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The available curated data lag behind current biological knowledge contained in the literature. Text mining can assist

biologists and curators to locate and access this knowledge, for instance by characterizing the functional profile of pub-

lications. Gene Ontology (GO) category assignment in free text already supports various applications, such as powering

ontology-based search engines, finding curation-relevant articles (triage) or helping the curator to identify and encode

functions. Popular text mining tools for GO classification are based on so called thesaurus-based—or dictionary-based—

approaches, which exploit similarities between the input text and GO terms themselves. But their effectiveness remains

limited owing to the complex nature of GO terms, which rarely occur in text. In contrast, machine learning approaches

exploit similarities between the input text and already curated instances contained in a knowledge base to infer a func-

tional profile. GO Annotations (GOA) and MEDLINE make possible to exploit a growing amount of curated abstracts (97 000

in November 2012) for populating this knowledge base. Our study compares a state-of-the-art thesaurus-based system with

a machine learning system (based on a k-Nearest Neighbours algorithm) for the task of proposing a functional profile for

unseen MEDLINE abstracts, and shows how resources and performances have evolved. Systems are evaluated on their

ability to propose for a given abstract the GO terms (2.8 on average) used for curation in GOA. We show that since 2006,

although a massive effort was put into adding synonyms in GO (+300%), our thesaurus-based system effectiveness is rather

constant, reaching from 0.28 to 0.31 for Recall at 20 (R20). In contrast, thanks to its knowledge base growth, our machine

learning system has steadily improved, reaching from 0.38 in 2006 to 0.56 for R20 in 2012. Integrated in semi-automatic

workflows or in fully automatic pipelines, such systems are more and more efficient to provide assistance to biologists.

Database URL: http://eagl.unige.ch/GOCat/
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Introduction

The available curated data lag behind current biological

knowledge contained in the literature (1, 2). Indeed, a

large amount of information is generated by research

teams and is usually expressed in natural language pub-

lished in scientific journals; this knowledge needs to be

located, integrated and accessed by biologists and curators.

In this perspective, text mining solutions could help biolo-

gists in keeping up with the literature (3–6). Automatically

characterizing the functional profile of a publication,

whether it is for triage, for powering ontology-based

search engines or integrated in a curation workflow, is

one of these promising solutions.

Yet, the automatic extraction of correct functional de-

scriptors from free text still remains an open problem (7, 8).
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For standardizing and integrating functional descriptions

across databases, the Gene Ontology (GO) was created

and has become a de facto standard (9), growing from

<5000 terms to >34 000 in 2012. In parallel, the Gene

Ontology Annotation database (GOA) has provided a

huge amount of high-quality GO annotations for proteins

in UniProt (10). Such curation from literature is a highly

complex task, because it needs expertise in genomics but

also in the ontology itself. In 2005, the GOA consortium was

associated to the first BioCreative challenge (11) to evalu-

ate how text mining tools could assist the manual curation

process. The task 2 of the competition focused on GO clas-

sification: participants’ systems had to automatically extract

relevant GO terms from a benchmark of 200 full-text pub-

lications. Results were judged far from reaching the

required performance demanded by real world applica-

tions (12). Most evaluated systems relied on thesaurus-

based (TB)—or dictionary-based—approaches, tending to

exploit lexical similarities between the information about

GO terms (descriptions and synonyms) and the input text.

Such approaches are data-independent, because they do

not need to be trained: they only demand a small collection

of annotated texts for fine tuning the model. However,

they are limited by the complex nature of the GO terms;

indeed, identifying GO terms in text is highly challenging,

as they often do not appear literally or approximately in

text (e.g. ‘regulation of transcription, DNA-dependent’,

which is one of the most frequent GO terms assigned by

curators). Another smaller part of systems evaluated in

BioCreative I relied on machine learning (ML) approaches.

Such algorithms empirically learn behaviours from a know-

ledge base that contains training instances, i.e. instances of

already curated publications. At that time, ML approaches

produced lower results than TB ones; the lack of a standard

training set was notably pointed out. Finally, the organizers

concluded that there was still need for significant improve-

ment to make text mining valuable for practical purposes.

In 2008, Winnenburg et al. (13) reached the same conclu-

sion in a briefing on how text mining can help to scale-up

high-quality manual curation. They added that the chance

that curators will accept automated tools depends heavily

on their performance, while they continued to claim the

immense importance of processing hidden information

from literature, according to another review (14).

Nowadays, the GO annotation task is still an open issue,

as it was identified as one of the curation bottlenecks in

the 2012 BioCreative challenge (15, 16), and it will be the

focus of the track 4 in the next 2013 edition. However,

some TB classifiers are currently used by biologist users in

their workflow: GoPubMed uses local sequence alignment

of words and GO terms for powering its ontology-based

search engine (17), or Textpresso uses regular expressions

for recognizing GO terms and assisting WormBase and TAIR

biocurators (18).

In this article, we focus on the automatic assignment of

GO terms from a publication, sometimes called GO classifi-

cation or GO concept recognition. We particularly focus on

the machine learning approach, compared with the the-

saurus-based one, and study how their performances have

evolved across the time regarding the growth of resources.

Indeed, thanks to the manual curation produced in past

years, the total of annotated publications in the GOA has

grown to 97 492 for the release of November 2012. Figure 1

illustrates this growth according to contributing source pro-

viders. We assume that the knowledge base has now

reached a critical mass for making the ML approach more

efficient, and sufficient to deliver a high-quality functional

profile of free texts. Our task is paper-centric rather than

protein-centric. Basically, our GO classifiers aims at predict-

ing a ranked list of candidate GO terms which a given pub-

lication deals with.

In computer science, the task that we focus on is known

as Automatic Text Categorization (ATC) (19). ATC is

described as follows: given an input text, returning a list

of relevant descriptors that belong to a predefined set. For

the functional profiling of a publication, the input text is a

publication, and the predefined set of descriptors is the GO.

This ATC task has the particularity to handle with thousands

of possible categories. Several studies addressed this issue,

including theoretical studies (20) or more practical studies

such as the Medical Subject Headings categorization for the

European Institute of Biology (21) or for the US National

Library of Medicine (22). All these studies deal with ML and

TB approaches. For ML approaches, Yang (20) notably

pointed out scalability difficulties for most standard algo-

rithms such as Support Vector Machines (SVM) or decision

trees; therefore, GO classifiers are usually inspired by

Information Retrieval techniques.

We now deal with the systems we evaluated. Both were

locally developed. The TB classifier is EAGL (23, 24). It

achieved very competitive performances amongst other sys-

tems during the BioCreative I challenge, or in further inde-

pendent studies against MetaMap (21). We therefore

assume that EAGL is a state-of-the-art TB classifier. The

first experiment we report aims at comparing EAGL with

GoPubMed to strengthen this assumption. The ML classifier

is GOCat (25). It relies on a k-Nearest Neighbours (k-NN)

algorithm. K-NN showed excellent scalability skills while it

remains competitive compared with more complex algo-

rithms such as SVM (26); moreover, k-NN is currently used

in the Medical Text Indexer for assisting the MeSH indexers

at the NLM (27). Both classifiers were evaluated for the task

of assigning GO terms to a just published abstract. Thus,

latest releases of our classifiers were evaluated with 2012

published abstracts to obtain what we call ‘current’ per-

formances. But we also aimed at studying how perform-

ances evolved across the time regarding the growth of

resources. Thus, we restored previous releases of our

.............................................................................................................................................................................................................................................................................................
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classifiers since 2006 and ‘simulated’ this task with past

years published abstracts.

Materials and methods

In this section, we begin by briefly describing the resources

used for the experiments: the GO, the GOA database that

provided both the knowledge base needed for the machine

learning and the benchmarks needed for the evaluation,

and the BioCreative I test set that was a supplementary

benchmark for our evaluations. Then, we describe the

two competing approaches for performing the automatic

GO terms assignment task: the thesaurus-based classifier

(EAGL) and the machine learning classifier (GOCat).

The gene ontology

The Gene Ontology is a hierarchical controlled vocabulary

that aims at describing and standardizing the functional

properties of gene products. All concepts that are seen as

relevant are represented by GO terms belonging to one of

these three independent axis: molecular functions, biolo-

gical processes and cellular components. GO is an ongoing

project, thus new terms are regularly added while some

other are merged or split, or become obsolete. The GO

file containing all GO terms is updated daily and made

available on the GO website (http://www.geneontology.

org); previous releases of the GO file can be found in the

archives section.

In our study, we evaluated the performances of two sys-

tems as they were in different years ranging from 2006 to

2012: for this purpose, we needed to use the GO files as

they were available on the 1st of January of each given

year. Table 1 shows an example of a GO term taken in

the GO file. Each GO term (regulation of secondary shoot

formation in this sample) is provided with a unique identi-

fier (GO:2000032), its namespace or axis (biological process)

and a set of synonyms (e.g. regulation of auxiliary shoot

formation). Obsolete GO terms are maintained in the GO

file but tagged with the attribute is_obsolete: true. We

computed from different releases the evolution of the GO

from 2006, and we present this evolution in Table 2: the

ontology has grown from 19 356 terms in 2006 to 34 113 in

2012 (+76%). In the same time, the number of available

synonyms per term has grown from 0.9 to 2.0, with a

huge increase in 2007.

The gene ontology annotation database

The GOA database contains all high-quality functional an-

notations made in the framework of the GOA initiative. In

this database, a given gene product is associated with the

most specific GO term that describes its functionality. The

database is available in a unique file gene_association.-

goa_uniprot in the GOA website (http://www.ebi.ac.uk/

GOA). For our experiments, we downloaded the release

of the 29 October 2012. Table 3 shows an example of a

GO annotation in the GOA database. For each line, a

gene product (TCP12 in this sample) is provided with one

GO term it is associated to (GO:2000032 regulation of sec-

ondary shoot formation), an Evidence Code (IMP: Inferred

from Mutant Phenotype) and an annotation date that is

the date when the annotation was created or updated

(23 August 2010). We discarded the notion of updates

and considered annotation dates as creation dates.

In this study, the investigated task—functional profiling

of an abstract—is paper-centric rather than protein-centric.

Hence, we only considered manual curation linked to a

PMID and discarded the gene product references in order

to obtain �280 000 GO terms assignments expressed by

three-tuples (GO id; PMID; annotation year) such as

(GO:2000032; 17307924; 2010). We downloaded the

97 500 involved publications from MEDLINE via the e-utili-

ties services (http://eutils.ncbi.nlm.nih.gov) and stored only

PMIDs, publication years, titles and abstracts. There were

on average 2.8 GO terms assigned per PMID.

Our local version of the GOA database had two goals: to

provide large benchmarks of abstracts and relevance judge-

ments for the evaluation, and to provide the needed know-

ledge base for the machine learning classifier.

To generate the benchmarks, we relied on the publica-

tion years. The main task we investigated in this study was

assigning GO terms to a just published abstract. Thus, to

evaluate current performances of our classifiers, we

sampled 1000 abstracts published in 2012 from our version

of GOA; the classifiers had to return the GO terms that

were assigned by curators. But as we showed above, the

resources have evolved since 2006; one goal of our study

was to simulate this task in past years (i.e. how our classi-

fiers would have performed on this task in past years) and

to observe how these performances evolved. Thus, we

sampled additional benchmarks of 1000 PMIDs for each

publication year from 2006 to 2011. There were on average
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Figure 1. Yearly distribution of annotations linked to a PMID
in GOA database for the top five most contributing source
providers (UniProtKB, MGI, FlyBase, Reactome, TAIR).
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between 2.7 and 3 GO annotations per PMID for each of

these benchmarks. We assume that such large benchmarks

of 1000 queries guarantee the significance of our results

(28).

The knowledge base for the machine learning classifier

was our built version of the GOA database. One concern is

that, if we aimed at simulating this task in past years, we

needed to consider the state of the knowledge base as it

was in past years. Thanks to the annotation date contained

in our three-tuples, we were able to discard all GO terms

assignments inserted after a given year. For instance, for

simulating the task of assigning GO terms to a just pub-

lished abstract in 2010, we discarded from the knowledge

base all GO terms assignments inserted in 2010 and after.

Thus, the abstract given as input could obviously not

belong to the knowledge base used for the simulation.

The number of instances is a crucial parameter for ma-

chine learning algorithms. In the entire knowledge base,

the 278 000 GO terms assignments concerned 20 000 dis-

tinct GO terms; yet, the number of annotation examples

for each GO term was very imbalanced, with 13.8 for

mean but 3 for median. Approximately 5000 GO terms

had >10 assignments; this threshold is often considered

as a minimal number of instances to learn a category in

similar experiments (20). Table 4 shows the evolution of

the available three-tuples in GOA from 2006. The know-

ledge base has grown from 104 743 instances in 2006 to

278 319 in 2012 (+165%).

The BioCreative I test set

On a final stage, we evaluated our current classifiers with

the BioCreative I test set. This set contains 200 articles from

the Journal of Biological Chemistry, mostly published in

1999. There is on average 2.6 GO terms annotated per pub-

lication. The main asset of this test set is that publications

were provided with full texts; moreover, the sections

Introduction, Methods, and Results & Discussion were

easily identifiable from the HTML. We thus were able to

evaluate our classifiers on a reference benchmark, as well

as to study their effectiveness when the inputs are not ab-

stracts but full text articles. Obviously, abstracts belonging

to the BioCreative I test set were discarded from the know-

ledge base.

Thesaurus-based approach: the EAGL classifier

This approach is based on the idea that the words or

phrases in the input text and the GO terms share some

kind of lexical, and hopefully semantic, similarity. It

mostly relies on pattern matching between the input text

and the GO terms. The TB classifier we evaluated is

described comprehensively in (25, 26) and showed very

competitive results during the official BioCreative I evalu-

ation. EAGL works with a given controlled vocabulary and

combines two components: a vector space module, and a

regular expression module. The vector space module uses a

standard Information Retrieval engine to index all terms

belonging to the vocabulary, and then returns a ranked

list of candidate terms according to their similarity to the

query in terms of word distribution. Next, the regular ex-

pression module uses fuzzy matching to recognize GO

terms in the text and boost their ranking. As the goal of

our study was to simulate past performances of this classi-

fier, we designed different versions with different past GO

files available in the GO website archives. For instance, for

Table 1. Example of a gene ontology descriptor

[Term]

GO_id: GO:2000032

name: regulation of secondary shoot formation

namespace: biological_process

def: ‘Any process that modulates the frequency, rate or extent of

secondary shoot formation.’

synonym: ‘regulation of auxiliary shoot formation’ [EXACT]

synonym: ‘regulation of auxillary shoot formation’ [EXACT]

is_a: GO:0022603! regulation of anatomical structure

morphogenesis

is_a: GO:0048831! regulation of shoot development

Table 2. Evolution of the gene ontology since 2006

Year GO terms Exact synonyms All synonyms

2006 19 356 14 156 17 585

2007 21 917 15 846 19 727

2008 24 634 43 859 55 691

2009 26 505 45 353 57 013

2010 29 290 46 702 59 592

2011 31 794 48 939 63 866

2012 34 113 52 354 68 896

2013 37 070 63 215 83 920

Table 3. Example of a GOA database entry

Database: UniProtKB

Gene id: A0AQW4

Gene Name: TCP12

GO id: GO:2000032 regulation of secondary shoot formation

Evidence Code: Inferred from Mutant Phenotype (IMP)

PMID:17307924

Date: 2010/08/23

.............................................................................................................................................................................................................................................................................................
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simulating the TB classifier performances in 2008, we used

the GO file from 2008.

Machine learning approach: the GOCat classifier

This approach is based on the idea that the input text as a

whole hopefully shares semantic similarity with the most

lexically similar instances in the knowledge base; this know-

ledge base contains already curated publications. The ML

classifier we evaluated is GOCat (25). GOCat relies on a

k-NN, a remarkably simple algorithm which assigns to a

new text the categories that are the most prevalent

among the k most similar instances contained in the know-

ledge base (29). Our ML classifier operates in two steps and

combines two components. First, a related article search

engine retrieves instances (i.e. abstracts) in the knowledge

base that are the most similar to the input text (its nearest

neighbours); second, a score computer infers the functional

profile from the k most similar instances.

For the implementation of the relevant article search

engine, we used the Terrier platform (30). All publications

belonging to the knowledge base were indexed with their

title and abstract. We used default Porter stemming, stop

words and an Okapi BM25 weighting scheme (31).

Preliminary experiments (not reported) revealed that the

k-NN algorithm showed optimal and stable performances

for a large window of k ranging between 100 and 250; we

thus used a value of 200 in the rest of the study.

Metrics

Both classifiers output a ranked list of candidate GO terms,

which are the most likely to characterize the functional

profile of a given abstract. Their performances were eval-

uated on their ability to reproduce curators’ GO terms as-

signment, i.e. their ability to propose for a given abstract

the GO terms (2.8 on average) used for curation in GOA.

We chose metrics from the Information Retrieval domain

that were well-established during the TREC campaigns (32).

For precision considerations, we computed the Mean

Reciprocal Rank (MRR), which is the average multiplicative

inverse of the rank of the first correct outputted GO term.

This metrics focuses on the quality of the first GO terms

returned by the classifiers. For completeness considerations,

we computed the macro-average Recall at rank 5 or 20 (R5

or R20), which is the fraction of the relevant GO terms (i.e.

contained in GOA) that were in the top-5 or top-20 GO

terms returned by the classifiers. In a semi-automatic pro-

cess, where a user has to screen the output list to select

correct and ignore incorrect predictions, we think that

screening 20 terms is a realistic scenario. Metrics were com-

puted with the trec_eval program (32).

Results

This section is organized as follows. We first present the

evaluation of the current TB classifier (EAGL) and ML clas-

sifier (GOCat), along with GoPubMed, for characterizing

the functional profile of 50 abstracts published in 2012.

Then, we study the performances evolution of EAGL and

GOCat since 2006 for the task of assigning GO terms to a

just published abstract. Finally, we compare and combine

both approaches and study the impact of full text with the

reference BioCreative I test set.

Current performances of EAGL, GOCat and GoPubMed

The first experiment aimed at evaluating the current per-

formances of our both TB and ML classifiers compared with

the state-of-the-art and popular GoPubMed classifier,

which also is a TB classifier. For this purpose, we sampled

50 abstracts published in 2012 and submitted them to our

classifiers. In parallel, we manually searched these abstract

in GoPubMed to obtain the first five GO terms recognized

by the system, i.e. proposed in the ‘top terms’ frame. All

classifiers were compared with Recall at 5.

These 50 abstracts were associated with 128 GO terms in

GOA (2.6 GO terms per abstract). Out of these 128 GO

terms, GoPubMed retrieved 14 terms in the top-5 (macro

R5 0.16), EAGL 16 terms (macro R5 0.17) and GOCat 41

terms (macro R5 0.35). It means that GOCat, on average,

returns in the top-5 35% of the GO terms associated with

an unseen abstract. The GOCat superiority is significant

with a t-test (P< 0.005); on the other hand, no TB classifier

showed significant superiority over the other.

Evolution of the classifiers’ performances across
the time

Previous results established that EAGL is a state-of-the-art

TB classifier, and that the ML classifier outperforms it for

the task of profiling a just published abstract in 2012. Next,

as our study focuses on resources and performances evolu-

tion, the main set of experiments was conducted to simu-

late this task for both classifiers in past years and to observe

how their performances evolved across the time. To achieve

Table 4. Evolution of the knowledge base
since 2007, i.e. number of GO assignments
linked to a PMID in GOA. Values are for
January 1st

Year Instances

2007 104 743

2008 127 037

2009 152 651

2010 179 713

2011 209 419

2012 244 632

2013 287 354

.............................................................................................................................................................................................................................................................................................
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this simulation, we restored the resources—the GO and the

knowledge base—to their previous state and evaluated the

classifiers with past abstracts for each year since 2006. See

Methods section for details. Performances curves (R20 and

MRR) for both systems are presented in Figure 2.

The TB classifier shows rather constant effectiveness

since 2006, reaching from 0.28 to 0.31 for Recall at 20

and varying between 0.23 and 0.24 for MRR. In 2007, a

massive effort was put into adding synonyms in GO (from

19 727 to 55 691): this effort led to a sensible Recall im-

provement (+14%) in 2008, yet this remained modest and

did not impact the precision. In contrast, thanks to the

growth of its knowledge base (+165% between 2006 and

2012), the ML classifier shows a continuous improvement

trend in the same period, reaching from 0.38 to 0.56 for

Recall (+47%) and from 0.30 to 0.45 for MRR (+50%).

Hence, the superiority of the ML over the TB classifier has

increased since 2006.

One supplementary concern about the ML classifier was:

are all GO terms assignments accumulated during the past

useful to profile a just published abstract? We can suppose

that the annotation process in GOA has evolved across the

time, and that too old assignments in the knowledge base

can negatively affect the functional profiling of new pub-

lications. Further experiments (not reported) showed that

the knowledge base must clearly contain all previous GO

terms assignments; it appears that the largest the know-

ledge base we exploited, the most accurate were the pre-

dicted GO terms. For instance, it was noticeable how the

annotations made before 2005 still improved (+5% for R20)

the quality of the functional profile for articles published in

2012.

Comparison and combination of both approaches

In this subsection, we further analyse and compare the cur-

rent performances of both classifiers. We first decomposed

the results according to the GO namespace (Table 5). Out of

the three GO axes, cellular components is the best assigned

one. This result is coherent with those observed in

BioCreative I; concepts contained in this namespace are

considered less complex, thus more identifiable in the

text. Molecular functions present the biggest difference be-

tween the two approaches, in contrary to biological

processes.

We then aimed at studying how complementary the two

approaches could be. In particular, we knew that machine

learning algorithms need a minimum number of examples,

generally considered �10, in order to learn a category (20).

To address this issue, we decomposed the 2012 gold stand-

ard (i.e. the correct GO terms to assign for the 2012 pub-

lished abstracts) according to their frequency in the

knowledge base. Thus, GO terms that have >10 assign-

ments in the knowledge base were better retrieved by

the ML classifier, with R20 reaching to 0.68, compared

with 0.32 for the TB classifier; these GO terms represent

78% of the gold standard—this means 78% of the GO as-

signments in GOA—and give its overall superiority to the

ML classifier over the TB. Next, for GO terms that have be-

tween one and nine assignments in the knowledge base

(19% of the gold standard), the performances of the ML

classifier dropped to 0.11 for R20, compared with 0.30 for

the TB classifier. Finally, the last 3% are absent from the

knowledge base (i.e. just inserted in GO) and thus cannot

be retrieved by the ML classifier, while for these terms the

TB classifier performances decreased to 0.24 for R20. Hence,

the ML classifier achieves remarkable performances for
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Figure 2. Performances evolution of both classifiers since 2006
for the task of assigning GO terms to a just published abstract.
The graph (a) presents Recall at 20, the graph (b) presents
Mean Reciprocal Rank.

Table 5. Current performances of both classifiers for the three
GO axis on 2012 published abstracts, along with number of
concepts per axis in the ontology

Axis ML classifier TB classifier Number of

GO concepts

MRR R20 MRR R20

Biological

processes

0.27 0.47 0.21 0.34 24 414

Molecular

functions

0.32 0.60 0.08 0.18 9529

Cellular

components

0.42 0.71 0.35 0.39 3127

All terms 0.45 0.56 0.24 0.32 37 070
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most assigned GO terms, but the TB classifier remains help-

ful for rare or recently added terms.

Finally, we tried to combine both classifiers to exploit

specificities of both approaches. We tested a simple linear

combination of both rankings after scores normalization.

The best results achieved with a combination of 70% of

the ML scores plus 30% of the TB scores: with this combin-

ation, on the 2012 benchmark, MRR improved from 0.45 to

0.47 (+4%, P< 0.01) and R20 from 0.56 to 0.58 (+3%,

P< 0.01).

Performances when inputs are full texts

In the last reported experiment, we evaluated both classi-

fiers on the BioCreative I benchmark. This benchmark is of

particular interest, as it provides not only a list of PMID

(PubMed Identifiers) with the usual meta-data (title, au-

thors, abstracts . . . ), but it also gives access to the full-text

article in HTML. We thus were able to measure both classi-

fiers’ performances when the inputs are not abstracts

but full-text, or sections such as introduction or methods.

Table 6 presents the results.

First, the ML classifier showed better performances for

these abstracts mostly published in 1999–2000: R20 0.65

compared with 0.56 for 2012 published abstracts. Then,

both classifiers presented better performances with ab-

stracts than with any other sections of the article. The TB

classifier showed difficulties when processing full text, as its

performances decreased by 44%; in contrast, the ML per-

formances only decreased by 6%. Full text contents obvi-

ously bring more noise than signal for such statistical

strategies. Along all sections, the introduction seemed to

be the most informative, but in any case it never outper-

formed the abstracts, which knowingly has the highest

density of information (33).

Discussion

Our study showed that machine learning approaches are

now nearly able to reproduce the quality of GO terms as-

signment as performed by trained human curators. Indeed,

some experiments were reported during BioCreative I on

the curators’ performances and the inter-annotator agree-

ment (34). The comparison is not easy, as curators deliver

only one GO term for each function they identify, while a

classifier can just output a ranked list of GO terms, some of

them dealing with the same function. Thus, the curators’

reported precision of 94% is not reachable by our auto-

matic approach. But out of 20 predicted GO terms, GOCat

achieves a Recall ranging from 56% for new publications to

65% for the BioCreative I test set, which is close to the

curators’ reported Recall of 72%. Furthermore, for the

most confident GO term, the observed MRR values (ranging

from 45 to 49%) induce a 45–49% chance of GOCat exactly

outputs a GO term present in GOA: this is very competitive

with the inter-annotator agreement (39%) observed for

curators and reported in (33). Nevertheless, only a realistic

evaluation by curators could determine the potential of

such machine learning approaches in a semi or fully auto-

matic workflow. In (35), GOCat was used in a real workflow,

and its predictions for 50 bioassays were manually checked;

for the expert, 43% of the predicted terms were judged

relevant or highly relevant, 37% correct but general, and

only 18% irrelevant.

Our main issue was to study how resources and classifiers

performances evolved across the time. The Gene Ontology

has constantly and significantly grown since 2006, suggest-

ing there could have been some curation drifts in GOA, as

annotation’s quality, focus, or even process itself evolve

across the time. Yet, the quality of the GO terms predicted

by machine learning continues to improve, thanks to the

growing number of high-quality GO terms assignments

available in GOA: since 2006, GOCat performances have

improved by �50%. Considering that huge increase, we

can only observe that either the resource growth is done

consistently thanks to effective annotation guidelines, or it

is done in such a way that minor inconsistencies are com-

pensated by the increase of evidences: the optimal know-

ledge base must just contain as many assignments as

possible. On the other hand, thesaurus-based systems

such as EAGL are not able to exploit knowledge bases

and only depend on the quality of the thesaurus. Since

2006, the effectiveness of EAGL has slightly evolved, al-

though a massive effort was put into adding synonyms in

GO (+300%) in the meantime. However, thesaurus-based

approaches can gracefully complement with machine learn-

ing, in particular for the 20% most rare GO terms in GOA.

Our machine learning system for characterizing the func-

tional profile of free texts could easily be integrated in

various bioinformatics applications, such as finding cur-

ation-relevant articles (triage), literature-based discovery,

or for powering ontology-based and question-answering

search engines. Indeed, such search engines aim at profiling

a result set of abstracts, a task sometimes called macro

reading: we previously reported that GOCat also

Table 6. Performances of both approaches on the BioCreative
I test set

Articles section ML approach TB approach

MRR R20 MRR R20

Abstracts 0.49 0.65 0.23 0.26

Full texts 0.46 0.61 0.13 0.15

Introduction 0.45 0.64 0.16 0.18

Methods 0.42 0.55 0.10 0.12

Results & discussion 0.45 0.60 0.14 0.17
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outperforms EAGL for the task of extracting answers from

MEDLINE (25). Machine learning here allows injecting

knowledge contained in curated databases in the textual

dataset, to quickly obtain a view of the functional concepts

dealt with. In (35), GOCat was used to profile PubChem

bioassays; this allowed building functional clusters for visu-

alization purposes. Integrating GOCat in a curation work-

flow is still an open issue: it is stated that GOCat proposes

more accurate GO terms, but these terms are inferred from

the whole abstract, then the curator still has to locate the

function in the publication and to link the correct GO term

with a gene product. Yet, a strong asset of machine learn-

ing that should be considered by curators is the consistency

with GOA, as this approach aims at reproducing the GO

distribution observed in GOA. In this perspective, GOCat

also was used within the COMBREX project to normalize

functions described in free text format.
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