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Abstract

Image classification with deep neural networks is typically restricted to images of
small dimensionality such as R224x244 i1 Resnet models [24]. This limitation excludes
the R#000x3000 dimensional images that are taken by modern smartphone cameras and
smart devices. In this work, we aim to mitigate the prohibitive inferential and memory
costs of operating in such large dimensional spaces. To sample from the high-resolution
original input distribution, we propose using a smaller proxy distribution to learn the
co-ordinates that correspond to regions of interest in the high-dimensional space. We
introduce a new principled variational lower bound that captures the relationship of the
proxy distribution’s posterior and the original image’s co-ordinate space in a way that
maximizes the conditional classification likelihood. We empirically demonstrate on one
synthetic benchmark and one real world large resolution DSLR camera image dataset that
our method produces comparable results with ~10x faster inference and lower memory
consumption than a model that utilizes the entire original input distribution. Finally,
we experiment with a more complex setting using mini-maps from Starcraft II [56] to
infer the number of characters in a complex 3d-rendered scene. Even in such compli-
cated scenes our model provides strong localization: a feature missing from traditional
classification models.

1 Introduction

Direct inference over large input spaces allows models to leverage fine grained information
that might not be present in their downsampled counterparts. We demonstrate a simple
example of such a scenario in Figure 1, where the task is to identify speed limits. The
downsampled image does not contain the required information to correctly solve the task; on
the other hand direct inference over the original input space is memory and computationally
intensive.

(© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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(a) (b)

Figure 1: (a) Original large resolution image. (b) Downsampled image processable (in a
reasonable time-frame) by a typical Resnet model using existing computational resources.

In order to work over such large dimensional input spaces, we take inspiration from the
way the human visual cortex handles high dimensional input. Research in neuroscience
[23, 48, 54] and attention for eye-gaze [55] have suggested that human beings enact rapid
eye movements (or saccades [14]) to different locations within the scene to gather high reso-
lution information from local patches. More recent research [16, 26] has shown that humans
and macaque monkeys stochastically sample saccades from their environment and merge
them into a continuous representation of perception. These saccades are also not necessar-
ily only of the salient object(s) in the environment, but have a component of randomness
attached to them. In this work we try to parallel this stochastic element through the use of
a learned sampling distribution, conditioned on auxiliary information provided via a proxy
distribution. We explore two different types of proxy distributions in this work: (a) one
where the proxy distribution is simply the downsampled version of the original, as in Figure
1 & (b) one where the proxy distribution is of a completely different modality. For the latter,
we experiment with a Starcraft II scenario [56], and use the game minimap as the proxy
distribution.

2 Related Work

Saliency Methods: The analysis of salient (or interesting) regions in images has been stud-
ied extensively in computer vision [21, 27, 29, 30]. Important regions are quantified by
simple low-level features such as intensity, color and orientation changes. These methods
fail to generalize to complex scenes with non-linear relationships between textures and col-
ors [7]. More recently, deep convolutional networks have been exploited to directly learn
saliency at multiple feature levels (eg: [8, 37]) as well as to learn patch level statistics [58].
None of these methods directly learn “where” to look without information about the entire
image.

CNN Approaches: Current state of the art CNN models on the other hand separate the entire
image, into cropped regions [60], employ pyramid decompositions [38] over the entire im-
age, or utilize large pooling [4] / striding operands. These methods are challenging because
they are either lossy, resulting in poor classification accuracy, or they are too memory and
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computationally intensive (see Experiments Section 4) as they run convolutional filters over
the entire image.

Region Proposal Methods: Another approach to CNN models are region proposal networks
such as R-CNN [18], R-CNN++ [47] and YOLO [46] to name a few. The R-CNN methods
generate a set of candidate extraction regions, either by extracting a fixed number of pro-
posals as in the original work [18], or by utilizing a CNN over the entire image to directly
predict the ROI [47]. They then proceed to enact a form of pooling over these regions,
compute features, and project the features to the space of the classification likelihood. In
contrast to R-CNN, our method uses an informatively learned posterior to extract the exact
number of required proposals, rather than the 2000 proposals as suggested in the original
work. R-CNN++ on the other hand doesn’t scale with ultra-large dimensional images as di-
rect inference over these images scales with the dimensionality of the images. Furthermore,
the memory usage of R-CNN++ increases with the dimensionality of the images whereas it
does not for our proposed model. YOLO on the other hand, resizes input images to R*38*438
and simultaneously predicts bounding boxes and their associated probabilities. While YOLO
produces quick classification results, it trades off accuracy of fine-grained details. By resiz-
ing the original image, critical information can be lost (see Figure 1). Our proposed method
on the other hand has no trouble with small details since it has the ability to directly control
its foveation to sample the full resolution image.

Sequential Attention: Sequential attention models have been extensively explored through
the literature, from utilizing Boltzman Machines [3, 13, 36], enacting step-by-step CNN
learning rules [45], to learning scanning policies [1, 5] as well as leveraging regression based
targets [25]. Our model takes inspiration from the recent Attend-Infer-Repeat (AIR) [15] and
its extensions (SQAIR) [35], D.R.A.W [22], and Recurrent Attention Models (RAM) [2, 41].
While RAM based models allow for inference over large input images, they utilize a score
function estimator [20] coupled with control variates [19]. Our algorithm on the other hand
utilizes pathwise estimators [34, 59] which have been shown to have lower variance [53] in
practice. In contrast to AIR and general attention based solutions, we do not use the entire
image to build our attention map. Our model can infer where to attend using a summary with
different semantics or encoding than the original image distribution (see Experiment 4.3). In
addition, as opposed to adding a classifier in an ad-hoc manner as in AIR and SQAIR, we
derive a new principled lower bound on the conditional classification likelihood that allows
us to relate the posterior of the proxy-distribution to the co-ordinate space of the original
input. This direct use of supervised information in an end-to-end manner allows our model
to converge very rapidly (100-300 epochs) vs AIR which takes 50,000-200,000 epochs [15]
to successfully converge.

Interpretability: With the surge of deep learning, understanding the model decision making
process has become more important. While prior work took a post-mortem approach on
trained models by computing gradients of the conditional likelihood with respect to the input
image [39, 42, 51, 63], recent work such as Capsule Networks [49], InfoGAN [11], and
numerous others [11, 49, 61, 65] directly attempt to learn models that are interpretablel.
Our model attempts to follow the latter of the two paradigms by extracting crops of regions
that directly maximize the conditional classification likelihood. In contrast to the existing
methods mentioned above we do not parse the entire input image to provide interpretability.

ISee [64] for a more thorough treatment of interpretability.
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3 Variational Objective

O ORO=C O ORGSO
lgn Wi (D

— — — = Approximate Inference

— Exact Inference

Figure 2: Left: Original (intractable) objective (Equation 1). Right: Newly derived tractable
objective (Equation 5) that leverages a VRNN to approximate posteriors (red-dashed lines).

Given an image x € RX*X a corresponding proxy image ¢ € R’*/, J < K, and a corre-
sponding class label y € R, our objective is defined as maximizing log pg (y|x) for 8. We
are only interested in the case where p(y|c) # p(y|x), i.e. the proxy distribution is not able
to solve the classification task of interest . Assuming that ¢ provides no new information for
the classification objective, pg(y | x) = pe (¥ | x,¢), we can reformulate our objective as:

¥,0<7,2<T,C,X)

p(e,x)

We have introduced (and marginalized out) two sets of T latent variables in Equation
(1): {z}L,,zi € R? and {0}L |,0; € RI*L, L < J. These correspond to the posteriors
Zi ~ p¢ (zile,2<i), induced by ¢ and a set of dirac distributions, 0; ~ 8[fsr(x,z;)], centered at
a differentiable function, fs7, implemented using Spatial Transformer networks (ST) [317°.
This differentiable function produces crops, o;, of our large original input, x, using a poste-
rior sample from pg(zi|c,z<;). In general the true posterior, pgy(zi|c,z<;), is intractable or
difficult to approximate [32]. To resolve this we posit a set of variational approximations
[571, q¢(zilc,z<i) = p¢(zilc,2<i), and introduce them via a multiply-by-one constant into
the expanded joint distribution implied by the graphical model in Figure 2 3

tog po (y1x) =logpo(yix.c) og [ [ * ol dzerdor (1)

q¢(z<rlz<r,c)

dngdOST
q¢(z<rlz<r,c)

@)

By applying Jensen’s inequality and re-framing the marginalization operand as an expec-
tation we can rewrite Equation 2 from above as a lower bound of log pg (y|x):

log pe (y|x) =10g//P9},(Y|0§T) pe,(0<rl|2<1,%) pg(2<T|2<7,C)

02 pololx) = [ |Eay (102 |, Glo<r) po,(orlzcr. ]
3)
—DKL[q.p<zg|z<r7c>||p¢<zgz<T,c>]]dog

2See Appendix Sections 7.2 and 7.3 for more information about Spatial Transformers and a possible method for
minimizing their memory usage.
3Full derivation in Appendix Section 7.1.
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We also observe that the KL divergence between the true set of posteriors pg (z<7|z<7,¢)
and the approximate posteriors g¢ (z<7|z<7,¢) can be re-written in terms of the VRNN [12]
Evidence Lower BOund (ELBO) [12, 34] and the marginal data distribution p(c¢):

—Dkr[q¢ (z<r|c,2<7)||Pg (2<T]C€ 2<7))]

T )
Eq, ( log pg (€|z<i) — Dxr(q¢ (ZiCaZ<i)|P9(ZiC,Z<i)))) —logp(c)
i

po(zilc,z<;) in Equation 4 refers to the learned prior introduced by the VRNN, while
¢ ~log pg(&|z<;) is the VRNN reconstruction. All temporal dependencies < T are incorpo-
rated by passing the hidden state of an RNN across functions (see [12] for a more thorough
treatment). Coupling the VRNN ELBO with the fact that —log p(c) is always a positive
constant, we can preserve the bound from Equation 3 and update our reframed objective as:

IOgPO()"x) g |:Eq¢ <logp9y(y|f9conv(fST(zl7h17x)7"'afST(zT7hT7x)))>

0] or

+

T
By (X loepolelzci) - Dialag(ale. 20 ale.z) ) |

i=1

®)

VRNN ELBO

This leads us to our final optimization objective, shown above in Equation (5), which
utilizes a empirical estimate of the expectation and marginalization operands and the sub-
stitutions of the functional approximations of the dirac distributions, 0; ~ 8[fsr(x,z;)], to
provide a novel lower bound on log pg (y|x). This lower bound allows us to classify a set of
crops, {0;}_,, of the original distribution, p(x), utilizing location information inferred by
the posterior, g4 (z<7|c,z<7), of the proxy distribution, p(c).

3.1 Interpretation

Current state of the art research in neuroscience for attention [16, 26] suggest that humans
sample saccades approximately every 250ms and integrate them into a continuous represen-
tation of perception. We parallel this within our model by utilizing a discrete 0; ~ 8[f(x,z;)]
for sampling saccades and continuous latent representations (isotropic-gaussian posteriors)
for the concept of perception. An additional requirement is the ability to transfer this con-
tinuous latent representation across saccades. This is enabled through the use of the VRNN,
which relays information between posteriors through its RNN hidden state.

In addition, [16, 26] show that attention does not always focus on the most salient object
in an image, but at times randomly attends to other parts of the scene. This behavior can be
interpreted as a form of exploration as done in reinforcement learning. In our work, since the
sampling distribution g¢ (z;|c, z<;) is stochastic, it provides a natural way to explore the space
of the original input distribution p(x), without the need for specific exploration methods such
as e-greedy [52] or weight noise [17]. We validate this in Experiment 4.1.1.
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4 Experiments

ZEMEESIA
/17 B e 5] 7 ] )

NEEHRGDEE
(a) Top: original images; (b) Two test saccades (c) Top: original images; (d) Three test saccades
Bottom: proxy images of our model Bottom: proxy images of our model

Figure 3: (a,b): Two-Digit-Identification ClutteredMNIST € R?328x2528. (¢ 4): MIT-5k €
[R2528x2528 1 jsted are test and proxy images (a,c) and their extracted test saccades (b,d).

gpu memory accuracy accuracy Two Digit

I Size: R2528><2528 ti / h

mage Slze Hparams | o patchosize) | e/ ePOC MIT-Adobe-5k MNIST Identification

79G (naive) 1052.43s (naive)
£18 - 144 11.4M 63.6% +/- 0.03 97.3 +/- 0.006
resne crops 6.5G (checkpoint)* | 1454.05s (checkpoint) o *
variational saccading | 7.4M 4.1G 120 62.7% +- 0.03 95.23 +1- 0.03
. . Two Digit | accuracy Two Digit

. L RI0<100 | 4 gpu memory y h accuracy

mage Size PATAIS | | o0 batch-size) | U/ €POC MNIST Sum MNIST Identification
resnet18 - full image 11IM 6.6G 59.27s 99.86 +/- 0.01 97.4 +/- 0.003

RAM [41] - - - 91% 93%

DRAM [2] - - - 97.5% 95%

variational saccading | 7.4M 2.8G 37s 97.2 +/- 0.04 95.42 +/- 0.002

able 1: Our model infers ~ 9-10x faster and utilizes less GPU memory than the baselines in high
dimensions. 7op: Large resolution trials on MIT-Adobe-5k and Two-Digit MNIST Identitification.
Bottom: Small resolution baseline trials used to situate work against RAM [41] and DRAM[2].

We evaluate our algorithm on three classification datasets where we analyze different
induced behaviors of our model. We utilize Two-Digit MNIST for our first experiment in
order to situate our model against baselines; we then proceed to learn a classification model
for the large MIT-Adobe 5k dataset and finally attempt to learn a model that can accuractely
count marines in a complicated, dynamic, large resolution Starcraft II [56] map. The first
two experiments utilize downsampled original images, ¢ € R32*32, as the proxy distribution,
while the third uses the game-minimap from Starcraft II, ¢ € RO4%04 a5 an auxiliary source
of information. We demonstrate that our model has comparable accuracy to the best baseline
models in the first two experiments, but we infer ~ 9-10x faster and utilize far less GPU
memory than a naive approach. We provide visualizations of the model’s saccades in Figure
3; this aids in interpreting what region of the original input image aids the model in max-
imizing the desired classification likelihood. We utilize resnetl8 as our naive baseline and
did not observe any performance uplifts from using larger models for our three experiments.

4Checkpointing caches the forward pass operation as described in [10]. The naive approach parallelizes across
8 GPUs and splits each of the 144 crops across the GPUs.
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We implement the VRNN using a fully convolutional architecture where conv-transpose
layers are used for upsampling from the vectorized latent space. The crop classifier is imple-
mented by a standard fully-convolutional network, followed by a spatial pooling operation
on the results of the convolution over the crops, 0;. Adam [33] was used as an optimizer,
combined with ReLU activations; batch-norm [28] was used for dense layers and group-
norm [62] for convolutional layers. For more details about specific architectural choices see
our code’ and Appendix Section 7.6 in the supplementary material.

4.1 Two-Digit MNIST: Identification & Summing

Two-Digit-Cluttered MNIST is a benchmark dataset used in RAM [41], DRAM [2] and
as a generative target in AIR [15] and SQAIR [35]°. The objective with the initial set of
experiments is to identity the digits present in the image (ignoring the distracting clutter),
localize them, and predict a multi-class label using the localized targets. This form of learn-
ing, where localization information is not directly provided, is known as weakly supervised
learning [9, 43, 44]. In the first setting we compare our model to RAM [41], DRAM [2]
and a baseline resnetl8 [24] model that operates over the entire image and directly provides
classification outputs. As in RAM and DRAM, we also examine a case where the learning
objective is to sum two digits placed in an image (without clutter). In order to provide a
fair comparison we evaluate our model in the original dimension (R!%0*190) suggested by
the authors [2, 41]. We observe (Table 1 bottom) that our method improves upon RAM and
DRAM and gets close to the baseline resnet18 results.

We extend the Two-Digit-Cluttered MNIST identification experiment from above to a
new experiment where we classify large dimensional images, x ~ R?>28x2528  Ag in the
previous experiment we evaluate our model against a baseline resnetl8 model. Resnet
models are tailored to operate over R?>#*224 images; in order to use large images, we di-
vide an original R?>28x2528 image into R!44*224x224 individual crops and feed each crop
into the model. We then sum the logit outputs of the model and run the pooled result
through a dense layer. This allows the model to make a single classification decision for
the entire image using all 144 crops: y = fo (¥4 g, (xi)) , x; € R??¥224. fp  repre-
sents a multi-layer dense network and gg_ is a multi-layer convolutional neural network
that operates on individual crops x;. While it is also possible to concatenate each logit
vector gg.(x) = [ge, (%i), g (Xi-1),-.., &o.(X0)], and project it through the dense network
fo,(ge.(x)), the tasks we operate over do not necessitate relational information [50] and
pooled results directly aid the classification objective. We visualize saccades (Figure 3),
the model accuracy, training-time per epoch and GPU memory (Table 1) and observe that
our model performs similarly (in terms of accuracy) in higher dimensions, while inferring
~10x faster and using only 5% of the total GPU memory in contrast to a traditional resnet18
model.

Shttps://github.com/jramapuram/variational_saccading
5The authors do not use the cluttered version of the two-digit dataset for the AIR variants.
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4.1.1 Ablation Studies

learnt vs. fixed variance posterior

Effect of Noisy Proxy Distribution

WOT—— 0.8 1

e
o

test-accuracy

100

300
epoch

' 200 400 500
(
HE BE 3BE BR
1 < N 7 y
NENE NS NN .~ 20000

Increased Noise 0 200 400 600 800 1000 1200 1400
epoch

Figure 4: Top-left: Effect of noisy proxy distribution on test accuracy. Bottom-left: Left
to right correspond to noisier versions of the same proxy distribution used in above graph.
Right: Test accuracy for Two-Digit ClutteredMNIST identification under a range of fixed
variances, 62, of the isotropic-gaussian posterior g¢ (zi|z<i,¢).

).2

learnt

Robustness to Noisy Proxy Distribution: Since the proxy distribution is critical to our for-
mulation, we conduct an ablation study using the two-digit cluttered identification problem
from experiment 4.1. We vary the amount of noise in the proxy distribution as shown in the
bottom of Figure 4-left. The test curves shown on the fop of the same figure demonstrates
that our method is robust to noisy proxy distributions. In general, we found that our method
worked even in situations where the proxy distribution only contained a few points, allowing
us to infer positional information to index the original distribution p(x).

Quantifying Learned Exploration: In order to validate the hypothesis that the learned
variance, 62, of our isotropic-gaussian posterior ¢¢(z:|z<;,¢) is useful in the learning pro-
cess, we repeat the identification experiment from Experiment 4.1 using the noisiest proxy-
distribution from the previous ablation study (right most example in Figure 4-bottom-left).
We compare our model (learnt) against the same model with varying fixed variance: 62 =
[0.61, 0.91, 1.21, 1.41, 1.6I, 2.0I, 5.0I]. We repeat each experiment five times and plot the
mean and variance of the test accuracy in Figure 4-right. We observe a clear advantage in
terms of convergence time and accuracy for the learnt model.

4.2 MIT-Adobe Sk

MIT-Adobe 5k [6] is a high resolution DSLR camera dataset consisting of six classes: {ab-
stract, animals, man-made, nature, None, people}. While the dimensionality of each image
is large, the dataset has a total of 5000 samples. This upper-bounds the performance of deep
models with millions of parameters (without the use of pre-training / fine-tuning and other
unsupervised techniques). We examine this scenario because it presents a common use case
of learning in a low-sample regime.

We downsample the large original images to x € R3*2328%2528 (4 evaluate against a base-
line resnet [24] model. The baseline model operates over 144 crops per image as in the
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previous experiment. Test saccades (non-cherry picked) of our model are visualized in Fig-
ure 3; the saccades allow us to gain an introspective view into the model decision making
process. Some of the interesting examples are that of the ‘people’ class: in the example with
the child (third to the right in the bottom row of Figure 3-c), the model saccades to the adult
as well as the child in the image. Other notable examples are leveraging the spotted texture
of cheetah fur and the snout of the dog. As observable from Table 1-fop, our model has
comparable accuracy to the baseline resnet model, but infers ~ 9-10x faster and uses far less
GPU memory than a naive approach.

4.3 Starcraft II - Count the Marines

marine count test distribution before and after weighted random sampler

number of marines
Figure 5: Left: full resolution image with minimap (proxy distribution, p(c)) in the bot-

tom left corner. Right: initial test output distribution and normalized test distribution using
weighted random sampler with replacement.

number of marines

In this experiment we generate a dataset of 250,000 samples of a randomly initialized Star-
craft II [56] scenario. The maps generated use the full resolution (x € R1024%1024) images
which have complex structure such as bloom, background texture and anti-aliased sprites
(see Figure 5 left). Units from the Zerg faction attack Terran units until all units of one
faction are eliminated. Both factions generate a random number of three distinct types of
units with a maximum of 22 per unit-type. Our objective in this scenario is to predict the
number of Terran marines in the map at any given time given training data with the correct
counts; we use the minimap (Figure 5-left bottom corner) as our proxy distribution ,p(¢),
to infer positional information in the full-resolution image p(x). Even though the minimap
has an estimate of the total count the model cannot directly use this information to make a
prediction due to the fact that there are multiple unit types with the same minimap grid size.
This forces the model to have to look at the true map in order to infer the number of marines
present. In addition, the minimap is only used to infer locations in the full-resolution images
and not directly for classification.

The generated dataset was initially biased to a count of zero marines; in order to learn a
model that did not instantly have > 50% accuracy we used a weighted random sampler (with
replacement) on both the train and test sets. We visualize the effect of this sampler on the
entire test distribution in the histograms shown in Figure 5-right.

As with the previous experiment we compare our model to a baseline resnet18 that uti-
lized the entire image to predict the Terran marine count. In this experiment we observe that
our model (50%) does not perform as well as the baseline resnet18 (65%) in terms of classi-
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Figure 6: Left: Starcraft IT full resolution test images € R1024*1024 Riont: Five Test saccades
(per input image) extracted by our model; almost all contain localized Terran marines.

fication accuracy, however we observe reasonable localizations in Figure 6. We hypothesize
that this is due to the fact that we use a completely different modality for the proxy distribu-
tion. This makes it challenging for the model to learn how to saccade around the space as
it needs to first learn the relationship of the simplistic color RGB mini-map and the compli-
cated, texture filled, full-resolution map. We hypothesize that the reason for the performance
degradation is due to double-counting of marines. Our work presents a strong first attempt
at probabilistic large image classification using location information derived from a proxy
image. The method also provides localization for free as a byproduct of the process.

5 Conclusion

We demonstrate a novel algorithm capable of working with ultra-large resolution images
for classification and derive a new principled variational lower bound that captures the re-
lationship of a proxy distribution’s posterior and the original image’s co-ordinate space .
We empirically demonstrate that our model works with low memory and inference costs on
ultra-large images in three datasets.
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