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Abstract

Reusing the parameters of networks pretrained on large scale datasets of natural images, such as ImageNet,
is a common technique in the medical imaging domain. The large variability of objects and classes is, however,
drastically reduced in most medical applications where images are dominated by repetitive patterns with,
at times, subtle differences between the classes. This paper takes the example of finetuning a pretrained
convolutional network on a histopathology task. Because of the reduced visual variability in this application
domain, the network mostly learns to detect textures and simple patterns. As a result, the complex structures
that maximize the channel activations of deep layers in the pretrained network are not present after finetuning.
The learned features seem to be used by the network to spot atypical nuclei in the images, as shown by
class activation maps. Finally, texture measures appear discriminative after finetuning, as shown by accurate
Regression Concept Vectors.
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1 Introduction

Visualization techniques can improve our understanding of how concept representations are organized over the
layers of deep Convolutional Neural Networks (CNNs). The concept representations change when the CNN is
finetuned on the binary classification task of tumor and non-tumor breast histopathology images. We generate
images that maximally activate the network channels as in [Erhan et al., 2009, Olah et al., 2017]and compare the
results in pretrained and finetuned networks. We notice that finetuning reduces the complexity and abstraction
of the representations learned by the pretrained networks, focusing on texture and simple repeated patterns.
Gradient-weighted Class Activation Maps (grad-CAM) [Selvaraju et al., 2017, Chattopadhay et al., 2018] are
used to visualize the CNN attention and further demonstrate this idea. Results suggest that the CNN focus is
mostly on the atypical nuclei with morphological anomalies (nuclei pleomorphism). The recently developed
Regression Concept Vectors (RCVs) quantified the relevance of nuclei pleomorphism in the classification
of histopathology images [Graziani et al., 2018, Graziani et al., 2020]. Second-order Haralick descriptors of
texture correlation and contrast were shown to influence the classification. In addition to the qualitative analysis
of the visualizations, we expand the experiments on RCVs, suggesting that concepts of textures are inherited
from the architecture itself and refined during network training and finetuning. Therefore, experimental results
in this paper show that feature reuse from ImageNet pretrained CNNs is most meaningful at early layers.

2 Experiments

The Camelyon171 dataset was developed to evaluate the classification of breast cancer metastases in lymph node
sections. From the gigapixel images, we randomly sample 24,775 patches of 224×224 pixels. Patch labels are

1https://camelyon17.grand-challenge.org
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(a) pretrained (b) finetuned

Figure 1: Feature visualization of layers at increasing depths, namely mixed5b, mixed5c, mixed6a, mixed7c. In
(a) the pretrained and in (b) the finetuned model. Only a subset of channels is presented due to space restrictions.
Visualizations of all channels are available in the online repository3.

extracted from the regions in the image annotated as non-tumor and tumor. InceptionV3 [Szegedy et al., 2016]
pretrained on ImageNet is finetuned on the binary classification task with stochastic gradient descent (learning
rate 10−4, decay 10−6, and Nesterov momentum 0.9) for 30 epochs. Vertical and horizontal flipping and color
augmentation, i.e. hue and brightness perturbations, are applied as data augmentation. The model performance
is validated on 2,274 validation patches, with validation accuracy 0.87 and Area under the ROC Curve (AUC)
0.97. The patch-based AUC is comparable to the competition-winning models and sufficient for a meaningful
model interpretation analysis.

Filter Visualization We apply the Lucid feature visualization toolbox [Olah et al., 2017] to the CNN before
and after finetuning2. The toolbox generates an image that maximally activates the filter outputs for a single
channel, solving the optimization problem as initially introduced by [Erhan et al., 2009]. Obtaining under-
standable patterns in the images generated to maximize a given channel is a non-trivial task. The generation
of images for the post-finetuning filters required up to 3,584 steps to converge as well as tedious parameters
tweaking 3. Without preconditioning and parametrization, the generated images contain high-frequency patterns
that resemble adversarial images. In the pretrained network, the representations become more abstract and
sophisticated in deeper layers (Fig. 1a) as previously shown in [Olah et al., 2017]. The detection of simple
textures and patterns of early layers is maintained after finetuning (as shown by the two images on the left
in Fig. 1a and b). Complex collages of object-resembling shapes appear, however, only in the deep layers of
the pretrained network. The finetuned filters become more and more dissimilar from the pretrained filters in
deeper layers. This phenomenon was already observed on the classification of cellular morphological changes
by [Kensert et al., 2019], who attributed the lack of high-level abstractions to model overparametrization. The
differences between medical images and ImageNet are, in fact, considerable. In histopathology images the
variety of color, textures, backgrounds and objects is substantially shrunk to repetitive patterns (nuclei) as
opposed to the wide diversity of natural images. Sources of variability are, for the most part, texture, shape
irregularities and spatial arrangement of the cells.

Activation Maps Activation maps are particularly useful to directly visualize the attention of the CNN on
the input images. Nonetheless, their application in histopathology is likewise challenging. Methods like grad-
CAM [Selvaraju et al., 2017] are optimized to give explanations for the predicted class with fine-grained details
about the object parts that influenced the decision. When the inputs come from the domain of histopathol-
ogy, multiple occurrences of small instances (such as nuclei and mitosis) dominate in the image. In this
context, grad-CAM fails to localize the multiple occurrences individually and its output is little informa-
tive [Chattopadhay et al., 2018]. This limitation is partially solved in grad-CAM++ [Chattopadhay et al., 2018]
by replacing the average of the partial derivatives used in standard grad-CAM with the weighted average of the
pixel-wise gradients. As a result, localization is more robust to multiple instances of the same class in the image.

2Post-finetuning filters were obtained using the lucid4keras wrapper.
3Implementation, parameter configurations and all the visualizations are available in the repository github.com/

maragraziani/IMVIP2019.

github.com/maragraziani/IMVIP2019
github.com/maragraziani/IMVIP2019


Figure 2: The activation maps of grad-CAM++ show that nuclei pleomorphism captures the attention of the
classifier. A subset of the images, for which probabilities of tumor are above 0.99 is presented. All the
visualizations are available online3.

Figure 3: R2 of the RCV for concept measures of ASM, correlation and contrast over the layers for InceptionV3
with randomized parameters (red), InceptionV3 pretrained (blue) and InceptionV3 finetuned (green). Standard
errors were computed over 10 different data splits.

The attention visualizations in Fig. 2 show that the last layer activations focus on nuclei with high pleomorphism,
i.e. marked variations in size, shape and texture appearance.

Interpretation with Concept Attribution This experiment on concept attribution aims at quantitatively an-
alyzing the impact of finetuning on the representation of concepts of texture within the CNN layers. RCVs
generate quantifiable explanations that do not depend on input features but rather on a set of arbitrarily chosen con-
cepts [Graziani et al., 2018, Graziani et al., 2020]. Linear regression is solved in the activation space of a layer
to find the direction of sharpest increase of a continuous measure representing one concept in the image, which is
called concept measure. RCVs were successfully applied to histopathology applications [Graziani et al., 2018]
and retinal fundus images [Graziani et al., 2019a]. In histopathology applications, concept measures of nuclei
shape and texture were used to represent nuclei morphology and appearance, which are relevant to stage grading.
The Haralick texture descriptors were used as concept measures and their relevance was evaluated in a CNN
classifying tumor from non-tumor images. Angular Second Moment (ASM), contrast and correlation were found
particularly relevant and bidirectional scores showed that ASM and correlation explain the decisions for the
non-tumor class, while contrast explains the tumor class. We further extend this analysis by evaluating the RCVs
(evaluation is given by the determination coefficient of the regression, see [Graziani et al., 2020] for details) in
three InceptionV3 networks with different parameters: 1) Xavier’s random initialization of the parameters 2)
pretrained on ImageNet and 3) finetuned on the histopathology task. The best performing concept measures of
texture in [Graziani et al., 2018, Graziani et al., 2020], i.e. ASM, correlation and contrast, are computed on a
subset of 1,000 images. Since nuclei segmentation of the images are not available for this dataset, the concept
measures are computed on the entire image. Regression is solved on the global spatial average of features maps
at intermediate layers (as recommended in [Graziani et al., 2020]). Fig. 3 shows the determination coefficient,
R2, at six different depths in the three networks. Concepts of texture seem to depend only moderately on the
network parameters, as the R2 for the randomized network is just below the other two networks. Pretraining and
finetuning improve the R2 and reduce the standard error. These results suggest that the architecture itself acts as a
prior on the features extracted from the images. This aspect is further analyzed in [Graziani et al., 2019b], where
more concepts and datasets are used in the comparison between randomly initialized networks and pretrained
networks. Our results, finally, seem in line with the idea that transfer from ImageNet is mostly beneficial for the
better scaling of the weights, rather than reuse of deep features [Raghu et al., 2019].



3 Conclusion

This paper summarizes a recipe to interpret feature reuse in ImageNet pretrained models finetuned as classifiers
of breast cancer histopathology images. Despite the clear differences between natural and medical images,
finetuning is still a common practice. Results on histopathology data show that feature reuse is meaningful in
the early layers of the network, which focus on identifying repetitive patterns and textures. These patterns are
used by the network to detect nuclei pleomorphism, as shown by class activation maps and further confirmed by
results with RCVs.

Future work will address the partial recycling of the pretrained weights of only early layers. Concept
attribution appears as a promising tool that generates explanations in terms of arbitrary, human-friendly concepts.
Clinicians could, therefore, verify and enhance (or discard) the learning of some concepts during network
training.
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