. 256 

Segmentation 
Speed Initialization Segmentation Post-processing Total 

Our method 328s ± 3.1s 11.5s ± 1.8s <1s ± 0.05s 339.6s ± 2.2s 

Table 2: Speed of our segmentation framework 257 

4.2 CFD  258 

Case 23 and case 9 were selected as the best and worse segmentation cases based on the DSC result. Cases 259 

6, 10, 12, 15, 17, 18, 21, 25 were selected based on their combined average score (90.6 DSC) which was 260 

the nearest to the reported mean DSC average. Figure 3 presents the pressure drop (Pa) for each nasal 261 

segmentation case compared against their respective ground truth model. The pressure drops ranged from 262 
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3.5 Pa (lowest) to 29 Pa (highest), and the results were relatively consistent between the segmented and 263 

ground truth models with the exceptions of cases 9 and 18 where the differences in pressure drop were 264 

1.6 Pa (25%) and 2.2 Pa (35%), respectively.  265 

 266 

Figure 3: A summary of the pressure drop calculated for the different cases. Results shown in grey are for the ground truth 267 
models whereas those in blue are for the segmented models. 268 

 269 
Figure 4 presents the particle deposition efficiency across the 10 pairs of nasal models calculated as the 270 

percentage of the input mass flow of particles that were trapped on the walls. The percentage trapped ranged 271 

from 90% to 97%. Overall, there were very few differences found between the ground truth and segmented 272 

models. Even for cases that demonstrated greater variation in airflow between the ground truth and 273 

segmented models (case 9 and 18), the particle deposition remained consistent.  274 

 275 

6 9 10 12 15 17 18 21 23 25
Ground Truth 11.5 6.5 7.2 29.0 5.2 13.3 6.2 10.3 3.3 9.9
Segmented 10.6 4.9 6.9 28.2 4.7 11.6 4.0 9.0 3.5 9.7
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 276 
Figure 4: The percentage of particle deposited on the walls of the nasal geometry for each case: ground truth model (grey) and 277 
segmented models (blue).  278 

 279 

When examining individual cases, both the ground truth and segmented models revealed similar pressure 280 

distributions across all 10 nasal pairs. Overall, the region comprising of the nasal vestibule and the nasal 281 

valve were observed to contain the highest pressure drop and velocity magnitude. Figure 5 illustrates the 282 

wall pressure and the streamline plots of airflow for case 10, where regions of higher pressure in the left 283 

nostril, as well as in the middle to upper region of the nasal cavities were observed. The outer (inferior 284 

turbinate) regions displayed less pressure drop when compared with the others, indicating that most of the 285 

airflow was centred primarily on the middle turbinate region and further disperses to the upper regions.  286 

6 9 10 12 15 17 18 21 23
Ground Truth 91% 94% 90% 90% 93% 96% 97% 93% 94%
Segmented 92% 94% 90% 90% 94% 96% 96% 94% 94%
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 287 

Figure 5a. Wall pressure plots of case 10 with the ground truth model (left) and segmented model (right) indicating the overall 288 
change in pressure across the mode from approximately ‒21 Pa to 0.2 Pa.  289 

 290 
Figure 5b: Streamline plots, coloured by velocity magnitude, of case 10 originating from the inlets for the ground truth (left) and 291 
the segmented model (right) colored by velocity magnitude.  292 

 293 
When looking at the airflow velocities, the middle regions experienced a higher velocity (3.6 m/s) on 294 

average when compared with the upper regions (1.29 m/s). Figure 6 illustrates the velocity magnitudes 295 

shown in cross sectional view, where higher velocities were observed in the regions close to the centre of 296 

each passage, with the highest velocity magnitude (4.7 m/s) occurring in the region adjacent and superior 297 

to the inferior turbinate of the ground truth model. While the segmented model revealed a similar albeit 298 
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slightly lower velocity magnitude (4.2 m/s). Despite the similar flow behavior exhibited between the ground 299 

truth and segmented models, ground truth models were observed on average to have higher velocity 300 

magnitudes than their counterpart.    301 

 302 
Figure 6: Examples of cross sectional view comparison on the local velocity magnitude. The left example shows the cross section 303 
at 20mm from the front of the model, and the right example at 40mm from the front of the model.    304 

Table 3 presents the overall CFD outcomes between using ground truth and segmented nasal models. No 305 

significant difference was observed between ground truth and segmented nasal models for pressure drop (p 306 

= 0.061) and particle deposition (p = 0.279) 307 

Overall Outcomes Ground Truth Segmented p value 
Pressure Drop (Pa) 10.2 9.3 0.061 

Particle Deposition (%) 93 93 0.278 

Table 3: Mean pressure drop (Pa) and percentage of particles trapped for the ground truth and segmented nasal 308 
models. Two-tailed paired t test was conducted to derive the p values. 309 

5. Discussion 310 

Overall, our framework was able to automatically segment the nasal cavity from CT images at a relatively 311 

fast and efficient pace. When compared with our previous method, we were able to improve the 312 

segmentation accuracy due to the changes made to the initialization process. As a large portion of the nasal 313 

cavity consists of thin and narrow pathways that are often located in very close proximity to each other, 314 

where sometimes the distance is as thin as two voxels apart, it is especially important to be able to clearly 315 
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define the foreground and background seeds during initialization. With the use of superpixel clusters, we 316 

were able to minimize over-extension and ensure a more robust selection of foreground seeds.  317 

 318 

Figure 7: Examples of some of the worst segmentation errors with ground truth labels for comparison. The left side (case 1) depicts 319 
a commonly encountered error of leakage into ethmoid sinuses, while the right side (case 9) depicts a rare over segmentation error 320 
that expanded into the maxillary sinuses.  321 

When comparing our results with ground truth segmentation, we noticed that despite having leveraged the 322 

use of a level set SSM, it was still difficult for our method to accurately label some of the boundaries, 323 

especially at the regions surrounding the superior meatus. Based on CT observations, these regions of the 324 

nasal cavity are often in very close proximity to the ethmoid sinuses. Entrances connecting the two airway 325 

components are not fixed, which makes it difficult for an algorithm to correctly judge when to cut the 326 

segmentation. The majority of our results have experienced some form of leakage at this region of the nasal 327 

cavity. The left side of figure 7 shows an example of this problem where parts of the segmentation leaks 328 

into the ethmoid sinuses. The example shown on the right side highlights the worst case of over-329 

segmentation where due to similar issues, would sometimes cause leakage into the maxillary sinuses. 330 

However, even for our worst case, the size of the leakage was kept relatively contained due to the effect of 331 

our SSM.  332 
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As the primary objective of our study was centred on creating patient-specific nasal models to conduct CFD 333 

simulations, it was important for our framework to be able to reduce as many of the steps needed prior to 334 

conducting the simulations. Prior to adding the post-processing method component to our framework, we 335 

analysed the key differences between our segmented results and the ground truth models. The first apparent 336 

difference discovered was in the cell count of the mesh. As a result of the sensitivity of the segmentation 337 

process, a large majority of the segmented models had artefactual regions in their morphology, which do 338 

not appear in the ground truth models. Most of these artefacts appear to represent paranasal sinus cells, 339 

particularly ethmoid cells above the middle turbinate, such as in case 12. In many cases, these cells are 340 

connected to the main body of the nasal cavity by narrow channels which when meshed produce large cell 341 

counts because many small-sized cells are required to resolve these regions. During manual segmentation, 342 

these cells are typically excluded from segmentation. We were able to reduce this issue by adding an extra 343 

post-processing cleaning step where algorithms such as 6-way connected regions were applied on the 344 

segmentation outputs in order to remove those that were in the neighbourhood of almost touching or 345 

clipping the central superior nasal airway.  346 

 347 

 348 

Figure 8: The geometry of the nasal cavity for case 12. The model on the left is the ground truth model and that on the right is the 349 
segmented model. Region 1a and 1b demonstrate the ethmoid sinus region on the model and region 2a and 2b demonstrate lateral 350 
enlargement of the posterior end of the inferior turbinate restricting airflow to the nasopharynx. 351 

 352 
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Nevertheless, it remained difficult to fully remove these artefact cells as it would risk exclusion of the 353 

narrow central superior nasal airway that passes immediately between the ethmoid region and the septum. 354 

Looking at case 12 in particular (Figure 8), it was observed that it contained a number of such artefacts. 355 

Additionally, region 2a and 2b revealed a disconnection between the airflow beneath and around the inferior 356 

turbinate and the nasopharynx which although is consistent in both the segmented and ground truth models, 357 

it is not commonly observed in other nasal pairs. When examining the CT image for case 12 in closer detail, 358 

we noticed lateral enlargement of the posterior end of the inferior turbinate in both nasal cavities, restricting 359 

airflow to the nasopharynx and causing both the ground truth and segmented models to be disconnected in 360 

that particular section. In addition, significant medial obstruction in the right nasal cavity of the patient was 361 

observed, resulting in marked reduction in airflow. These sites of obstruction were the primary reason for 362 

the higher pressure drop and increased particle retention which remained consistent in both segmented and 363 

ground truth models. In all other models, the largest pressure drops were noted in the vestibule and nasal 364 

valve area, as is typically seen in the nasal CFD literature [34, 35]. If all models were chosen to represent 365 

clear noses, case 12 would be omitted. 366 

 367 

Figure 9: The nasal cavity geometry for case 21. The model on the left is the ground truth model and that on the right is the 368 
segmented model. The region highlighted by the red square shows a narrow connection formed between the air passage beneath 369 
and above the inferior turbinate in the segmented model.  370 

 371 
In addition to incorporating ethmoid cells within the segmented model, another artefact was identified, 372 

whereby the segmented model would rarely connect adjacent passages which would normally be separated 373 
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by very thin tissue. For example, in case 21, in the segmented model, a narrow connection was formed 374 

between the air passage beneath and above the inferior turbinate (Figure 9) that does not appear in the 375 

ground truth model. Although the artefact captured in this example appears small and creates little impact 376 

on the overall nasal segmentation accuracy, its effect on the internal structure remains significant. Such 377 

artefacts create small holes within the geometry allowing flow to pass through, creating pressure and 378 

velocity differences between the ground truth and segmented models. It is an important issue to address 379 

when designing segmentation algorithms with the intent of performing CFD simulations, as artefacts such 380 

as these would alter the expected physical air flow patterns contrary to the actual nasal structure of the 381 

patients from which the CT scans are obtained.  382 

5.1 Other work  383 

While the majority of our discussions have been on the accuracy and limitations of our proposed framework, 384 

it is important to also discuss and compare with other related works in general. In the work presented by 385 

Last et al. [13], they made use of a parametric level-set based deformable model to segment the region of 386 

interest (ROI) containing the nasal cavity and paranasal sinuses. Different to other studies, their intended 387 

segmentation target was not just the airway passages but also included the bones and tissues situated within 388 

the nasal region, as the aim of their segmentation was to identify the critical structures in robot assisted 389 

functional endoscopic sinus surgery. The base component of their method was the same as our segmentation 390 

framework where an SSM was constructed from training data. However, the segmentation approach they 391 

employed was a geodesic contour based method [25] and they segmented the CT image one 2D slice at a 392 

time, breaking down the targeted 3D structure into individual components. Such an approach is capable of 393 

achieving high performance for 2D objects but inherently has a higher probability of sharp local jumps in 394 

the combined 3D result.  395 

Keustermans et al. [21] employed an ASM for their nasal cavity segmentation. Different to level-set 396 

methods, ASM makes use of landmarks for SSM construction. This approach was highly popular due to 397 

the memory efficiency of using a fewer number of features called “landmarks” to represent a modelled 398 
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structure, whereas for level-set SSMs every voxel has a corresponding SDM representation. Both 399 

approaches have their strength and weaknesses. For landmark approaches, it is difficult to model complex 400 

shapes with high degrees of variation such as the nasal cavity. While for level-set approaches, larger 401 

numbers of eigen-modes are required due to the intrinsic nature of modelling the variations on the space of 402 

embedded contours. Nevertheless, the flexibility offered from level-set SSMs are higher as they have higher 403 

degrees of freedom and be combined with a number of other methods for segmentation to overcome some 404 

of its weaknesses.  405 

6. Conclusions 406 

This paper presents an efficient automated framework for the 3D segmentation of the nasal cavity, 407 

optimized for CFD modelling. Our framework achieved a segmentation accuracy of 90.9 DSC and an 408 

average distance error of 0.3 mm. The nasal models generated from our framework were further evaluated 409 

by calculating flow and droplet impact behaviour using the CFD model ANSYS Fluent in comparison with 410 

the models constructed from ground truth segmentation. Similar outcomes were observed for pressure drop 411 

and particle deposition efficiency between the two groups. We note that the proposed method still shows 412 

some differences that affect the flow locally and we are currently working on methods to detect these using 413 

the CFD data.  414 
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