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ABSTRACT  

 

In real-world environments information is typically multisensory, and objects are a primary unit of 

information processing. Object recognition and action necessitates attentional selection of task-relevant 

from among task-irrelevant objects. However, the brain and cognitive mechanisms governing these 

processes remain not well understood. Here, we demonstrate that attentional selection of visual objects is 

controlled by integrated top-down audiovisual object representations (“attentional templates”), while 

revealing a new brain mechanism through which they can operate. In multi-stimulus (visual) arrays, 

attentional selection of objects in humans and animal models is traditionally quantified via “the N2pc 

component”: spatially-selective enhancements of neural processing of objects within ventral visual cortices 

app. 150–300ms post-stimulus. In our adaptation of Folk et al.’s (1992) spatial-cueing paradigm, visual cues 

elicited weaker behavioural attention capture, and an attenuated N2pc during audiovisual versus visual 

search. To provide direct evidence for the brain, and so, cognitive, mechanisms underlying top-down control 

in multisensory search, we analysed global features of the electrical field at the scalp across our N2pcs. In 

the N2pc time-window (170–270ms), colour cues elicited brain responses differing in strength and  their 

topography. This latter finding is indicative of changes in active brain sources. Thus, in multisensory 

environments, attentional selection is controlled via integrated top-down object representations, and so not 

only by separate sensory-specific top-down feature templates (as suggested by traditional N2pc analyses). 

We discuss how the electrical neuroimaging approach can aid research on top-down attentional control in 

naturalistic, multisensory settings, and on other neurocognitive functions in the growing area of real-world 

neuroscience. 
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 The ultimate goals of cognitive neuroscience are to create accurate models of how information 

processing occurs in everyday situations and how the governing mechanisms are orchestrated by the brain. 

There are increasing numbers of voices in the community calling for discussions of the optimal ways of 

achieving these goals (e.g. Jonas & Kording, 2017; Krakauer et al., 2017; Love, 2015; Poldrack et al., 2017). 

Our environments are typically cluttered and complex, and only some of the objects and events registered 

by the sensory systems become associated with our current aims and behavioural responses. To better 

understand how perception is orchestrated in such settings, research on attentional control processes has 

emulated one or many of these features (Kingstone, 1992; Posner, 1980; Treisman & Gelade, 1980). 

Rigorous tasks isolating cognitive processes of interest and identifying their behavioural measures, combined 

with careful experimental manipulations, were instrumental to developing theories of attentional control 

(and related cognitive processes).  

At the same time, studies using brain imaging and mapping methods have been fundamental in 

refining and refuting these theories. Early electrophysiological recordings in non-human mammals revealed 

how top-down, goal-based attention controls stimulus processing through “gain control”, i.e., enhancing 

neuronal responses to stimuli with task-relevant features (e.g. spatial location) and resolving stimulus 

competition in multi-stimulus settings (Desimone & Duncan, 1995; Moran & Desimone, 1985). Yet, it was the 

use of EEG that allowed wide-scale research into attentional control mechanisms. The excellent temporal 

resolution of EEG helped to characterise the earliest information processing stages influenced by spatial 

attention and how the latter interacts with feature-based top-down attention in multi-stimulus contexts. 

Theoretical progress was further facilitated by systematic focus on specific event-related potential (ERPs) 

components: sequences of electric-field scalp topographies occurring in a set temporal order in specific 

stimulus/task contexts  that served as temporally-resolved brain correlates of perceptual and cognitive 

processes (Eimer, 1996; Eimer et al., 2009; Heinze et al., 1990; Luck & Hillyard, 1994; Mangun & Hillyard, 

1990). More recently, novel mechanisms orchestrating top-down attention control have been revealed by 

haemodynamic imaging methods, such as fMRI and PET. Such neuroimaging studies provided direct 

evidence for the purported top-down “attentional templates” (Duncan & Humphreys, 1989), i.e., actively 

maintained working memory representations of task-relevant object features whereby the brain biases 

sensory processing towards our goals. These biasing signals were revealed to be generated by a network of 

fronto-parietal “sources” (e.g. Le et al., 1998; Serences et al., 2004; Wojciulik et al. 2009). More recently, 

fMRI studies revealed how both stable and flexible patterns of connectivity between the fronto-parietal 

network and sensory cortices are instrumental to top-down attention (Hwang et al. 2017; Parks & Madden, 

2013).  

Research into how neurocognitive functions operate in veridical, real-world environments is 

increasingly popular, and EEG is becoming increasingly applied in this area. The multitude of advantages of 
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EEG - its low-cost, portability, non-invasiveness - is likely behind this popularity. Therein, measures relying on 

the exquisite temporal resolution of EEG have been shedding light on the mechanisms governing joint action 

and attention and learning in everyday situations (Bevilacqua et al., 2018; Cohen & Parra, 2016; Dikker et al., 

2017; Ko et al. , 2017; Müller et al., 2018; Tseng et al. 2018). The way to fully capitalise on the hardware- and 

information-level benefits of EEG likely lies in employing signal processing techniques that extract both 

temporal and reasonably resolved spatial information from EEG data that are also neurobiologically 

interpretable (Tivadar & Murray, 2018). 

  EEG-based techniques such as electrical neuroimaging (EN) focus on reference-independent 

measures of the global, rather than local, features of the brain’s electric fields at the scalp. Such measures 

allow scientists to readily distinguish between ERP modulations elicited by changes in the strength of 

response within statistically indistinguishable brain networks and those driven by alternations in the 

activated brain networks, respectively. Biophysical laws dictate that differences in topographies, e.g. those 

associated with distinct experimental conditions (as indicated by DISS and related measures: see Methods), 

forcibly arise from changes in the configuration of the underlying sources (Fender, 1987; Helmholtz, 1853). 

EN measures are perhaps best suited for real-world neuroscientific research, as they are highly robust 

against small montages (~≤20 channels) typically used in such research. In particular, the stable patterns of 

EEG activity and their features (e.g. duration) can be derived with high test-retest reliability with even 8-

channel data (Khanna et al. 2014). Further, EN-analysed data can more readily be compared/shared across 

laboratories because the measures are both global (i.e. not relying on a specific electrode montage nor on 

specific electrode sites) and reference-independent. Different labs might perhaps use the same reference, 

but they likely will have different conventions. This raises the issue of which laboratory/reference is the 

“right” one. It is this issue that impedes comparison across laboratories. An EN framework thus has major 

statistical and interpretational advantages over traditional voltage-based ERP analyses. 

Most research on attentional control, systematic investigation remains focused on single senses and 

so on processes gauged by visual or auditory objects alone. As such, the understanding of attentional control 

via multisensory object templates and how these multisensory templates are represented in the brain is 

exceptionally poor. This is problematic for several reasons. First, real-world environments are de facto 

multisensory, and converging evidence points to a fundamentally multisensory fashion in which our brain 

encodes both space and object identity (Assad & Maunsell, 1995a; Mahon et al., 2009; Maidenbaum et al., 

2014). Some multisensory processes take place in early sensory cortices, at stages preceding those 

controlled by top-down attention (reviewed in De Meo et al., 2015; Murray et al., 2016a; van Atteveldt et al. 

, 2014). This offers one explanation for why multisensory stimuli are attended more strongly than unisensory 

stimuli, often irrespective of the observers’ intention or demands of the current task, unlike unisensory 

stimuli (Matusz & Eimer, 2011; Matusz et al., 2015a; Santangelo & Spence, 2007; Scerif et al. 2012; van der 
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Burg et al. 2011). Thus, even such fundamental tenets, as the predominance of top-down over bottom-up 

mechanisms of attentional control (cf. Folk et al. 1992), established by unisensory research, may not hold in 

naturalistic, multisensory environments. Second, unisensory responses have limited power in predicting 

multisensory responses due to non-linear mechanisms involved in integration of multisensory information 

(reviewed in Ernst & Banks, 2002; Murray & Wallace, 2012; Stein, 2012). That is, if, e.g., visual and auditory 

(brain or behavioural) responses in a given task are summed, the response to the audiovisual stimulus will be 

reliably larger or smaller than that sum, and currently we cannot easily model this difference. Third and 

perhaps most importantly, fundamental cognitive functions like speech, object recognition or reading are 

typically improved in multisensory settings. Yet, in naturalistic, cluttered contexts, these benefits are 

contingent on top-down attentional control (Alsius & Soto-Faraco, 2011; Froyen et al. 2009; Iordanescu et 

al., 2008).  

Thus, in the real world, multisensory processes and top-down attentional control likely interact in 

modulating object recognition and communication, but the mechanisms governing these interactions are 

entirely unclear. If attentional templates are a fundamental way through which the brain instantiates top-

down attentional control, multisensory object templates might be an important way through which top-

down control is instantiated in real-world environments. As unisensorily-gauged processes may be limited in 

predicting those engaged by multisensory stimuli, systematic research is required to better understand how 

spatial, feature- or object-based top-down control mechanisms interact with multisensory processes. 

Notably, research on multisensory object templates is the more pertinent, as it might be directly relevant to 

everyday situations, such as those where a familiar sound needs to be associated with an arbitrary visual 

shape, as in the case of reading or early number knowledge. 

How then are attentional templates represented in the brain? There are several lines of evidence to 

suggest that attention is indeed controlled by integrated rather than separate representations of target 

objects. First, it has long been shown that features are preferentially processed when they are part of the 

same object (e.g., Duncan, 1984). Second, working memory that arguably mediates attentional templates, 

represent objects by integrating their features rather than keeping them separate (Luck & Vogel, 1997). 

However, these findings pertain to purely unisensory, visual processes. Traditional models of working 

memory argue for sensory-specific systems for storage and manipulation of visual and auditory information 

(e.g., Baddeley, 2000). Despite the mounting evidence for multisensory representations throughout the 

brain, it is plausible that representations of visual and auditory task-relevant features are functionally 

separate. The presence of visual target-defining features would in such cases attract visual attention and 

modulate activity within visual cortices in a spatially-selective manner; the presence of target-defining 

auditory features would trigger similar modulations within relevant auditory cortices. Consequently, the 

ability to capture attention of objects matching just the visual feature would be unaffected by the lack of a 
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target-defining auditory feature, as would be their spatially selective processing within visual cortices. 

However, representing features in a separate manner is inconsistent with the flexible, task-contingent 

abilities of the fronto-parietal network to represent behaviourally relevant information (e.g. Miller & Cohen, 

2001). In further support of integrated multisensory representations of task-relevant features, neurons in 

the prefrontal cortex have been shown to represent, in a task-dependent fashion, arbitrary but task-relevant 

conjunctions of colour and pitch (Fuster et al. 2000). Additionally, posterior parietal cortices, known to 

contribute to control of attention towards task-relevant spatial locations and task-relevant object features, 

represent space in a multisensory fashion (Assad & Maunsell, 1995; Shulman et al., 2002; reviewed in Stein 

& Stanford, 2008). Lastly, there is converging evidence to suggests that even neurons at such early stages of 

cortical processing as “sensory-specific” V1 are involved in multisensory integration (reviewed in Murray et 

al. 2016a), making the multisensory nature of object representations in the higher-level brain areas even 

more plausible (Matusz et al., 2017).  

In line with the latter, we have previously demonstrated that the ability of visual objects to capture 

attention is attenuated during audiovisual search (Matusz & Eimer, 2013). We adapted the Folk et al.’s 

(1992) paradigm, so that participants searched for targets defined either by visual feature alone or visual-

auditory feature conjunctions (e.g., red bars vs. red bars paired with a high pitch tone; Colour vs. Colour-

Tone task). Search arrays were preceded by a display with a visual cue that always matched the target 

colour. The ability of visual cues to capture attention in the visual task was attenuated and/or eliminated in 

the audiovisual task, across both brain and behavioural responses. Subsequently, behavioural studies have 

demonstrated that multisensory object templates generalise across different sensory pairings and non-

spatial selective attention tasks (Mast et al. 2015, 2017). To better understand the neural underpinnings of 

multisensory templates, we have likewise recorded EEG in our study, and focused EEG analyses on the 

traditional ERP marker of attentional selection, i.e., the N2pc component, a negative-going voltage 

deflection over posterior electrodes collateral to the stimulus location ~200ms post-stimulus (Eimer, 1996; 

Luck & Hillyard, 1994). We found that within the traditional time-window (170-270ms), N2pc was reduced in 

amplitude in the audiovisual task versus the visual task. These N2pc reductions have been shown also for 

visual feature-conjunction (e.g. Kiss, Grubert, & Eimer, 2013). Regarding the underlying brain mechanism, 

these N2pc attenuations would be traditionally taken  as evidence for top-down object templates controlling 

spatially-selective processing within nominally visual cortices like lateral occipital cortices (Hopf et al., 2000). 

The typical implication, which to date has not been explicitly tested, is that N2pc modulations arise via “gain 

control”, wherein the amplitude of neural responses but not the network configuration itself, is modulated 

by attention-related processes. Thus, these canonical EEG/ERP analyses would suggest that top-down object 

templates reduces attention-capturing abilities of the visual distractor by decreasing the activity it elicited 

within the same cortices. These results, if linked to the cognitive mechanisms under study, would have 
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potentially important mechanistic implications for the nature of object templates. However, ERP amplitude 

modulations can stem from alternations in both “the gain” (the strength of response of the same network) 

as well as in the configuration of activated networks (see Murray et al. 2008). As such, canonical N2pc 

analyses are limited in the extent they can provide strong brain-level evidence for the representations 

orchestrating object templates.   

To shed the much-needed light onto the brain and so cognitive mechanisms governing top-down 

multisensory object templates, here we re-considered some of the data from Matusz and Eimer (2013) 

within an EN framework. EN can statistically distinguish whether the observed N2pc amplitude modulations 

arose from strength- (“gain”) vs. network-based mechanisms (Lehmann & Skrandies, 1980; Michel & Murray, 

2012; Murray et al., 2008). Thus, EN can directly support accounts proposing more integrated versus 

separate representations of multisensory object templates. Besides these directly neurophysiologically 

interpretable results , EN addresses two crucial yet always ignored limitations characterising the canonical 

analyses of lateralised ERP components like N2pc. For one, the latter measure the difference between two 

electrode channels (or channel subsets) located in opposite hemiscalps. Whether explicit or implicit, an 

assumption behind these analyses is that this two-point difference in lateralised potentials reflects all of the 

electrical brain activity relevant to, in the case of the N2pc, attentional control. This is a major limitation of 

canonical lateralised ERP analyses, as they ignore the majority of the recorded brain data (91.5% in the case 

of ERP analysis of data from 2 channels from a 23-channel montage; a percentage that would further 

increase with higher-density montages, though the degree of non-independence across electrodes is 

another important consideration). As such, they likely risk missing effects occurring elsewhere across the 

electric field at the scalp. Furthermore, the two-point subtraction that underlies the mean amplitude N2pc 

difference might have arisen due to different contexts (see Fig.3 for detailed explanations).  

We predicted that top-down control via integrated multisensory object templates should be 

reflected by differences in the topography (and so in the engaged brain sources) of the lateralised ERP 

gradient elicited by colour cues between the two search tasks in the N2pc time-window. When the brain is 

set to control sensory processing towards stimuli defined by a given colour, such as “all objects in red”, 

responses of all neurons representing red are enhanced (Desimone & Duncan, 1995). When the brain is set 

towards a multisensory, colour-tone defined stimulus (cf. colour-pitch selective prefrontal neurons found by 

Fuster et al., 2000), responses should now be enhanced only in those neurons that can represent both red 

and the sound feature. Consequently, the same colour-defined visual cue will activate a different 

configuration of neuronal populations when it fully matches the representation of the target versus when 

the target representations includes another feature. If we observed GFP (i.e., strength-based) modulations 

alone in the cue-induced ERPs within the N2pc time-window - without concomitant topographic 

modulations - this would be more consistent with separate representation of visual and auditory task-
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relevant features. That is, similar topography (and activated neuronal populations) in cue response would 

suggest top-down control based on the same object representations across the two search tasks. 

Consequently, the up-/down-modulations of the cue-induced ERPs would arise from non-visual signals 

influencing more general, tonic baseline activity changes within colour-encoding to reflect changes in their 

relevance to the audiovisual search. Such changes were found previously in studies involving unisensory 

versus multisensory selective-attention tasks (e.g., Laurienti et al., 2000; Mozolic et al., 2008).   

 

METHODS 

 

Participants 

Participants were twelve right-handed paid volunteers with normal or corrected-to-normal vision 

(mean age 25.8 years, age range 21–40 years, 5 females). None of the subjects had current or prior 

neurological or psychiatric illnesses. All had normal or corrected-to-normal vision and reported normal 

hearing. All participants provided informed consent prior to the start of the experiment. Some of the data 

were reported as part of a study where top-down control by audiovisual templates was investigated using 

exclusively traditional behavioural (RT spatial cueing effects) and EEG/ERP markers of attentional selection 

(N2pc amplitude; Matusz & Eimer 2013).  

 

Stimuli and procedure 

Behavioural and brain indices of attentional capture of visual cues as a function of top-down 

templates were assessed across a visual and an audiovisual task. As visible in Figure 1, every trial consisted 

of a cue display, followed by a blank screen with a fixation cross, in turn followed by a search display. Both 

the cue and the search array always contained a colour singleton (either red or blue), with the cue colour 

always matching the colour of the target. What differed between the two tasks was how the targets and the 

non-target search arrays were defined. In the Colour task, participants had to respond to colour-singleton 

bars when they appeared in the target colour (e.g., blue), and ignore bars defined by non-target colour (e.g., 

red when searching for blue). Both trial types were presented equiprobably and in a random order. In the 

Colour-Tone task, participants had to respond to bars of the same colour, but only when they were 

accompanied by a tone (e.g., blue presented together with a tone; V+A+). As in the visual task, targets 

appeared on half of all trials. The other half consisted of equiprobable trials with one or both features 

mismatching the target, and required no response (e.g., red bar/tone: V-A+; blue bar/no tone: V+A-; red 

bar/no tone: V-A-). The two search tasks were performed by participants in a counterbalanced order 

together with a second audiovisual search task, which was not crucial considering the aims of the present 

study. Each participant looked for either a blue or a red target-colour bar, paired with either low- or high-
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pitch sound (in the audiovisual search task) and assessed their orientation (vertical vs. horizontal) by 

pressing one of two vertically aligned keys with two index fingers (e.g., pressing a top key for vertical targets 

and the bottom one for horizontal). Thus, to reiterate, both target colour and target pitch (as well as 

mapping hand-key) were counterbalanced across participants. The between-subject counterbalancing of 

colour and sound pitch target feature pairings served to prevent our results from being influenced by some 

participants potentially possessing any pre-existing associations between colours and sound pitches, where 

they would regard subjectively a particular pitch level “more congruent” with a given colour. The ERP data 

were collapsed across participants searching for different audiovisual feature combinations.  Each search 

task was performed across four consecutive blocks, each consisting of 96 trials (48 target, 48 non-target).  

Visual stimuli were presented against a black background on a 22" LCD monitor (100 Hz refresh rate; 

100cm viewing distance; Samsung wide SyncMaster 2233). In the cue array, each of the six elements was 

composed of four closely aligned dots (0.17° x 0.17°). The colour singleton cue was blue or red (CIE x/y 

chromaticity coordinates .161/.128 and .621/.128, respectively), and the remaining items were grey 

(.308/.345). This colour singleton was presented equiprobably and randomly at one of the lateral locations, 

rendering it uninformative with respect to the spatial location of the upcoming target. This enabled us to 

measure control of visual cue-induced attentional capture as a function of top-down object templates. The 

lateral localisation of the cues enabled us to record an N2pc in response to each cue (e.g., Hickey et al. 

2006). Search arrays contained six horizontal or vertical bars (1.1° x 0.3°) at the same positions as the 

preceding cue elements, with bar orientation chosen randomly for each position. Coloured bars appeared 

with equal probability at one of the four lateral locations. All grey, blue, and red stimuli in the cue and search 

displays were equiluminant (~11 cd/m2). In the Colour-Tone task, the sound was a pure sine-wave tone (50 

ms duration; 65 dB SPL) of high- or low-pitch (2000Hz and 300Hz, respectively for participants searching) 

that was presented concurrently with search array onset from a loudspeaker located centrally behind the 

monitor.   

 

EEG acquisition and pre-processing  

 EEG was DC-recorded with a BrainAmps DC Amplifier from 23 Ag-AgCl scalp electrodes in an elastic 

cap, positioned according to the international 10–20 system. Two additional electrodes were also located at 

the level of the outer canthi of the eyes. Signals from the left and the right earlobe were also recorded, and 

during the recording all channels were referenced to the left earlobe. During the recording, EEG was 

sampled at 500Hz and impedances were kept below 5kΩ. Cartool (available at 

http://www.fbmlab.com/cartool-software/) (Brunet et al., 2011) was used for data pre-processing and the 

statistical analyses. Next and prior to averaging, the EEG was filtered offline with a 2nd order Butterworth 

filter (-12dB/octave roll-off; 0.1Hz high-pass; 40Hz low-pass). The filters were computed linearly in both 

http://www.fbmlab.com/cartool-software/
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forward and backward directions to eliminate phase shifts. Then, the continuous EEG was segmented into 

peri-stimulus epochs, relative to the colour cue onset, spanning from 100ms pre-stimulus to 500ms post-

stimulus onset. Subsequently, data quality was controlled with a semi-automated artefact rejection criterion 

of ±80μV at each channel as well as visual inspection to exclude any remaining transient noise, eye 

movements and muscle artefacts.     

To obtain lateralised ERPs, for each subject, the artefact-free single-trial epochs were averaged and 

pre-stimulus baseline corrected (using the -100ms to 0ms time-interval), separately for trials with colour 

singleton cues presented in the left and right hemifield, for each of the two search tasks, resulting in 4 

average ERPs. Then, the 2 weighted ERP averages (weighted according to number of accepted epochs) from 

conditions with cues presented in the left were re-labelled, so that electrodes over the left hemiscalp now 

represented brain activity over the right hemiscalp, and vice versa. Following this step, the “mirror cue-on-

the-right” ERP average and the veridical “cue-on-the-right” ERP average condition were collapsed, creating a 

single lateralised ERP file. As this was done separately for each of the two search tasks, this resulted finally in 

two lateralised cue-elicited ERP averages: 1 for the Tone task, and 1 for the Colour-Tone task. From this step 

onwards, ERP data were always coded in terms of their contralaterality (contralateral vs. ipsilateral to the 

cue side), and we refer exclusively to contralateral and ipsilateral scalp sites with respect to the cue 

presentation side.  

 

ERP analyses 

The pre-processing of the ERPs triggered by the visual cues across the Colour task and the Colour-Tone task 

created ERP averages in which the contralateral versus ipsilateral ERP voltage gradients across the whole 

scalp are preserved. As the cues were physically identical in both tasks, we were able to directly contrast the 

insights offered by traditional N2pc analyses and the EN framework regarding the effects of top-down object 

templates on visual object attentional selection. An overview of our multi-step analysis is detailed in Figure 

2. 

 

Step 1. Canonical N2pc analyses 

We first aimed to bridge the present EN analyses with the previous, canonical N2pc analyses. Specifically, in 

this step, we extracted from the lateralised ERPs mean amplitude measures across the 170-270ms post-cue 

onset time-window from electrodes PO7 and PO8 and submitted these to a 2x2 within-subject repeated-

measures ANOVA with factors Task (Colour task vs. Colour-Tone task) and Contralaterality (Contralateral vs. 

Ipsilateral). As described in the section above, we used average-referenced, rather than linked-earlobe 

referenced, as in our original study (Matusz & Eimer 2013), ERP data. With regard to the N2pc specifically, 

the choice of the reference is moot, as the contralateral vs. ipsilateral difference will always be the same 
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regardless of the reference (i.e. a spatial gradient is being calculated). Specifically, the paired lateral-

electrode measurement captures a portion of the topography of the electric field across the scalp, and 

biophysical laws dictate that scalp topography is reference-independent (Murray et al., 2008; Michel & 

Murray, 2012). To use an analogy, the altitude difference between two mountain peaks on opposite sides of 

a valley is independent of where the sea level is measured. Thus, for a lateralised component, such as the 

N2pc, we did not expect any differences between the original and the current N2pc results. This is because, 

to follow the analogy, the differences in altitude between two mountain peaks is equivalent independent of 

whether the altitude of these peaks is measured vs. sea level or vs. Mount Everest. In contrast, the shape of 

the ERP waveform recorded at one electrode (and not for a ERP waveform of a difference between two 

electrodes, like in the case of N2pc) within one hemiscalp will change depending on the reference 

electrode(s) chosen (see e.g. Lehmann, 1987; see also Fig.2 in Murray et al. 2008). 

The reference-independence of the canonical N2pc analyses, however, does not resolve their highly 

limited neurophysiologic interpretability. For one, as only a portion of the topography is considered, there is 

a reasonable likelihood of missing ERP effects (topographic or strength-based ERP modulations) occurring 

during the N2pc time-period outside of the two “mountain peak” points, e.g., within the “mountain valleys”. 

Second and most importantly, as a mere subtraction of values between two opposite-hemiscalp electrodes, 

the canonical N2pc analyses would indicate that attentional selection across two conditions is comparable in 

magnitude even if two very different neurophysiological situations gave rise to it. This point is well illustrated 

in Figure 3, which displays 3 hypothetical lateralised-data matrices (i.e., the potential values recorded from 

16 electrodes at a N2pc-like latency). Condition 2 is precisely twice that of Condition 1 at each electrode, 

resulting in an identical spatial distribution of values that are simply stronger in Condition 2. The values of 

Condition 3 are identical to those of Condition 2, though partially shuffled in their locations. The canonically 

measured N2pc (Fig.3A) is the difference between a contralateral electrode (black circle) and a respective 

ipsilateral electrode (grey circle). For Conditions 1–3, the N2pc value would be measured as -4, -16, and -

4µV, respectively. That is, canonical N2pc analyses would report no difference between Conditions 1 and 3, 

despite the clear, abovementioned differences in how the data were generated. In contrast, the strength 

difference between Conditions 1-2 and the topography difference between Conditions 2-3 are both readily 

captured by Global Field Power (Fig.3BC) and Global Dissimilarity (Fig.3D-F), respectively. As such, the 

remainder of the analyses focused on how these measures of the global attributes of the electrical field at 

the scalp (i.e., how the voltages behave across the whole scalp) can inform our understanding of top-down 

attentional control via object templates.  

  

Step 2. Strength-based modulations of the N2pc component 

As part of EN analyses, we first assessed whether the observed mean N2pc amplitude differences 
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were driven by search task modulating the strength of responses within statistically indistinguishable brain 

networks. For this purpose, we used GFP, which equals the root mean square (RMS), or standard deviation, 

across the average-referenced electrode values at a given moment (as described in Lehmann & Skrandies 

1980). The GFP waveform is a moment-to-moment measure of standard deviation of potential (μV) across 

the whole montage. The GFP differences in Figure 3B-C directly reflect the 4-fold increase in the global 

response strength between Conditions 1 and 2. What GFP does not provide insight into is how the potentials 

are distributed across the scalp. The most parsimonious explanation of differences in GFP between two 

conditions without concomitant statistically reliable differences in the scalp topography (as measured with 

Global Dissimilarity) is a change in the gain within statistically indistinguishable generators between two 

stimulus conditions. We remind the reader that GFP and DISS are reference-independent. Average reference 

is used nevertheless in EN analyses because source estimations are typically part of the analysis pipeline 

(discussed in Michel & Murray, 2012). However, all source estimation methods apply a common average 

reference to the data as part of the biophysical principle of quasi-stationarity (i.e. that the sum of all currents 

at a given moment in time is zero).  

The GFP waveform can be assessed statistically just like any other ERP waveform. To maintain 

consistency with the canonical N2pc analyses, we extracted the mean voltages of the GFP waveform over 

the same as before, 170-270ms post-cue time-window and then compared them directly between the 

Colour and the Colour-Tone task using a paired t-test.  Global characteristics of the electric scalp field 

gradients, compared to the measures of local field potentials as represented, e.g., by N2pc, should provide a 

more complete answer as to whether top-down attentional control via object templates can operate by 

altering the overall strength of the lateralised voltage potentials.   

 

Step 3. Topographic modulations of the N2pc component  

Next, we tested whether the mean N2pc amplitude differences were driven by alternations in ERP 

topography and so in the configurations of brain sources that the colour cues activated between the two 

search tasks. Differences between two electric fields (independent of their strength) are indexed by Global 

Dissimilarity (DISS). DISS equals the root mean square of the squared differences between the potentials 

measured at each electrode (versus the average reference), each of which is first scaled to unitary strength 

by dividing it by the instantaneous GFP (Lehmann & Skrandies, 1980). The calculation of DISS becomes easier 

to understand if one considers again the data in Figure 3. As already mentioned above, Conditions 1 and 2 

have the same topography but different strengths, while Conditions 2 and 3 have the same strength but 

different topographies. Figure 3A depicts the original data from the 3 conditions, while panel D shows the 

same data that have been GFP-normalized. Thus, after re-scaling all 3 conditions to have the same GFP, the 

topographic similarities and differences between conditions become readily apparent. As visible in Figure 3E, 
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the topographic distribution of the values across the hypothetical 16-electrode montage is identical between 

Conditions 1 and 2, and this is reflected by DISS equalling 0. In contrast, the DISS between Conditions 1 and 3 

equals 0.56, and this reflects the relatively weak reshuffling of the values carried out between the 2 

matrices; in extremum, DISS equals 2, which means that topographic distributions of the values (voltages) 

across the whole scalp are perfectly inverted at a given moment. Crucially for the aims of the present study, 

we note that, in the example here, the topographic differences between the two last conditions would be 

completely overlooked if only traditional N2pc measures were considered. 

 DISS is directly related to the spatial Pearson’s product-moment correlation coefficient between the 

potentials of the two compared voltage scalp maps. That is, a spatial correlation coefficient value of -1 at a 

given moment would indicate that two ERP topographies are perfectly inverted (i.e., DISS value of 2), and 

this relationship is expressed by spatial correlation being equal to [(1-DISS2)/2].  If two ERPs differ in 

topography independently of their strength, it directly indicates that the two maps were generated by a 

different configuration of sources in the brain.  Display and comparison of DISS across time allows defining 

periods of stable patterns of ERP activity and changes therein. In fact, GFP and DISS are inversely related, i.e., 

when GFP is high, ERP topographic activity tends to remain stable (i.e., DISS is low; see above), whereas its 

changes when GFP is low. Displaying DISS across time shows a highly characteristic behaviour, where 

topographic activity remains stable for tens to hundreds of milliseconds and then changes suddenly to a new 

configuration, lasting again tens to hundreds of milliseconds. These highly reproducible and sequentially 

organised configurations have been shown to represent successive steps along the information processing 

pathway from perception to action (also known as “functional microstates”; Brandeis et al., 1995; Lehmann 

et al., 1987; Lehmann & Skrandies, 1980; Michel & Koenig, 2017).  

 Following the above-described ideas, we focused analyses of topographic differences on hierarchical 

clustering (specifically, we used the modified agglomerative hierarchical clustering algorithm called 

Topographic Atomize and Agglomerate Hierarchical Clustering, or TAAHC) to identify stable electric field 

topographies (henceforth “template maps”) present in the group-averaged cue-elicited ERPs between the 

two tasks within the whole 500ms post-cue time-period. The aim of this step is to obtain the minimal 

number of template maps that accounts for the greatest variance of the whole group-averaged dataset. 

Within concatenated group-averaged data across all (here, two) conditions, each data-point (here, map) first 

is defined as a single cluster. Following iterations, clusters start defining groups of data-points (maps), whose 

mathematical mean (i.e., centroid) represents the template map for that cluster. Subsequently, the ‘‘worst’’ 

cluster is identified, i.e., that contributing the least to the quality of the clustering, as indexed by lowest-GEV 

cluster. The maps contributing to that former cluster are then “freed”, i.e., they cease to belong to any 

cluster. In iterative procedure, one map at a time is separately re-assigned to one of the remaining clusters, 

based on the highest spatial correlation (derived from DISS) between each “freed” map and the centroid of 
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each remaining cluster. The clustering makes no assumption regarding the orthogonality of the derived 

template maps (Michel & Koenig, 2017). The end-product here is effectively 1 final cluster (which is not 

informative), and so it is important in the TAAHC to be able to determine the optimal number of clusters. We 

achieve this by the application of a modified Krzanowski-Lai criterion (Murray et al., 2008), which identifies 

the optimal number of temporally stable ERP clusters, i.e. the minimal number of stable maps accounting for 

the most amount of variance in the concatenated group-averaged data between conditions.  

 Subsequently, we submitted the template maps identified within the group-averaged ERPs to a 

fitting procedure. During this analytical step, each time point of the single-subject ERP (here measured in the 

142–260ms post-cue time-period) was “fitted” to the template maps that in the group-averaged hierarchical 

clustering were differentially characterising the two search tasks over the 142–260ms time-period. Thus, 

topography at each time-point in the cue-induced ERPS across the two tasks was assigned as representing 

that group-averaged template map which it best correlates with spatially, in a “winner takes all” fashion 

(Murray et al., 2008). As an output, for each subject and each of the 2 conditions, we obtained the number 

of time samples in which single-subject data best correlated spatially with a given group-averaged ERP 

template map. The relative presence of each template map in the scalp topography of the 2 lateralised ERPs 

was then submitted to repeated-measures 2x3 ANOVA with within-subject factors of Task (2) and Map (3).  

 

Step 4. Associations between behavioural and ERP measures of attentional selection  

Next, we investigated whether the changes induced as a function of search task in the behavioural measures 

of attentional-capture abilities of visual cues were associated with changes in both the canonical versus the 

EN measures of the N2pc activity. To this aim, we calculated non-parametric brain–behavioural measure 

correlations using the Spearman’s rho and combined it with the jackknife data resampling procedure. The 

jackknife method, like bootstrapping, resamples the data to estimate how big the bias is in a given statistic. 

The difference between the two methods lies in that jacknife resamples systematically, not at random, by 

computing sample statistics on n separate samples of size n-1.  We first computed the sample correlation of 

our data, and then the correlations for each of the jackknife samples, as to calculate their overall mean. We 

then used this mean to compute the estimate of the bias existing in our two rho estimates, so that our 

estimates could be corrected. The jackknife procedure was implemented by the Statistics and Machine 

Learning Toolbox™ “jackknife”  function, in Matlab (version R2008a; Mathworks®). 

That is, mean N2pc %-amplitude changes and mean GFP %-changes in the Colour-Tone task relative 

to the Colour task were correlated separately with the % changes in the behavioural capture effects between 

the two tasks (i.e. the difference in capture effects between the Colour-Tone and Colour task divided by the 

capture effect on the colour task, which can therefore result in percentages in excess of ±100%). Similar 

analyses were conducted for the %-change in the mean duration of each of the 3 template ERP maps 
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measured within each participant separately during the fitting procedure, as compared in the Colour-Tone 

task relative to the Colour task.  

 

RESULTS 

  

Behavioural results  

Only RTs from correct trials within 200 to 1000ms, and within ±3 SDs from the mean were analysed (leading 

to a loss of <1% data). A 2 x 2 within-subjects design was used; i.e. Search task (Colour vs. Colour-Tone task) 

x Cue-Target Location (same vs. different). Performance was quantified using RT* (inverse efficiency; 

Townsend & Ashby, 1978), which is an aggregate measure that takes into the account both reaction speed 

and accuracy (for RT and accuracy rate analyses, see Matusz & Eimer 2013, Exp.1), and has been successfully 

used in such areas of multisensory research, as multisensory correspondence and congruence, brain 

plasticity following sensory deprivation as well as selective attention (Kitagawaet al., 2005; Ludwig et al., 

2011; Ngo & Spence, 2010; Putzar et al., 2007). Overall, performance was similar across the two tasks, 

F(1,11)=1.02, p=.34. RT* showed that the cues captured attention behaviourally, but this ability differed 

between the two tasks, with the main effect of Cue-Target Location, F(1,11)=10.5, p=.008, ηp
2=.49, 

modulated further by Search Task, F(1,11)=13.21, p=.004, ηp
2=.55. Follow-up planned comparisons revealed 

that this interaction was driven by the fact that visual cues triggered reliable RT* attention capture effects in 

the Colour task, t(11)=5.4, p=.001, but this capture was so attenuated in the Colour-Tone task that it was no 

longer reliably present, t<1 (Fig.4). 

 

ERP results  

Step 1. Canonical N2pc analyses 

The 2x2 repeated-measures ANOVA on the mean N2pc amplitudes over 170-270ms post-cue recorded over 

PO7/8 electrodes replicated previous findings based on a linked-ears reference (Matusz & Eimer 2013). A 

main effect of Contralaterality, F(1,11)=20.27, p=.001, ηp
2=.65, which was modulated by Task, F(1,11)=5.75, 

p=.034, ηp
2=.35, demonstrated that the cue-induced N2pc amplitude differed between the two tasks. As 

before, the N2pc was attenuated yet reliably present in both the Colour task (t(11)=4.87, p=.001) and in the 

Colour-Tone task (t(11)=3.73, p=.003) (see Fig.5A-C). There was no main effect of task, F<1. As explained in 

the Methods section, this replication is unsurprising based on simple biophysical laws. Such notwithstanding, 

as canonical analyses cannot provide insights into the neurophysiologic mechanisms governing the ERP 

modulations, we focused the remainder of our analyses on ERP analyses within an EN framework. 

 

Step 2. Strength-based modulations of the N2pc component 
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The pairwise t-test carried out on the mean amplitude of the GFP waveform over the same, 170-270ms post-

cue time-window revealed a pattern contrasting with that found for the mean N2pc amplitudes. The mean 

GFP was enhanced in the Colour-Tone task, when compared to the Colour task, t(11)=2.62, p=0.012 (paired 

t-test; Fig.5D). That is, the gradients within the scalp-wide distribution of voltages triggered in response to 

the same visual cue were in fact overall stronger in the Colour-Tone task as compared to the Colour task.  

 

Step 3. Topographic modulations of the N2pc component 

Thirteen maps across 18 clusters were identified in the group-averaged ERPs, which accounted for 91.4% of 

the global explained variance. Until 140ms post-cue, the same template maps characterised both tasks 

(Fig.6A). The fitting procedure, utilising spatial correlation between template maps identified in the group-

averaged data and single-subject data from each of the 2 conditions, showed that over the 142–260ms 

period, three different template maps appeared to differentially characterise each task (Fig.6B, upper 

panel). A subsequent 2x3 repeated-measures Task x Map ANOVA on the percentage of time each template 

map best correlated spatially with single-subject data over the 142-260ms time-period revealed a significant 

main effect of Map (F(2,22)=7.61; p=0.032; ηp
2=0.27), as well as a significant interaction (F(2,22)=4.06; 

p=0.032; ηp
2=0.27) (Fig.6B, bottom panel). Post-hoc non-parametric tests (Wilcoxon signed rank tests) were 

conducted for each map, comparing their relative characterisation of responses to each task. The light green 

template map characterised responses to both tasks equally well (p=0.332). The middle green template map 

characterised responses to the Colour task more than the Colour-Tone task (p=0.040). The dark green 

template map characterised responses to the Colour-Tone task more than the Colour task, though this 

exhibited a non-significant trend (p=0.091). 

 

Step 4. Brain-behavioural response correlations 

There was a strong correlation between the relative changes between the Colour and the Colour-Tone task 

in behavioural capture effects and mean GFP, rhoc(10)=.88, p<.001. In contrast, mean N2pc amplitude 

measured from the PO7/8 electrode pair did not show a similar correlation with behaviour, rhoc(10) = .246, 

p=.43 (Fig.5CD, right panel). These correlation coefficients significantly differed (z=2.39; p=0.017, 2-tailed). 

There were no reliable correlations with similar measures from the fitting above. 

 

 

DISCUSSION 

 

We investigated whether re-consideration of lateralised ERPs within an EN analytical framework could 

provide direct and novel evidence into the brain and cognitive mechanisms governing top-down attentional 
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control by multisensory object templates, as compared to the canonical N2pc analyses. We first interpret 

our results in the context of the existing knowledge on the brain mechanisms governing top-down 

attentional control and object templates. Second, we discuss the added benefits that an EN framework 

offers in research on the mechanisms governing attentional control and other neurocognitive functions as 

they occur in naturalistic and real-world environments. 

The mean N2pc measured across PO7/8 in the typical 170–270ms time-window was reduced in the 

Colour-Tone task, as compared to the Colour task. When we assessed the mean cue-induced GFP in the 

same time-window, it was in fact enhanced in the Colour-Tone task compared to the Colour task. 

Furthermore and most interestingly, there were topographic differences between the lateralised cue-

induced ERPs, i.e., visual cues activated distinct brain source configurations in task contexts where they 

matched the target template fully (Colour task) vs. only partly (Colour-Tone task). What do these findings 

suggest for top-down control by multisensory object templates? First, in light of the behavioural results, the 

N2pc attenuations between the two tasks would be traditionally interpreted in terms of a “gain” mechanism. 

Namely, these results would be interpreted as spatially-selective processing of the colour cues elicited within 

the same brain network being suppressed when these cues matched the target template only partly. 

However, canonical N2pc amplitudes analyses cannot provide such evidence, as ERP amplitude changes can 

stem from both strength- and/or network-based mechanisms (e.g., Murray et al. 2008). In contrast, the EN 

analytical framework readily distinguishes between these brain mechanisms. Topographic differences 

between the lateralised ERPs are directly interpretable in terms of top-down control via integrated 

multisensory object templates. In the Colour search task, the spatially-selective brain responses to visual 

cues would be driven by populations of neurons that represent colour (e.g., “red”). In contrast, in the Colour-

Tone task, the responses to the same visual cues would now involve neuronal populations that encode both 

colour and tone. One could imagine this could involve a subset of the same, colour-coding neuronal 

population active in the Colour task, but it is more likely that these are neighbouring yet distinct populations 

coding unisensory and multisensory stimulus features (see, e.g., Beauchamp et al., 2004, for evidence for 

such organisation in the superior temporal sulcus). Posterior parietal cortex (PPC) and lateral occipital cortex 

(LOC), two areas shown to give rise to the N2pc in the only existing source localisation study (using MEG; 

Hopf et al. 2000), are both known multisensory hubs (e.g. Reich et al., 2012; Rohe & Noppeney, 2018). The 

specific sources, naturally, could change; the effects of stimulus- and task contingencies on N2pc sources are 

yet to be systematically studied even in the visual domain. Notwithstanding, differences in the engaged 

neuronal populations (e.g., in their relative duration) would be readily detected and statistically assessed 

with our topographic analyses. The idea of network-based mechanisms involved in top-down multisensory 

object template control is indirectly supported also by one of the few studies where N2pc was recorded in a 

multisensory search task (van der Burg et al., 2011). Therein, N2pc was sensitive to both the multisensory-
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ness as well as to task-relevance of the stimuli, with visual inspection suggesting scalp topography 

differences between the ERPs to audiovisual targets and distractors (albeit these were not statistically 

assessed; van der Burg et al. 2011. Figs.8–9).  

In contrast, the engagement of a gain control mechanism purported in the present study by the 

canonical N2pc analyses are de facto more consistent with top-down control by separate sensory-specific 

template mechanisms. The presence of GFP modulations that we have observed here – concomitant to 

topographic modulations – would suggest that indeed gain-control processes within the same neuronal 

population also contributed to the observed ERP differences. This effect could be potentially driven by 

relative rigidity of (some of) the networks giving rise to the spatially selective responses captured by N2pc, 

where one specific network generates responses to colour-defined stimuli (or even, specific colours), 

another for shape stimuli, and so on for other visual dimensions. In this case, non-visual top-down signals 

impact merely the overall levels of this brain activity. However, the cue-induced GFP was stronger (rather 

than weaker, as in traditional N2pc analyses) in the audiovisual task compared to the visual task. The 

opposite sign of this effect may reflect top-down inhibitory brain processes, activated in the task context 

involving partial cue-target match, and the reliable GFP–behaviour correlation (not found for N2pc) supports 

this possible explanation. While this effect would first needs to be replicated, it underlines the potential 

utility of GFP as a direct measure of gain-control mechanisms during spatially selective brain processing, 

which are not readily captured by traditional measures of the N2pc.  

 Our study has equally provided novel insights into the brain underpinnings of the N2pc. First, we 

reveal here that N2pc amplitude differences between different experimental conditions can also be driven 

by topographic modulations reflective of network-based mechanisms. This important inasmuch as there is a 

an assumption, albeit perhaps implicit, that N2pc amplitude differences reflect the modulation in the 

strength of activity of brain circuits involved in attentional selection; i.e. a “gain” mechanism. Our ERPs were 

indeed modulated in their strength between the two tasks, but we likewise provided direct statistical 

evidence that N2pc differences arose from the cues engaging different brain networks viz. topographic 

differences in the ERPs. Second, our scalp-level analyses showed that the N2pc, even in the visual colour 

task, is itself composed of multiple, rather than one single, stable pattern of ERP topographic activity and so 

configurations of brain sources. Implications of this, while typically ignored, are that one needs to first 

statistically establish when a given network configuration started and stopped its activity, and limit mean 

amplitude analyses to that time-window, if these analyses are meant to be a valid measure of “gain” control 

within a given configuration of brain sources. Again, these important measures of ERP strength, topography, 

as well as sequences of topographic stability are readily offered by EN. While we focused here 

predominantly on the cognitive implications of our work, we do note that, to our knowledge, we offer the 

first direct evidence for a “gain control” mechanism orchestrating the N2pc. Our cue-induced N2pc findings 
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should certainly be replicated with the N2pc elicited by targets in search tasks and other indices of top-down 

attentional control. Yet, we think it crucial to underscore that most prior work was ill-posed to address the 

question of gain control or any other mechanism because of the nature of the analyses - and not the nature 

of search-induced vs. cue-induced N2pc. Gain control has been traditionally invoked as a putative general 

mechanism governing top-down attentional control. While this has been done predominantly in the context 

of early, stimulus-elicited ERPs (Handy & Khoe, 2005; Mangun, 1995; but see Couperus & Quirk, 2015), we 

expected that gain-based mechanisms equally impact N2pc. Authors of some of the seminal works on N2pc 

write of the component being “attenuated” (e.g. Eimer et al., 2009), which implies reduced activity of a 

common brain network. We are, however, the first to directly demonstrate it. More generally, as our 

paradigm separates cognitive and response-related processes, unlike more traditional paradigms, the more 

rigorous our evidence is for gain-based control of N2pc.  

To summarise, we have provided direct evidence for top-down control by multisensory object 

templates: The ability of a visual object to capture attention is reduced when its features match only partly 

those defining the multisensory audiovisual target because the top-down object template will alter the 

configuration of brain sources activated by the visual object (compared to the full-match task context). This 

account is consistent with the mounting, yet typically unisensory, evidence that top-down control brain 

systems represent task-relevant information flexibly (Duncan, 2010; Miller & Cohen, 2001). Indeed, the 

spatially-selective brain responses that are captured by the N2pc and believed to reflect attentional 

selection seem to integrate the bottom-up and top-down inputs also in multisensory contexts (van der Burg 

et al. 2011; see also Sarmiento et al., 2016). Our results extend these results by demonstrating that 

traditional, sensory-specific definitions of “object” and the processes that objects engender, in terms of 

attentional selection (e.g., Duncan, 1984), goal representation (e.g., Duncan et al. 2010) and memory-related 

processes (Baddeley, 2000; Luck & Vogel, 1997), extend to multisensory stimuli (ten Oever et al., 2016). Our 

findings also showcase how rich spatio-temporal EEG information offered by EN analyses can provide robust 

and in-depth understanding of the brain and cognitive mechanisms governing multisensory object 

templates, and top-down attentional control more generally. While typical EN analyses do not identify the 

specific networks and/or changes in the strength of their connectivity as a function of task, they offer 

temporally resolved and robust means to distinguish between strength- versus network-based brain 

mechanisms, i.e., the type of information typically not assumed to be available from EEG. Our EN-derived 

ERP measures also have behavioural relevance. We urge the reader to note that this information was 

entirely sufficient to provide the wide variety of insights into the cognitive as well as brain underpinnings of 

top-down object template control that we have reported here. We now discuss how the EN framework can 

be particularly useful in testing how top-down attentional control as well as other neurocognitive functions 

operate in naturalistic environments. 
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Some of the most important solutions to the current problems with reliability of experimental 

findings in psychology and neuroscience involve replications and large, multi-centre studies (e.g., Frank et 

al., 2017). Regarding brain imaging more specifically, many of the practical limitations characterising fMRI 

and MEG are being addressed by calling for more robust measures and information sharing (e.g., Poldrack et 

al., 2017). As these corrective steps are being taken at the same time as neuroscientific research is venturing 

outside of rigorous settings controlling stimulus parameters and the surrounding environment, one should 

carefully consider the elements of one’s (neuro)scientific approach that will ensure its validity in creating and 

testing real-world models of neurocognitive functions. The wide range of insights that our study have 

provided into top-down attentional control was possible because it built on the scientific and 

methodological achievements of research in this area. Specifically, our approach combines (1) adaptations of 

rigorous paradigms evoking specific cognitive processes (e.g., attentional capture and its task-set 

contingence) to more naturalistic settings, with (2) the portable and easy to administer nature of EEG as a 

method of measuring brain activity, and (3) signal processing techniques that provide robust, easily 

replicable and directly neurophysiologically interpretable mechanistic insights into neurocognitive functions. 

We treat each of these elements in more detail, explaining its relevance to both corrective and real-world 

investigations within cognitive neuroscience.  

With respect to experimental paradigms, one critical point is the capacity of contemporary models 

of neurocognitive functions to account for the information processing demands characterising real-world 

environments, and this is  in fact the main motivation behind the Special Focus that this study is part of 

(Matusz et al. 2018 this issue; see also Peelen & Kastner, 2014). Large-sample and cognitive modelling 

studies are going to bring us closer to explaining functional brain organisation and cognitive functions as 

they occur in real-world environments the sooner they employ paradigms and create contexts that emulate 

information processing demands that characterise these environments. The tasks developed within research 

on visual (or auditory, tactile) top-down attentional control are exemplary here, as they managed to emulate 

many of the attributes of real-world environments: their multi-stimulus, competition-inducing nature (that 

necessitates top-down goal-based control) or the variabilities in stimulus task-relevance and task difficulty. 

However, these traditional paradigms have typically omitted the inherently multisensory nature of real-

world environments. Indeed, most research on attentional control, as well as on learning and memory, has 

focused on one sense at a time. This research has been invaluable in providing important insights into such 

areas of everyday functioning as scholastic achievement, by showing how these skills are shaped by the 

interplay between attentional control and learning/memory processes (Astle & Scerif, 2011; Bull et al., 2008; 

Cragg & Gilmore, 2014; Merkley & Ansari, 2016; Merkley et al., 2016; Purpura & Ganley, 2014). Many of 

these insights may generalise to multisensory settings, as many multisensory processes might require years 

of experience to reach adult levels (reviewed in e.g. Murray et al., 2016; ten Oever et al. 2016). However, 
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other insights may not generalise as easily: multisensory integration, often involuntary and effortless, is 

known to enhance/alter a wide range of cognitive functions: from faster, more accurate and less variable 

perception through stronger distraction and interference to more robust learning and memory (Ernst & 

Banks, 2002; Gibson et al., 1997; Kriegstein & Giraud, 2006; Kriegstein et al., 2005; Matusz et al., 2015a, 

2017; Murray & Wallace, 2012; Sarmiento et al., 2016; Shams & Seitz, 2008; Stein, 2012; Taylor et al., 2006; 

Thelen et al., 2014). The scarcity of research on efficacy and strength of multisensory processes in real-world 

or even lab-based settings (like created here) and the non-linearity of mechanisms governing multisensory 

processes render attempts at modelling “signal” or “noise” in naturalistic settings without overt unisensory 

vs. multisensory condition manipulations limited in their validity. 

The present and other studies from our group aim to bridge these traditional approaches with the 

demands put on information processing in environments such classrooms or busy high-street. We utilise 

well-understood behavioural measures of cognitive processes and paradigms emulating the top-down 

attention-demanding contexts (e.g. Folk et al., 1992; Lavie & Cox, 1997), and combine them with particular 

multisensory processes of interest (e.g., Matusz & Eimer, 2011, 2013; Matusz, 2015b, 2018). These, 

behaviour- and model-focused, investigations can then enriched by the advantages afforded by EEG and EN. 

Similar approaches are proposed by others in the neuroscientific community as means to address problems 

with (neuro)science reproducibility (e.g. Krakauer et al., 2017). We have employed our approach to better 

understand top-down control, but our group extends this approach to such areas as education and cognitive 

development, brain plasticity and sensory disorders. One can easily imagine extensions of this approach to 

other neurocognitive functions, by manipulating, e.g., stimuli (e.g. dynamic, linguistic and/or familiar) and 

their context (e.g. scene), task (e.g. memory-encoding and retrieval), or the social nature of the experimental 

context. Such extensions would certainly help facilitate more complete real-world nature of our paradigm 

(c.f. Peelen & Kastner 2014). Notwithstanding, the advantage(s) of our paradigm lie in emulating several 

real-world features: 1) clutter, 2) multisensoriness of stimulation, 3) unpredictability of task-relevance of 

upcoming stimulus, and 4) stimulus’ spatial location. By separating cognitive and motor-related processes, 

our paradigm has the unique added advantage of process specificity (i.e., object-template based top-

control), unike other paradigms. 

Regarding the analyses of brain data, in the study of neurocognitive functions, combining well-

understood ERP components like the N2pc with information-richness of EN offers several clear advantages: 

1) it reveals the brain mechanisms underlying the components and changes therein, which in turn inform 

cognitive hypotheses, 2) EN indices readily address the limited interpretability of canonical ERP analyses, and 

3) the range of processes potentially reflected by the EN measures is constrained when combined with well-

known ERP components and/or behavioural measures. The utility of this approach extends well beyond 

research on attentional control or laboratory walls. In extant real-world neuroscientific research, the 



22 
 

advantages of EEG have been harnessed by extracting processes reflecting inter-personal brain activity 

synchronisation, and this has shed new light on the highly dynamic processes that scaffold social interactions 

and cognitive functions therein, like sustained attention, and learning and memory (Bevilacqua et al., 2018; 

Dikker et al., 2017; Ko et al., 2017; Müller et al., 2018; Tseng et al., 2018). Focusing EEG analyses on well-

understood ERP components would offer the researchers valuable correlates of cognitive processes that do 

not require overt behavioural responses that may be hard to obtain in natural social interactions. The EN 

approach would then equip these analyses with robustness and direct neurophysiological interpretability.  

 Finally, regarding EEG itself, recent technological advances in creating cheap and effective portable 

EEG headsets open a new exciting avenue to utilise again on a wide scale its hardware and information-level 

advantages – this time, in neurocognitive research in the real world. The low-cost and easy to administer 

nature EEG, combined with the rich and robust EN analyses, equip it with the potential to tackle many of the 

practical limitations characterising fMRI and MEG (e.g., Poldrack et al., 2017). An important advantage of EN 

analyses is the ability to compare results across labs with different setups, as EN employs reference-

independent EEG measures. Currently, in traditional EEG research, scientists choose to analyse results using 

the same reference electrodes, the active electrodes where the effect is measured as well as the same time-

window as their predecessors, as “traditionally used” and/or as they have done in the past. Voltage-based 

analyses are fundamentally reference-dependent, which limits the interpretability of the “sign” or scalp 

localisation of the effect (e.g. Murray et al. 2008). As such, we want to reiterate, an issue will always remain 

as to which electrode/ approach of which lab is the “right one”. Furthermore and as we directly 

demonstrated here, there is no guarantee whatsoever that changes to the stimuli, stimulus design or task 

instructions, will not lead to changes in the active brain networks and so scalp topography triggered by “the 

same” stimulus in the present compared to past studies. Taking these points together, the global and data-

driven nature of measures employed by the EN approach renders it an important advancement over 

traditional EEG analyses. As parameters of EN measures are highly reliable even with montages as small as 8-

channel (Khanna et al. 2014), EN has big potential for supporting replicable neuroscientific research, in and 

outside of the laboratory.  

 To summarise, we used EN to provide direct evidence for visual attention control by integrated top-

down object templates in naturalistic, multisensory lab settings. These insights were possible by our 

approach that combined adaptations of rigorous selective-attention paradigms, the advantages of EEG as a 

brain activity measure, and the robust and information-rich measures offered by EN. We believe that this 

“naturalistic laboratory” approach constitutes a crucial, intermediate stage between “classic” laboratory 

research and “fully naturalistic” research conducted in veridical real-world situations (see Matusz et al. 2018, 

this issue, for detailed discussion). Traditional studies offer maximal control over stimulation and the testing 

environment but involve settings far detached from the real world, and as such offer partial – but highly 
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rigorous – tests of models of perception and action. The studies conducted in everyday situations involve 

maximally natural conditions for investigating neurocognitive functions, but this occurs at the expense of the 

control over the stimulation or the environment. By emulating, in a controlled fashion, the demands of 

information processing in real-world environments, our approach, as demonstrated here, allows for more 

careful testing, inside the lab, of hypotheses regarding neurocognitive functions as they occur in everyday 

situations, and, retaining elements of the same approach, doing so also in the real world.  

 

 

 

 

 

 

 

Figure legends 

 

Figure 1. Schematic presentation of the trial sequence (panel A) and trial conditions (panel B) across  

the Colour and the Colour-Tone task. On each trial, a cue display (50ms duration) was followed after  

a 150ms-long interstimulus interval by a search array (50ms duration). The intertrial interval was 1450ms. 

 

Figure 2. Flowchart of analytical steps performed in the present study to identify the brain mechanisms 

governing the top-down control of visual attentional selection during multisensory search. In Step 1 and to 

bridge the present EN analyses with the canonical N2pc analyses, we compared average-referenced ERPs 

elicited by the colour cues between the Colour vs. the Colour-Tone task using the traditional approach. That 

is, we extracted and compared between the two tasks mean amplitudes in the lateralised cue-elicited ERPs 

measured in the traditional N2pc (170–270ms post-stimulus) time-window and over the traditional PO7/8 

electrodes. When ERPs in the two tasks were compared, N2pc attenuations were found, which would be 

typically interpreted in terms of a “gain” control mechanism. However, ERP amplitude modulations can stem 

from alternations in both “the gain” (the strength of response of the same network) as well as in the 

configuration of activated networks. In Step 2, we directly tested whether the observed mean N2pc 

amplitude differences were driven by search task modulating the strength (i.e. “gain”) of cue-elicited 

lateralised ERP responses within statistically indistinguishable brain networks. For this purpose, we 

compared between the two search tasks the mean GFP values over the same, 170–270ms post-cue onset 

time-window. In Step 3, we tested whether the mean N2pc amplitude differences were driven by 

alternations in ERP topography and so in the configurations of brain sources that the colour cues activated 
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between the two search tasks. To this aim, we performed hierarchical clustering on the group-averaged cue-

elicited ERP data across both tasks over the whole 500ms post-cue time-period. The clustering revealed 13 

different “template maps”, i.e., periods of stable ERP activity, characterising cue-elicited lateralised brain 

responses within that time-window. Subsequently, the 3 template maps identified within the group-

averaged ERPs as differentially characterising the two search tasks over the 142–260ms time-period were 

submitted to a fitting procedure. During fitting, each time point of the single-subject ERP in the 142–260ms 

post-cue time-period was “fitted” to each of the 3 template maps derived from group-averaged hierarchical 

clustering. The relative duration of each of the 3 template maps in the lateralised ERPs across the two search 

tasks was then statically assessed. Finally, in Step 4, we investigated the behavioural relevance of the 

canonical and EN measures of the N2pc. That is, we assessed whether the changes induced as a function of 

search task in the behavioural measures of attentional-capture abilities of visual cues were associated with 

changes in the canonical and/or the EN measures of the N2pc activity. To this aim, we calculated non-

parametric brain–behavioural measure correlations using the Spearman’s rho and combined it with the 

jackknife data resampling procedure. 

  

Figure 3. Illustration of the added value of an electrical neuroimaging analysis framework. A. Condition 1 

displays exemplar voltage data across a hypothetical 16-electrode montage. The values of Condition 2 are 

increased precisely 4-fold over those of Condition 1. The values of Condition 3 are identical to those of 

Condition 2, though partially shuffled in their locations. The N2pc is measured canonically as the difference 

between a contralateral electrode (black circle) and a respective ipsilateral electrode (grey circle). For 

Conditions 1–3, the N2pc value would be measured as -4, -16, and -4µV, respectively. That is, there would be 

no N2pc difference between Conditions 1 and 3, despite the clear, abovementioned differences in how the 

data were generated. B. The squared values of the voltage data in panel A are displayed for each of the 3 

hypothetical conditions. C. The Global Field Power (GFP) equals the root mean square of the voltage  values 

across the whole scalp at a given time-point (formula indicated). In the case of these hypothetical conditions, 

the GFP would equal 2, 8, and 8µV, respectively. D. The GFP-normalised voltage data are displayed and are 

calculated by dividing the values at each electrode in panel A by the GFP calculated in panel C. The shading 

illustrates the topographic distribution of these values across the electrode montage. E. The difference of 

voltage data squared is displayed. Such differences allow for the quantitative measurement of global 

dissimilarity (DISS; equation in panel F) between conditions (as well as time points or groups). The DISS 

between Conditions 1 and 2 equals 0, meaning that the topographic distribution of the values across the 

hypothetical 16-electrode montage is identical. In contrast, the DISS between Conditions 1 and 3 equals 

0.56; in extremum, DISS equals 2, which means that topographic distributions are perfectly inverted. 

Crucially for the aims of the present study, we note that, in the example here, the topographic differences 
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between the two last conditions would be completely overlooked if only traditional N2pc measures were 

considered. 

 

Figure 4. Behavioural spatial cueing effects, as measured by RT*, presented separately for the two  

tasks. The vertical scatterplots present single-subject (full circles) behavioural capture effects,  

together with group-averages (horizontal lines), elicited by the visual cues in the Colour  

task and in the Colour-tone task (in black and in blue, respectively).  

 

Figure 5. ERP and GFP quantification of the N2pc. A. Group-averaged voltage waveforms are 

displayed from the visual task at PO7 and PO8 (dark and light grey traces, respectively). B. Group-averaged 

voltage waveforms are displayed from the auditory-visual task at PO7 and PO8 (dark and light blue traces, 

respectively). C. Group-averaged difference waveforms (PO7 minus PO8) are displayed for the Colour task 

and Colour-Tone task (black and blue traces, respectively). A larger N2pc was measured over the 170-270ms 

post-cue interval for the Colour task vs. Colour-Tone task. The inset bar graph displays the N2pc mean 

amplitude (note y-axis is inverted for clarity; asterisk indicates p<0.05). D. Group-averaged GFP waveforms 

are displayed for the Colour task and Colour-Tone task (black and blue traces, respectively). A larger GFP was 

measured over the N2pc, 170-270ms post-cue interval for the Colour task vs. Colour-Tone task. The inset bar 

graph displays the mean GFP amplitude in the N2pc time-window (asterisk indicates p<0.05). The scatterplot 

displays the relationship between differences in the two tasks in terms of behavioural measures of 

attentional capture (y-axis) and ERP measures (x-axis). The green points are based on the voltage waveform 

data (Spearman’s rho = 0.25), while the orange points are based on the GFP data (Spearman’s rho = 0.88). 

 

Figure 6. Topographic analyses. A. Topographic distributions of the ERP over the 90-270ms post-cue 

interval are displayed on a flattened montage for both Colour task vs. Colour-Tone task (anterior is upward 

and left hemiscalp on the left; scale indicated). B. Topographic cluster analysis of the group-averaged data 

identified three template maps over the 142-260ms post-cue interval that were then fitted to single-subject 

data. The bar graph displays the average percentage of time (s.e.m. indicated) each of these three template 

maps best correlated spatially with single-subject data. The significant Map × Task interaction indicates that 

different patterns of template maps best characterised responses from each task. 
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