Building accurate knowledge of the identity, the geographic distribution and the evolution of living species is essential for a sustainable development of humanity, as well as for biodiversity conservation. Unfortunately, such basic information is often only partially available for professional stakeholders, teachers, scientists and citizens, and often incomplete for ecosystems that possess the highest diversity. In this context, an ultimate ambition is to set up innovative information systems relying on the automated identication and understanding of living organisms as a means to engage massive crowds of observers and boost the production of biodiversity and agro-biodiversity data. The LifeCLEF 2019 initiative proposes three data-oriented challenges related to this vision, in the continuity of the previous editions but with several consistent novelties intended to push the boundaries of the state-of-the-art in several research directions. This paper describes the methodology of the conducted evaluations as well as the synthesis of the main results and lessons learned.