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Abstract 
For the BioCreative IV Track 4, we exploited the power of our machine learning Gene Ontology 
classifier, GOCat. GOCat computes similarities between an input text and already curated 
instances in order to infer GO terms. GO Annotations (GOA) and MEDLINE are used for 
populating the knowledge base (almost 100000 curated abstracts). For the subtask A, we 
designed a state-of-the-art statistical approach, using a naïve Bayes classifier and the official 
training set. We also investigated exploiting GeneRIFs for an alternative forty times bigger 
training set, but the results were disappointing, probably because of the lack of correct negative 
instances. For the subtask B, we applied GOCat to the first subtask output and reached promising 
results, up to 0.65 for Recall at 20 with hierarchical metrics. Thanks to BioCreative IV, we were 
able to design a complete workflow for curation. Given a gene name and a full text, this system 
is able to deliver highly relevant GO terms along with a set of evidence sentences; observed 
performances are sufficient for being used in a real semi-automatic curation workflow. 
 
Introduction 
The problem of data deluge in proteomics is well known: the available curated data lag behind 
current biological knowledge contained in the literature (1–3), and professional curators needs 
assistance from text mining in order to keep up with the literature (4–6). One particularly time-
consuming and labor-intensive task is gene function curation of a full text with Gene Ontology 
(GO) terms. Such curation from literature is a highly complex task, because it needs expertise in 
genomics but also in the ontology itself. For that matter, this task was studied since the first 
BioCreative challenge in 2005 (7) and is still considered as both unachieved, and long-awaited 
by the community (8). 
 
Our group participated in the first BioCreative. At this time, we extracted GO terms from full 
texts with EAGL, a locally developed Dictionary-Based classifier (9). Dictionary-Based 
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approaches tend to exploit lexical similarities between the information about GO terms 
(descriptions and synonyms) and the input text. Such approaches are limited by the complex 
nature of the GO terms; identifying GO terms in text is highly challenging, as they often do not 
appear literally or approximately in text. Another smaller part of systems evaluated in 
BioCreative I relied on machine learning approaches. Such algorithms empirically learn 
behaviours from a knowledge base that contains training instances, i.e. instances of already 
curated publications. At that time, machine learning approaches produced lower results; the lack 
of a standard training set was notably pointed out. 
 
We recently report on GOCat (10, 11), our new machine learning GO classifier. GOCat exploits 
similarities between an input text and already curated instances contained in a knowledge base to 
infer a functional profile. GO Annotations (GOA) and MEDLINE make now possible to exploit 
a growing amount of almost 100000 curated abstracts for populating this knowledge base. 
Evaluated on the first BioCreative benchmark, GOCat achieved performances close to human 
curators, with 0.65 for Recall at 20, against 0.26 for our dictionary-based system. Moreover, we 
showed in (11) that the quality of the GO terms predicted by GOCat continues to improve across 
the time, thanks to the growing number of high-quality GO terms assignments available in GOA: 
since 2006, GOCat performances have improved by 50%. 
 
The BioCreative IV Track 4 was the occasion to exploit the GOCat power in a reference 
challenge. The subtask A aimed at evaluating system for filtering relevant sentences for GO 
curation, given a gene name and a full text. For this subtask, we designed a robust state-of-the-art 
approach, using a naïve Bayes classifier and the official training set (1346 positive sentences). 
We also investigated exploiting GeneRIFs for an alternative training set (76000 positive 
sentences). Then, the goal of the subtask B was to use these relevant sentences for assigning GO 
terms to the given gene. For this subtask, we submitted results computed with GOCat with 
different numbers of proposed GO terms. 
 
Material and Methods 
 
Subtask A 
The goal of the subtask A was to determine, given a training set of curated sentences, whether 
new sentences are relevant for curation or not, and if possible to support the decision with a 
confidence score. Some state-of-the-art methods suitable for such supervised binary 
classification task include naïve Bayes classifiers and Support Vector Machines (SVM) (12,13). 
For implementation reasons, we chose a naïve Bayes classifier first, and finally did not 
investigate SVM due to a lack of time. 
 
As we mentioned above with the GOCat description, we are used to work with statistical GO 
classification at the abstract/paragraph level, but we rarely apply our system at the sentence level. 
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Thus, for this subtask A, we further analysed the data in order to design a training set, and finally 
made some strong assumptions about them. First of all, we studied the length of evidence texts: 
as mentioned in the guidelines (14), the evidence texts for GO annotations may be derived from 
a single sentence, or multiple continuous, or discontinuous, sentences. In the training data, 66% 
of evidence texts contained only one sentence, 20% contained two sentences, 14% three and 
more. Hence, our first assumption was to consider only sentences: for example, a block of three 
positive sentences was considered as three independent positive sentences. Then, we compared, 
given a full text and a gene name, the set of the positive sentences, and the set of sentences 
where we were able to identify the gene name. For retrieving a given gene name in sentences, we 
relied on mapping patterns. With a simple case-insensitive mapping, we found the given gene 
name in 65% of the positive sentences. Then, we searched hyphens in gene names and generated 
a couple of variants (e.g. for “rft-1” we also tried to map “rft1”). With this rule, we reached 80%. 
We then investigated how to exploit the gene id in order to find supplementary synonyms and 
variants in reference databases, but we quickly concluded that this strategy would have brought 
too much noise. A further look to the data revealed that for most sentences in the 20% missed, 
the gene name was not explicit but often mentioned via pronouns, or such grammatical 
expressions that require a syntactic analysis and that is beyond statistical approaches. Hence, we 
accepted this limit, and our second assumption was to only consider sentences that contained the 
gene name. So, 80% of positive sentences contain the gene name. On the other hand, 20% of 
sentences that contain a given gene name are positive, 80% are negative (i.e. not positive). This 
was our third assumption: the training data should contain this 4:1 ratio, four negative sentences 
for one positive sentence. Finally, for the design of training data, we replaced all the gene names 
we identified by the word “genemention”. 
 
We thus were able to design training sets for our naïve Bayes classifier. For the 
gotaska_bitemteam_run1, we built the training set from the official training set that contained 
100 curated articles. With our assumptions, we finally obtained a set of 9251 sentences 
containing gene names: 1346 positives and 7905 negatives. The ratio is slightly different (85% of 
negatives), possibly because positive sentences can apply for several enumerated genes. For the 
gotaska_bitemteam_run2, we added the development set (50 curated articles) to the previous 
training set, and thus obtained 683 supplementary positive sentences and 3912 supplementary 
negative sentences. 
 
Finally, we investigated a second way for designing our training set, based on GeneRIFs. 
GeneRIFs are concise phrases identified in journal papers and describing a protein function, 
recorded in the reference databases by a curator. GeneRIFs are not GO annotations, but 
potentially provide positive sentences for our task. We first downloaded all available GeneRIFs 
(http://www.ncbi.nlm.nih.gov/gene/about-generif). In July 2013, there were approximately 
826000 entries in the database. Each entry is provided with the gene ID, the GeneRIF text, and 
the PMID that was used. As GeneRIFs are taken in full texts, we only considered papers whose 
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full text was available in PubMed Central (http://www.ncbi.nlm.nih.gov/pmc/). We were able to 
locate 76000 GeneRIFs in 48000 full texts. Thus, these 76000 GeneRIFs were considered as 
positive sentences. For negative sentences, we first retrieved all sentences containing the given 
gene names, and considerer that all non-positive sentences were negative, which is a strong 
assumption. We finally sampled this negative set in order to keep the 4:1 ratio between positive 
and negative instances. As for the first training sets, we replaced all identified gene names by 
“genemention”. This GeneRIFs training set was used for the gotaska_bitemteam_run3. 
 
Hence, these three training sets were used to train our naïve Bayes classifier. For each sentence, 
each word was considered as a feature. We also add several meta-features, such as the type of 
section (paragraph, title, caption…), the relative position of the sentence in the full-text (an 
integer between 1 and 20), the percentage of common words with the abstract, and the sentence 
length. Once the classifier was trained, we parsed the test set. For each article and each gene, we 
extracted the sentences containing the gene name. Then, each sentence was sent to the classifier 
and obtained a class (positive or negative) and a confidence score. As only 20% of sentences 
containing a given gene name were positive in the training set, we chose to return only the first 
20% best ranked sentences. 
 
Subtask B 
The goal of the subtask B was to predict GO terms for a given gene in a given article. For this 
purpose, we used our GO classifier GOCat. GOCat relies on a k-Nearest Neighbors (k-NN), a 
remarkably simple algorithm which assigns to a new text the categories that are the most 
prevalent among the k most similar instances contained in the knowledge base. The GOCat 
knowledge base contains the nearly 100000 MEDLINE abstracts that were used for manual GO 
curation in the GOA database. GOCat is comprehensively described in (11). 
Obviously, we discarded all the test set PMIDs from the knowledge base. Then, we started from 
the gotaska_bitemteam_run1. For each article and each gene name, we built a paragraph with the 
submitted sentences, then we sent the paragraph to GOCat. GOCat was used with k=100. As the 
k-NN usually outputs all possible GO terms along with a confidence score, we only kept the five 
most confident GO terms for gotaskb_bitemteam_run1, the ten most confident for 
gotaskb_bitemteam_run2, and the twenty most confident for gotaskb_bitemteam_run3. 
 
Results and Discussion 
 
Subtask A 
Table 1 presents our results for the subtask A, computed with the official evaluation script, with 
two values used for the parameter (0 for partial match and 1 for exact match). 
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Run Parameter Precision Recall F1 
Training set for 
Naive Bayes 

gotaska_bitemteam_run1 
0 0.344 0.213 0.263 

Official training set 
1 0.206 0.128 0.158 

gotaska_bitemteam_run2 
0 0.354 0.22 0.271 Official training and 

development set 1 0.217 0.134 0.166 

gotaska_bitemteam_run3 
0 0.204 0.127 0.156 

GeneRIFs training set 
1 0.107 0.066 0.082 

Table 1. Official results of BiTeM SIBtex for subtask A. 
 
The best results were obtained by the first two runs, computed with the official training and 
development set. The contribution of the development set in regards to performances is manifest 
but light: +3% for F1. These two runs were computed with a state-of-the-art statistical approach, 
relying on simple and strong – thus robust – assumptions, and the use of a simple binary 
classifier. At this stage, we don’t know the others participants’ results, so it is difficult to situate 
our performance. But we can compare the first two runs and the third one, which used GeneRIFs 
as training data. This third run was significantly weaker (appr. -50% for F1) while the used 
training set was forty times bigger. There is obviously a quality problem in the GeneRIFs 
training set. Its positive instances are built on the assumption that GeneRIFs are relevant 
sentences for GO annotation; this assumption seems a priori true, but maybe curators would 
make some distinctions between these two roles. But the weaker point seems to be the 
construction of the negative set. For the GeneRIFs training set, we considered that all sentences 
that mentioned the gene and were not positive were negative. Yet, GeneRIFs do not aim to 
produce an exhaustive set of evidence sentences in a paper, but only keep one sentence as 
evidence, while the annotation was exhaustive in the official BioCreative training set. Thus, there 
were 13 positive sentences per article in the BioCreative training set, against 1.6 in our 
GeneRIFs training set. The probability of false negatives sentences in the GeneRIFs training set 
is high and could mainly explain this counter-performance. 
 
Subtask B 
Table 2 presents our results for the subtask B, computed with the official evaluation script, with 
two values used for last parameter (0 for standard metrics and 1 for hierarchical metrics). 
 
Once again, at this stage we do not know the other participants’ results, but we can compare the 
GOCat performances with the performances we observed in previous studies. In (11), GOCat 
was evaluated on its ability to retrieve GO terms that was associated to a given PMID, without 
taking account of the gene. For Recall at 20 (R20), GOCat achieved performances ranging from 
0.56 for new published articles to 0.65 for BioCreative I test set. These performances were 
obtained by using the abstract for the input text. In this subtask B, the observed R20 is 0.306. But 
this performance was obtained by taking account of the gene, as the input was a set of sentences 
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dealing with a given gene, and the output was GO terms relevant for this gene. Anyway, these 
performances are beyond the maximum performances observed in (11) with Dictionary-Based 
approaches, which exploit similarities between the input text and GO terms themselves. Thanks 
to its knowledge base designed from real curated articles, GOCat is able to propose GO terms 
that do not appear literally or even approximately in text. 
 

Run Last parameter Precision Recall F1 
# GO terms 
returned 

gotaskb_bitemteam_run1 
0 0.117 0.157 0.134 

5 
1 0.323 0.356 0.339 

gotaskb_bitemteam_run2 
0 0.092 0.245 0.134 

10 
1 0.248 0.513 0.334 

gotaskb_bitemteam_run3 
0 0.057 0.306 0.096 

20 
1 0.179 0.647 0.280 

Table 2. Official results of BiTeM SIBtex for subtask B. 
 
Regarding hierarchical metrics, it is quite surprising to observe such a difference (R20 0.647, 
+111%), while GOCat aims at returning the GO terms that were most used by curators in GOA. 
Yet, this performance is remarkable, and is promising in a workflow where the curators would 
give the gene name and the PMID, then screen and check the proposed GO terms. In a fully 
automatic workflow, the best setting would be to return five GO terms. In this case, the observed 
F1 (0.134) still is far from human standards for strict curation, but the hierarchical F1 (0.339) 
seems sufficient for producing added value data. In this perspective, GOCat was used to profile 
PubChem bioassays (15), or within the COMBREX project to normalize functions described in 
free text format (16). 
 
Conclusion 
The main limit of GOCat, both observed by reviewers and mentioned in our papers, was the 
difficulty to integrate it in a curation workflow: it is stated that GOCat proposes more accurate 
GO terms, but these terms are inferred from the whole abstract, then the curator still has to locate 
the function in the publication and to link the correct GO term with a gene product. Thanks to 
BioCreative IV, we were able to design a complete workflow for curation and to evaluate it. 
Given a gene name and a full text, this system is able to deliver relevant GO terms along with a 
set of evidence sentences; observed performances are sufficient for being used in a real semi-
automatic curation workflow. 
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