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Abstract 

Retailers of short life cycle products, such as [life and style goods are required to commit an order with 

their suppliers far ahead of their selling seasons  inclusive scant demand information. Most of the time, they 

practice preseason two-stage ordering (instants) that provide an opportunity to modify an initial order based 

on updated demand forecast obtained at a later stage. The present paper utilizes expert judgment to assess 

potential impact(s) of contextual information acquired between two instants, in order to revise demand 

forecast. Additionally, the scant demand information available may not reveal the underlying demand 

distribution. In this context, we develop inventory models under distribution free newsvendor framework 

to determine optimal order quantity and weight factor considering also the revised demand forecast. The 

models consider bidirectional changes in demand and three cases of demand variability: a constant variance 

case (“CVC”), a constant coefficient of variation case (“CCVC”), and General Case (“GC”). The models  

developed in the first instance without constraints are subsequently extended by enforcing constraints for 

practical consideration such as limited storage space or maintenance of pre-defined service level. Moreover, 

these single-item models are extended to multi-items case to improve their practical utility. The closed form 

expressions are obtained for decision variables and lower bound of expected profit and their results are 

discussed using  numerical examples. Results show economic benefits in revising the demand forecast using 

expert judgment and/or  negative impact of constraints and/or negative role of demand variability. In 

addition, a case study is presented to illustrate the potential demand impact assessment and the application 

of the proposed models within  real life circumstances. 

Keywords: Single-period inventory; Newsvendor problem; Distribution free demand; Expert judgment; Contextual 

information, Multi-item inventory models. 

1. Introduction

The classical newsvendor problem (“NVP”) attempts to determine an order size for a single ordering that 

maximizes the expected profit under a probabilistic demand framework. NVP  reflects many real life 

situations requiring tradeoff between shortage cost and excess inventory cost.  NPV is used in ordering 

single period products (e.g. fashionable, seasonal and sporting goods) and in managing capacity (e.g. hotel, 

airline). The basic model and its extensions are extensively discussed in different review papers (Gallego 

and Moon, 1993; Khouja, 1999; Qin et al., 2011; Kalpana and Kaur, 2012). The NVP is essentially 

probabilistic and assumes complete knowledge of the underlying probability distribution of the demand 
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while determining the order size. However, in many realistic settings, historical demand data may not fit 

any standard probability distributions or only partial distribution information is available or reliably 

estimated. Most of the time, information on demand is no more than a guess of mean and variance with 

unknown underlying demand distribution . For example, demand information is scarce, imprecise and 

uncertain owing to the novelty of the product and long procurement lead time. Researchers have assumed 

demand as being exogenous under different uncertain demand environments (Lau and Lau, 1997a; Choi et 

al., 2003; Zhou and Wang, 2009; Dutta and Chakraborty, 2010; Yu et al., 2013; Rossi et al., 2014). The 

distribution free newsvendor problem (“DF NVP”) is often used in this case, without making any 

assumption about the form of the demand distribution. The worst-case expected profit is maximized over 

the set of distributions satisfying the known information, which is usually the mean and variance of demand. 

It is referred to as the distribution free newsboy problem (Gallego and Moon, 1993). They employ max/min 

approach that maximizes minimum profit resulting from the worst possible demand distribution. 

The single ordering of newsvendor type of products is considered when (i) procurement lead time is longer 

than the duration of their selling season (ii) a quantity discount scheme offered by the supplier is attractive 

enough to entice the retailer to make one big order, (iii) the minimum order quantity imposed by the supplier 

and the retailer’s demand is not large enough to support more than one order, and (iv) the fixed ordering 

setup cost is high (Lau and Lau, 1997b). Retailers of life and style goods (e.g. fashionable apparels) are 

required to place their orders with suppliers several months before the selling season due to the long 

procurement lead time and to take advantage of lower prices (Mostard et al., 2011). Moreover, demand 

information available is scarce because of novelty of the product involved. Thus, these retailers are required 

to place an order far ahead of the selling season with scarce, uncertain and imprecise demand information. 

In such circumstances, retailers follow pre-season two stage ordering. It involves placement of a single 

order before the selling season at two distinct time points (termed as 'stages') satisfying the lead-time 

requirement (Gurnani and Tang, 1999; Choi et al., 2003). Fig.1 shows a soft order, placed at stage zero 

using initial demand forecast, is allowed to be modified and confirmed using the updated demand forecast 

as a confirmed order at stage one. The selling season is between point 2 and 3 and the full order is received 

on or before point 2. Unsold leftover inventory, if any, is cleared at salvage value during the clearance 

season.  

 

 
Fig.1. Timeline showing ordering and selling  

The demand forecast is revised to incorporate demand impact of additional contextual information (on 

changing business environment and of events) obtained between the two stages. This demand impact is 

estimated using experts with  domain knowledge and  with specific contextual information. Domain 

knowledge is a knowledge gained by practitioners through experience as a part of their jobs and develops 

understanding of many cause-effect relationships and environmental cues. Specific information available 

in the forecast environment is called contextual information and it includes information about events and 

changes such as unanticipated entry of a competing product, consolidation among competitors, unplanned 

advertising campaign etc. Domain knowledge enables a practitioner to evaluate the impact of specific 
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contextual information (Webby et al., 2000). The aggregate estimate of potential impacts is termed as the 

demand forecast adjustment or demand adjustment (details are given in Section 3.3, and 6.1). The demand 

adjustment is integrated with initial demand forecast  to determine a revised demand forecast (revised 

demand). Marmier and Cheikhrouhou (2010) presented a factor-based method of estimating and integrating 

the potential impact with the base demand to determine  a revised forecast. The present paper uses their 

method in obtaining the revised demand with modification. Moreover, we assign a weight to the demand 

adjustment to signify the degree of acceptance to a decision maker (“DM”), termed as a weight factor 

W(0 ≤ W ≤ 1). The demand adjustment would affect both mean and variance of the demand and 

accordingly different cases of variance changes are modeled (Section 3.3). 

The demand adjustment can be positive and negative and therefore both possibilities of demand forecast 

changes (increase and decrease) required to be considered while modeling. For example, an increase in 

advertisement expenditure normally leads to an increase in demand. However, in some cases, the net result 

of advertisement campaign is decrease in demand due to combative countermeasures employed by the 

competitors and hence both such outcome needs to be considered. Nonetheless, papers like Khouja and 

Robbins (2003), Lee and Hsu (2011), Dai and Meng (2015) have considered only the unidirectional 

possibility of demand change versus increase in demand with advertising expenditure. To the best of 

authors’ knowledge, both “positive and/or negative” impact of such unforeseen events through expert 

judgment under DF NVP setting is not addressed yet. The incorporation of bidirectional demand change 

warrants two different models - profit maximization for positive adjustment and cost minimization for 

negative adjustment. However, we formulated a unique objective function that can be used for these two 

cases (see section 3.4). Thus, the purpose of revising the demand is to integrate demand impact of contextual 

information obtained between two instants of two-stage ordering with the initial forecast (stage 0) and 

thereby update the demand forecast. A revised optimal order size and weight factor is determined using the 

revised /updated forecast and proposed DF NVP. The revised order quantity is used for the placement of a 

confirm order (stage 1). The revised order size is likely to be more accurate as it considers demand impact 

estimated by enterprise forecast experts for factors and events happening near to their selling season. With 

the availability of demand adjustment for contextual information in the context of two- stage ordering, this 

paper addresses following research questions. (i) How to integrate the demand adjustment with the initial 

forecast?  (ii) What weight should be assigned to the demand adjustment? (iii) How to determine revised 

order size when only mean and variance is known without knowing underlying demand distribution? (iv) 

How different cases of variance affect the order size and expected profit? (v) What would order size, weight 

factor and expected profit when it is subjected constraints for practical considerations?  (iv) What would be 

these decision variables in multi-items case? 

In this context, this paper presents inventory models under distribution free demand NVP framework to 

determine an optimal order size and weight factor considering a demand revised for contextual information 

using expert judgment. These models consider the bidirectional changes in demand and different cases of 

variance changes. The models developed without constraints in the first instance are subsequently extended 

by enforcing constraints for the practical considerations of order size (limited budget or storage space) and 

maintenance of service level defined by a retailer (Jammernegg and Kischka, 2013). Further, these models 

are extended to multi-items models to make them more realistic. The applicability and effectiveness of the 

proposed models are presented using numerical examples and a case study. 

The paper makes the following important contributions. It is for the first time that demand impact of “soft” 

contextual information is obtained using expert judgment objectively (following factor-based method) and 
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determines the optimal order size with demand updates. Secondly, proposed models determine optimal 

order size with scant demand information and without knowing the underlying demand distribution. 

Thirdly, bi-directional changes in demand (rather than unidirectional) are considered simultaneously 

through formulation of a unique objective function to determine revised (confirm) order size. Fourthly, 

multi-items distribution free NVP with and without demand updating is dealt extensively and explicitly. 

Finally, it demonstrates the applicability and effectiveness of the models developed through a real-life case 

study.  

The rest of the paper is organized as follows. Section 2 provides a relevant literature review. Section 3 

formulates inventory models without constraint. Firstly, it presents a summary of basic distribution free 

NVP followed by model development without constraints for two cases of demand variability and 

bidirectional demand adjustments. Section 4 extends the models developed in section 3 by enforcing the 

constraints and subsection 4.3 provides an algorithm to find Lagrange multipliers for the constrained 

optimization models developed. Section 5 presents multi-items DF NVP with and without revision of 

demand. Section 6 discusses results using a numerical example. An illustrative case study is presented in 

Section 7 to demonstrate the applicability of the proposed models. Section 8 concludes the paper and 

addresses future research directions. 

2. Literature review  

In this section, the literature related to our work is reviewed and discussed under three categories (i) 

inventory management with demand-information update, (ii) judgmental adjustment of forecasts, and (iii) 

distribution free newsvendor problem. 

Research in the area of inventory management with demand-information update can be traced back to the 

1950s (Dvoretzky et al., 1952). The important research streams include use of time series to update demand 

forecast, forecast revision and Bayesian methods for updates. The ordering with demand-information 

updating initiates a field of studies that can be classified as a two-stage inventory decision making problem, 

where a retailer has two instants for ordering and demand information collected between two instants is 

used for forecast updates and ordering. Our review mainly restricted to this area. There exist two classes of 

two-stage inventory newsvendor models (a) Preseason models use exogenous information for  updates (b) 

models that use first period realized demand for updates.   

In the first class of models, newsvendor has two instants to order prior to the start of a single selling season 

and exogenous information collected between the two instants is used to update demand forecast. The early 

demand signals / commitments, market signals from the sales of other related “pre-seasonal” product can 

be used to improve the demand forecast. Gurnani and Tang (1999) determine an optimal ordering policy 

for a newsvendor who has two preseason instants to order. The first sub-period has no demand and 

exogenous demand information obtained between two instants is used to update the initial forecast for the 

second period demand. They provide an explicit solution to the cases of worthless and perfect information 

updates and address a trade-off between improved demand information and potentially increased unit cost 

at the second instant. Choi et al. (2003) employs a Bayesian approach for the second period demand with 

some exogenous market information obtained in the first period. Later, Choi et al. (2004) derives an optimal 

single ordering policy with multiple delivery modes that uses Bayesian methods to update forecast and 

address a tradeoff between ordering earlier or later. Yan et al. (2003) determines the optimal order size in 

a two-stage model with dual supply modes and demand information updates. They show that an optimal 

solution is myopic for uniformly distributed forecast following certain regularity conditions. Ma et al. 
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(2012) formulates a model in which a retailer has two ordering opportunities prior to realization of demand, 

considering the forecast updating. Cheaitou (2014) developed a two-period inventory management model 

where the demand of both  periods is stochastic and demand for the second period is updated using 

exogenous information. Yan and Wang (2014) presented a newsvendor model with capital constraint and 

demand forecast update with two preseason instants to order from a supplier. Nagare et al. (2016) studies 

preseason two stage ordering where second stage order is confirmed based on revised demand forecast 

using enterprise expert judgment.  

In the other class of demand forecast updating models, realized demand of the first period is used as 

endogenous information to update the second period demand. Lau and Lau (1997a) formulated a newsboy 

model that allows mid-period replenishment after observing an early-season demand to cope with the 

resource constraint (capacity/budget constraint). It provides semi-analytical solution and analytical 

conditions for significant profit improvement from reordering. Many other studies employ Bayesian update 

methods are related to the apparel industry that utilizes the quick response policy (or dual sourcing) to 

inventory management. They include Iyer and Bergen (1997), Fisher et al. (1994, 2001), Fisher and Raman 

(1996), Donohue (2000), Gallego and Özer and (2001), Choi et al. (2006), Sethi et al. (2007), Bradford and 

Sugrue (1990). For instance, Fisher and Raman (1996) modeled the entire sales season demand and the first 

period demand using a joint probability density function. Iyer and Bergen (1997) analyses the QR system 

in the fashion industry and uses Bayesian method for updating demand for the second period. They show 

the decrease in variance of the normally distributed demand. Advanced demand information i.e. early 

demand signals or commitments is used to improve the forecast of  products during the normal selling 

season (Gallego and Ozer, 2001; Mostard et al., 2011). Sethi et al. (2007) investigate the impact of the 

forecast quality on the optimal decisions where the buyer can update demand information for the second 

period and the buyer must commit to a service level (on the basis of market signal). Zheng et al. (2016) 

investigate the newsvendor model with demand forecast updating under supply constraints. The model 

allows postponement of the order placement to improve the quality of the demand forecast, while shortening 

the supply lead time. However, the supplier not only charges a higher cost for shortening lead time, but also 

sets restrictions on the ordering times and quantities. The model considers dual supply modes: one with a 

limited ordering time and another one with a decreasing maximum ordering quantity. 

In order to increase forecast accuracy and include possible future events that are difficult to address by 

statistical analysis of historical data, combination of judgmental and mathematical forecasts can provide 

good results (Webby and O’Connor, 1996, Lawrence et al., 2006). Expert judgment used in conjunction 

with quantitative methods leads to increased forecast accuracy (Clemen, 1989; Makridakis et al., 2008; 

Armstrong et al., 2015). In fact, judgmental inputs provide different information, unbiased judgments 

(Armstrong and Callopy, 1998) and reliable information about some possible future events (Goodwin and 

Fildes, 1999; Fildes et al., 2009). The adjustment to initial demand forecast is needed to incorporate causal 

information, extra-model contextual information about past or pending changes and also events affecting 

the forecast (Flides, 2006;  Davydenko and  Fildes, 2013). According to Sanders and Ritzman (1995), the 

revised forecast has better accuracy as experts often have better assumption  of potential future events. This 

type of future events  have occurred in the past but are not expected to reoccur in the future, or  have not 

occurred in the past but are expected in the future. Some principles that may be followed for effective use 

of judgmental adjustment include limiting judgmental adjustments of quantitative forecasts, requiring 

managers to justify their adjustments in writing, and assessing the results of judgmental interventions 

(Fildes and Goodwin, 2007). The judgmental adjustment becomes critical with important domain 

http://www.sciencedirect.com/science/article/pii/S0169207012001161#!
http://www.sciencedirect.com/science/article/pii/S0169207012001161#!
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knowledge, high degree of uncertainty, and changes in the demand environment (Sanders and Ritzman, 

2001), higher expertise of forecaster, lower credibility of the forecasts system and a strong need of 

correction (Alvarado-Valencia et al., 2016).  

Marmier and Cheikhrouhou (2010) present a factor-based approach to assist the forecaster in focusing 

selectively on different events and in structuring his judgment when adjusting forecasts. They evaluate the 

demand impact of contextual information using expert judgment in an objective manner and integrate it 

into a mathematical forecast. Cheikhrouhou et al. (2011) extend the work to a group of forecasters who 

provide partial domain knowledge and fragmented contextual information. The approach is based on the 

identification and the classification of four different types of possible future events. Their impacts are 

assessed using a fuzzy inference engine that ensures the coherence of the results and limits the biases in 

decision making. Rekik et al. (2017) analyze judgmental adjustments to replenishment order quantities in 

a newsvendor setting where information available to managers is reflected in the form of a signal. They 

find it beneficial even when the probability of a correct signal is not known and offer some interesting 

insights for judgmentally adjusting order quantities. The present paper uses this method in determining the 

demand adjustment and more details are given in section 3.3. 

Researchers have employed several approaches to deal with the unknown demand distribution and include 

the Bayesian updates, bootstrapping method, etc. The work of Scarf (1958) on distribution-free ordering is 

extended by Gallego and Moon (1993) in many directions under a single period framework with distribution 

free demand using a max-min approach. Moon and Choi (1995) extends the work of Gallego and Moon 

(1993) to a case where customers may balk if the available inventory level is low. Moon and Silver (2000) 

develops distribution-free models and heuristics for a multi-item newsboy problem with a budget constraint 

and fixed ordering costs. Vairaktarakis (2000) develops regret models for multi-item distribution-free NVP 

under two types of demand uncertainties and a budget constraint. The interval type of demand uncertainty 

specifies a lower bound and an upper bound on demand, while the discrete type states a set of likely demand 

values. Alfares and Elmorra (2005) extend Gallego and Moon’s (1993) work with the additional 

consideration of shortage penalty. Mostard et al. (2005) analyze the distribution-free newsboy problem with 

returns for a catalogue/internet mail order retailer selling style goods and receiving large numbers of 

commercial returns. Lee and Hsu (2011) studied effect of advertising on the distribution-free newsboy 

problem. Liao et al. (2011) extend the newsvendor problem with possible customer balking and a linear 

lost sales penalty. Zhu et al. (2013) proposed a stochastically robust model for the newsvendor problem 

where distribution of the random demand is specified only by the mean and either of its standard deviation 

or its support. Raza (2014) presents a comprehensive analysis of the newsvendor problem with pricing 

using the distribution-free approach. In today's dynamic market, demand volume, even the underlying 

demand distribution,  changes quickly and the existing methods requiring stationary demand distribution 

may not work well. In this situation, Zhao et al. (2014) study the non-stationary multi-period newsvendor 

problem and adopt weal aggregating algorithm to determine the order quantities based on historical demand 

observations, without knowing the distribution of demand. In this situation, O’Neil et al. (2016) develop a 

robust and effective machine learning algorithm for newsvendor problems having demand shocks but 

without having any demand distribution information. Zhang et al. (2017) provide distribution-free methods 

for the extended multi-period newsboy problems in which the shortage cost and the integral order quantities 

are considered.  

http://www.sciencedirect.com/science/article/pii/S0377221717301066#%21
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3 DF NVP with demand adjustment using expert judgment 

The basic DF NVP is a basis for the development of models with revised demand and hence its summary 

is provided. 

3.1 Notations 
 

P, Pi unit selling price  Θ binary variable, 0 for ∆r < 1 and 1 for   ∆r ≥ 1   

C, Ci unit purchase cost   D0 base demand  

S, Si unit  shortage penalty beyond lost profit    D1 revised demand forecast   

V, Vi unit salvage value  λ 1,  λ2,  λm Lagrangian multipliers 

 CHi demand adjustment cost per unit  A, Ai =  (P-C+S) , (Pi − Ci + Si) 

∆, δ demand adjustment of mean and SD B, Bi = (C-V) , (Ci − Vi) 

∆r, δr relative demand adjustment factor   decision variables 

α Pre-defined service level (0 ≤ α < 1) Q order quantity  

β order size constraint parameter  (β ≥ 0) W, W1c, W1i   weight factors  

γ, γi exponent of weight factor (γ, γi > 1)   

The first and only subscript of 0 and 1 of denote base and revised demands respectively whereas the 

subscript of i used in multi-item context.  

3.2 Basic distribution free NVP 

The demand forecast at stage zero is referred to as base demand forecast. Let  D0 be the base demand 

forecast with known mean μ0 and variance 𝜎0
2 but unknown form of its distribution and belongs to the 

general class G of cumulative distribution functions (CDF). The expected profit for a given order size Q 

and a base demand D0, as given in Alfares and Elmorra (2005) is: 

E(π0) = P E[min(Q, D0)] − C Q + V E(Q − D0)
+ − S E(D0 − Q)

+                                                         (1) 

Using identities of min(Q, D0) = D0 − (D0 − Q)
+ and (Q − D0)

+ = (Q − D0) + (D0 −Q)
+ and the 

property that- E(D0 −Q)
+ ≤

√σ0
2+(Q−µ0)

2−(Q−µ0)

2
, (Gallego and Moon, 1993), a lower bound of expected 

profit for the worst possible demand scenario can be written as:  

E(π0
L) = (P − V)µ

0
− (C − V)Q − (P − V + S)

√σ0
2+(Q−µ0)

2−(Q−µ0)

2
                                                       (2)  

The derivatives of E(π0
L) with respect to Q would prove the concavity and provide for the optimal order 

quantity (Q0
∗ ) as follows in Eq.3. 

Q0
∗ = µ

0
+

σ0

2
[
A−B

√A B
]                                                                                         (3) 

The optimal order quantity (Q0
∗ ) is used to place initial (soft) order at stage 0. The optimal lower bound of 

the expected profit E(π0
L)∗ is given in Eq.4. 

E(π0
L)∗ = (P − C)μ0 − σ0√A B                                                                                                                  (4) 

3.3 Revision of demand using contextual information 

The judgmental method employed to improve a mathematical forecast, many a time, is adhoc and on an 

overall ‘aggregate’ basis.  In this context, we employ a factor based approach proposed by Marmier and 
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Cheikhrouhou (2010) to estimate the aggregate impact of additional demand information, termed as demand 

adjustment. Experts, such as salesmen or demand forecasters, who have domain knowledge of forecasting 

and contextual information, are used to identify probable events according to four categories of factors 

along with their potential impacts, separately. The four factors considered are: quantum jump factor, trend 

change factor, transient factor and transferred factor. The potential impacts (∆j) related to all the factors are 

summed up to arrive to the aggregate impact, defined as the demand (forecast) adjustment (Δ) i.e. Δ =

∑ ∆j
4
j=1 . The adjustment to mean of demand can be positive (Δ > 0), negative (Δ > 0) or none (Δ = 0). 

Similarly, an estimate of adjustment to standard deviation (variance) is obtained and denoted as δ. This 

method enables a forecaster to communicate more accurately and effectively his implicit knowledge 

concerning the markets, customers and, competitors by representative factors. The degree of acceptability 

of this forecast adjustment to a DM may vary in view of their subjective assessment of the operating 

environment, the competence and credibility of the experts, and the risks involved. Thus, a decision maker 

may consider only a part of the adjustment for implementation, by assigning a weight W (0 ≤ W ≤ 1) to 

the demand adjustment, termed as weight factor. 

The demand adjustment would affect mean and variance/SD of demand. First, the mean of revised demand  

μ1 can be defined as μ1 = (μ0 +W∆). To account for the change in demand variance, the demand 

adjustment is expressed in terms of µ
0
 viz. Δ = ∆r μ0 where  ∆r is a relative demand adjustment factor. 

Thus, we have μ
1
= µ

0
(1 +  W∆r) with ∆r> 0 , ∆r< 0, or ∆r= 0 for positive, negative or none demand 

adjustments. Second, the change in the variance of revised demand considered under three cases: (i) the 

mean of revised demand changes without altering the variance i.e.  σ2{D1} =  σ
2{D0} = σ0

2. This case is 

referred to as constant variance case (CVC), (ii) the demand adjustment changes both the mean and the 

variance in a proportion so as the coefficient of variation (CV) remains unchanged i.e. CV{D1} =

 CV{D0} =
σ0

µ0
. Thus, the standard deviation of the revised demand is σ1 = σ0 + σ0W∆r= σ0 (1 +W∆r). 

This case is referred to as the constant coefficient of variation case (CCVC) (iii) the adjustments of demand 

mean and variance can be different in magnitude and direction. Let demand SD (variance) adjustment is δ 

(δ ≥ 0 ,δ < 0 or δ = 0) and δ = δr σ0  and hence revised SD using weight factor would be σ1 = σ0 +Wδ 

= σ0 (1 +Wδr) where δr < 0 or δr = 0 or δr > 0.  This case is referred to as General Case (GC) and the 

earlier two cases are special cases of GC; CVC with δr = 0 and CCVC with δr = ∆r.However, the general 

case can be  δr ≠ ∆r. 

Thus, we define  D1 as the revised random demand with known mean (μ
1
) and variance (σ1

2), but with 

unknown distribution form, belonging to the general class G of cumulative distribution functions. 

Therefore, the mean and SD of D1 are as follows: 

μ
1
= µ

0
(1 +  W∆r)                      ∆r ≥ 0 or ∆r< 0 

σ1 = {

σ0                                                                                                                       for  CVC
 σ0 (1 +W∆r)                                                                                                   for CCVC

σ0 (1 +Wδr)          for GC  with δr < 0 or δr ≥ 0 𝑎𝑛𝑑  δr ≠ ∆r  or  δr = ∆r

                            (5)                                                                                                                                            

3.4 Distribution free NVP with revised demand 

Development of the objective function 
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The expected profit function (1) is modified for the revised demand D1 and extended to include demand 

adjustment cost. It has two decision variables: the order quantity (Q) and the weight factor (W), and is 

given below: 

E(π
1
) = P E [min(Q , D1) ] + V E(Q − D1)

+ − C Q − S E(D1 − Q)
+ − CHµ

0
|∆𝑟|W

γ                             (6) 

Eq. (6) is significantly different from Eq.(1). The replacement of D0  in (1) by the new demand D1 in (6) 

has fundamentally altered the latter because D1 is an implicit function of the decision variable W, with μ1 =

μ0(1 +  W∆r) and different σ1. Now, Eq. (6) is a bivariate function of Q and W. Secondly, the 

term; CH|∆|W
γ is added to the cost function, represents demand adjustment cost required to obtain estimate 

of demand adjustment and execute a decision based on this adjustment. CH is a demand adjustment cost per 

unit [of demand adjusted (Δ)] and can be construed to have many components such as (i) penalty charged 

per unit by a supplier for modifying an order size (ii) advertising expenditure per unit of accrued demand, 

or (iii) an adjustment of the objective function per unit revenue loss from discounted sale. Though the 

demand adjustment cost should vary linearly with W for γ =1. However, the decision variable W will vanish 

while obtaining its optimal values using derivative with γ =1 and therefore γ ≠ 1. The model requirement 

is for γ > 1 and preferred value is 1.4 to 1.8. 

Generalization of the model 

The maximization of profit function Eq. (6) in the case of  ∆r > 0 would yield Q∗and W∗. However, it will 

not yield the results in the case of  ∆r < 0 as the analytical process of maximizing the profit would always 

set a decision variable W to zero while attempting to attain greater Q∗ by retaining undiminished μ0 [through 

μ1 = μ0(1 −  W∆r)  considering sign of ∆r < 0 ].  Cconsequently, the maximization of the Eq.(6) in the 

case of ∆r < 0, would result in ignoring the diminishing impact of the negative demand adjustment. 

Similarly, the objective of cost minimization is unsuitable for the case of ∆r  ≥ 0 as the process of 

minimization would set the weight factor to zero so as to obtain lower Q∗ by retaining μ0 [through μ1 =

μ0(1 +  W∆r)]. In other words, an objective of profit (cost) maximization (minimization) would result in 

ignoring the impact of negative (positive) demand adjustment by setting weight factor to zero, thus losing 

valuable demand adjustment provided by the experts. Therefore, it is necessary to formulate a single 

objective function that considers both the demand adjustments and determines the optimal order size and 

weight factor. This combined function is obtained by inserting a binary variable θ in the expected revenue 

of the objective function (OF). Using the identities similar to those employed in Eq.(1), we get the expected 

objective function as follows: 

E(OF) = (θP − V)µ
1
− (C − V)Q − (P − V + S) E(D1 − Q)

+ − CHµ
0
|∆r|W

γ                      (7) 

where θ = {
0    for ∆r < 0
1    for ∆r ≥ 0 

 

The binary variable θ is set to 1 in the case of ∆r ≥ 0  and maximization of E(OF) result in optimal expected 

profit [E(π1
∗)]  and determination of W∗ and Q∗. The positive demand adjustment improves both the order 

size and the expected profit and hence it is considered without setting W∗ to 0. On the other hand, setting 

θ = 0 in the case of ∆r < 0 turns E(OF) into negative valued function and its maximization means 

minimization of the expected cost. The negative demand adjustment is taken into consideration without 

setting W∗ to 0 as it lowers Q∗ and consequently minimizes the expected cost. Thus, the insertion of θ 

enables the use of Eq.7 in both the cases of demand adjustments. 
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The substitution of E(D1 −Q)
+ =

√σi
2+(Q−µ1)

2−(Q−µ1)

2
  in Eq. (7) yields the lower bound of objective 

function as follows 

E(OFL) = (θP − V)µ1 − (C − V)Q − (P − V + S)
√σi

2+(Q−µ1)
2−(Q−µ1)

2
− CHµ

0
|∆r|W

γ                          (8) 

The maximization of the lower bound of expected profit in the case of ∆r ≥ 0  is given by  

Maximize E(π1
L) = (P − V)μ1 − (C − V)Q − (P − V + S)

√σi
2+(Q−µ1)

2−(Q−µ1)

2
− CHμ0|∆r|W

γ             (9) 

However, in the case of  ∆r< 0, Eq.(8) it is a minimization of  the upper bound of expected cost as given 

by 

Minimize E(C0U) = (C − V)Q + Vµ
1
+ (P − V + S)

√σi
2+(Q−µ1)

2−(Q−µ1)

2
+ CHµ

0
|∆r|W

γ                    (10) 

Thus, Eq. (8) considers all the three demand scenarios and represents the general form of the optimization 

model. 

Since the weight factor cannot be more than 1, it becomes necessary to determine the lower bound of CH 

that ensures W ≤ 1. In this regard, we present Lemma1 as follows: 

Lemma1. (i) For given P, C, S, V and γ ; the lower bound of 𝐶𝐻 that would ensure optimum weight factor 

less than or equal to one ( 𝑊1
∗ ≤ 1) is 

 CH ≥

{
 
 

 
  
(𝜃𝑃−𝐶)∆𝑟

|∆𝑟|𝛾
                                     𝐹𝑜𝑟  𝐶𝑉𝐶

(𝜃𝑃−𝐶)µ0∆𝑟−𝜎0 ∆𝑟√𝐴 𝐵

µ0|∆𝑟|𝛾
              𝐹𝑜𝑟 𝐶𝐶𝑉𝐶

 
(θP−C)µ0∆r−σ0.δr.√AB

|∆r| γ µ0
                   𝐹𝑜𝑟 𝐺𝐶

  

(ii) For given P, C, S, V and γ; any  𝐶𝐻 other than that specified in (i) would set W1
∗ = 1. 

The proof of all the Lemmas are given in Appendix B. Considering the Lemma 1, we propose the following 

Proposition 1. 

Proposition 1. For given P, C, S, V, CH and γ; the optimal weight factor, order size and lower bound of 

expected profit for unconstrained DF NVP with revised demand are given as 

(i)  Optimal weight factor 

𝑊1
∗ =

{
  
 

  
 [

(𝜃𝑃−𝐶)∆𝑟

𝐶𝐻|∆𝑟|𝛾
]

1

𝛾−1
                             𝐹𝑜𝑟  𝐶𝑉𝐶

[
(𝜃𝑃−𝐶)µ0∆𝑟−𝜎0 ∆𝑟√𝐴 𝐵

𝐶𝐻µ0|∆𝑟|𝛾
]

1

𝛾−1
       𝐹𝑜𝑟 𝐶𝐶𝑉𝐶

[
(θP−C)µ0∆r−σ0.δr.√AB

CH|∆r|.γ.µ0
]

1

γ−1
           𝐹𝑜𝑟 𝐺𝐶

                                                                                    (11) 

(ii) Optimal order size (confirmed order) 

𝑄1
∗ = 𝜇1 +

σ1

2
[
(𝐴−𝐵)

√𝐴 𝐵
]                                                                                                                           (12) 
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 (iii) Optimal expected profit 

𝐸(𝜋1
𝐿)∗ = (𝑃 − 𝐶)μ1 − σ1√𝐴 𝐵 − 𝐶𝐻μ0|∆𝑟|𝑊1

∗𝛾                                                                             (13) 

Proof of the Propositions 1, 2, 3 and 4 are given in Appendix A, C, D and E respectively.  

4 Constrained distribution free NVP with revised demand  

The optimal order size based on the revised demand forecast may differ significantly from the initial (base) 

order. It may be either too large for a given budget or storage space (∆r > 0). On the contrary, it may be 

too small to meet a predefined customer service level (∆r< 0). The revised order size is therefore subjected 

to constraints for the practical considerations.  

4.1 Order size constraint 

Consider a parameter β (≥ 0) called order size constraint parameter. The revised order size is subjected 

to an upper limit: (1 + β)Q0
∗ . Using Eq. (9), a constrained optimization problem can be stated as 

determination of the optimal order size and the weight factor that maximizes the lower bound of the 

expected profit subject to the order size constraint (Abdel-Malek and Montanari 2005). 

Maximize E(π1c
L ) = (P − V)µ1 − (C − V)Q − (P − V + S)

√σi
2+(Q−µ1)

2−(Q−µ1)

2
− CHµ

0
|∆r|W

γ 

Subject to: Q − (1 + β)Q0 ≤ 0                                                                                                       (P1)   

The Lagrange function with  λ2 (≥ 0) multiplier is presented to solve (P1) as follows 

 L = (P − V)μ1 − (C − V)Q – (P − V + S)
√σi

2+(Q−µ1)
2−(Q−µ1)

2
− CHμ0|∆r|W

γ − λ1[Q − (1 + β)Q0]                     

The  λ1(≥ 0) is a Lagrange multiplier. Here, we present Lemma 2 to determine the lower bound of CH  that 

ensures W1c
∗ ≤ 1. 

Lemma 2. (i) For given P, C, S, V, γ  and 𝜆1; the lower bound of 𝐶𝐻 that would ensure constrained optimal 

weight factor 𝑊1𝑐
∗ ≤ 1 is 

CH ≥

{
 
 

 
  

(𝑃−𝐶−𝜆1)

𝛾
                                                               𝐹𝑜𝑟  𝐶𝑉𝐶

(𝑃−𝐶−𝜆1)𝜇0−𝜎0√(𝐴−𝜆1)(𝐵+𝜆1)

𝜇0𝛾
                    𝐹𝑜𝑟 𝐶𝐶𝑉𝐶

    
(P−C−𝜆1) µ0 ∆r−σ0  δr √(A−λ1)(B+λ1)

|∆r|µ0γ
                    𝐹𝑜𝑟 𝐺𝐶

  

(ii) For given P, C, S, V γ, and 𝜆1,  𝑡ℎ𝑒 𝐶𝐻  other than the specified in (i), would set the constrained optimal 

weight factor ( 𝑊1𝑐
∗ ) to 1. 

Proposition 2 considers Lemma 2, such as 

Proposition 2. For given P, C, S, V, CH , 𝛾, and  𝜆1; the optimal weight factor, the optimal order size and 

the lower bound of the expected profit for the constrained distribution free NVP using demand revised for 

contextual information are given as 

(i) Optimal constrained weight factor 
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𝑊1𝑐
∗ =

{
 
 
 

 
 
  [

(𝑃−𝐶−𝜆1)

𝐶𝐻𝛾
]

1

𝛾−1
                                                     𝐹𝑜𝑟  𝐶𝑉𝐶

[
(𝑃−𝐶−𝜆1)𝜇0− 𝜎0√(𝐴−𝜆1)(𝐵+𝜆1)

𝐶𝐻𝜇0𝛾
]

1

𝛾−1

                𝐹𝑜𝑟 𝐶𝐶𝑉𝐶

[
(P−C−𝜆1) μ0 ∆r−σ0  δr √(A−λ1)(B+λ1)

CH |∆r|μ0γ
]

1

γ−1

                𝐹𝑜𝑟 𝐺𝐶

                                                      (14)                               

(ii) Optimal constrained order size 

𝑄1𝑐
∗ = 𝜇1 +

𝜎1

2
[
(𝐴−𝜆1)−(𝐵+𝜆1)

√(𝐴−𝜆1)(𝐵+𝜆1)
]                                                                                                          (15) 

(iii) Optimal constrained lower bound of the expected profit 

𝐸(𝜋1𝑐
𝐿 )∗ = (𝑃 − 𝐶)𝜇1 −

𝜎1

2
[
𝐵(𝐴−𝜆1)+𝐴(𝐵+𝜆1)

√(𝐴−𝜆1)(𝐵+𝜆1)
] − 𝐶𝐻𝜇0|∆𝑟| (𝑊1𝑐

∗ )𝛾                                                  (16) 

4.2 Service level constraint 

A service level constraint ensures an adequate inventory to meet pre-defined service level (α) in the face 

of reduced revised demand forecast i.e. ∆r < 0. The constraint is imposed in a way that the probability of 

reaching the service level(α) is higher than η (0 ≤ η < 1). The concept is equivalent to the chance 

constraint discussed in (Charnes and Cooper 1959; Panda et al. 2008; Nagar et al. 2014). It is stated as 

Ch (
Q

D1
≥ α) ≥ η; where  η is the chance factor. Thus, the constraint is expressed as: Q ≥ α (μ1 + σi zη) ; 

where  zη = Φ
−1(η) and Φ is the standard normal cdf. Using Eq. (10), the constrained optimization 

problem is stated as 

Minimize E(CoU) = (C − V) Q + V μ1 + (P − V + S)
√σi

2+(Q−µ1)
2−(Q−µ1)

2
+ CHµ

0
|∆r|W

γ       

Subject to:   Q − α (μ1 + σ1 zη) ≥ 0                                                                                                        (P2) 

The Lagrange function for (P2) with λ2 (≥ 0) multiplier is given by  

L = (C − V)Q+ Vμ1 + (P − V + S)
√σi

2 + (Q − µ
1
)2 − (Q − µ

1
)

2
+ CHμ0|∆r|W

γ − λ2[Q−∝ (μ1 + σiZn)] 

In line with the problem (P1), the Lemma 3 is introduced.  

Lemma 3. (i) For given P, C, S, V, γ and 𝜆2; a lower bound of 𝐶𝐻 that would ensure a constrained optimal 

weight factor less than or equal to 1 (𝑊1𝑐
∗ ≤ 1) is: 

CH ≥

{
 
 

 
  

[ 𝐶−𝜆2(1−𝛼)]

𝛾
                                                                                               𝐹𝑜𝑟  𝐶𝑉𝐶

 
[ 𝐶−𝜆2(1−∝)]𝜇0+𝜎0(√(𝐴+𝜆2)(𝐵−𝜆2)+ 𝜆2∝𝑍𝑛)

𝜇0.𝛾
                                              𝐹𝑜𝑟 𝐶𝐶𝑉𝐶

−
[ C+λ(∝−1)]μ0∆r+ σ0δr(√(A+λ)(B−λ)+ λ∝Zn)

μ0|∆r|.γ
                                          𝐹𝑜𝑟 𝐺𝐶

   

 (ii) For given P, C, S, V, γ and  𝜆2,  𝐶𝐻 other than the specified in (i) would set the constrained optimum 

weight factor ( 𝑊1𝑐
∗ ) to 1. 
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The Proposition 3 is given below in the light of Lemma 3. 

Proposition 3. For given P, C, S, V, γ and 𝜆2; the optimal constrained weight factor, the optimal order 

quantity and a lower bound of expected profit are given as 

(i) Optimal constrained weight factor 

(ii) 𝑊1𝑐
∗ =

{
 
 
 

 
 
 [

[ 𝐶−𝜆2(1−𝛼)]

𝐶𝐻.𝛾
]

1

𝛾−1
                                                               𝐹𝑜𝑟  𝐶𝑉𝐶

[
[ 𝐶−𝜆2(1−∝)]𝜇0+𝜎0(√(𝐴+𝜆2)(𝐵−𝜆2)+ 𝜆2∝𝑍𝑛)

𝐶𝐻𝜇0.𝛾
]

1

𝛾−1

           𝐹𝑜𝑟 𝐶𝐶𝑉𝐶

[−
[ C+λ(∝−1)]μ0∆r+σ0δr(√(A+λ)(B−λ)+ λ∝Zn)

CHμ0|∆r|.γ
]

1

γ−1
            𝐹𝑜𝑟 𝐺𝐶

                                     (17) 

(iii) Optimal constrained order size 

𝑄1𝑐
∗ = 𝜇1 +

𝜎1

2
. [
(𝐴+𝜆2)−(𝐵−𝜆2)

√(𝐴+𝜆2)(𝐵−𝜆2)
]                                                                                                           (18) 

(iv) Optimal lower bound of constrained expected profit 

𝐸(𝜋1𝑐
𝐿 )∗ = (𝑃 − 𝐶)𝜇1 −

𝜎1

2
[
𝐵(𝐴+𝜆2)+𝐴(𝐵−𝜆2)

√(𝐴+𝜆2)(𝐵−𝜆2)
] − 𝐶𝐻𝜇0|∆𝑟| 𝑊1𝑐

∗ 𝛾                                              (19) 

4.3. Algorithm for the optimal Lagrange multipliers 

Given the model parameters, it is necessary to find the optimal value of Lagrange multiplier [λj with j= 1, 

2] for the given constrained optimization problems (P1) and (P2) respectively to determine W1c
∗  and 

consequently Q1c
∗  and  E(π1c

L )∗ 

First, we define a function h(λj), j= 1, 2 such as  

h(λj) = {
(1 + β) Q0

∗ − Q               for  ∆r ≥ 0  and  j = 1 

Q − α (μ1 + σ1zη)       for  ∆r< 0 and  j = 2
    

The function h(λj) is defined in a way that h(λj) ≥ 0 would satisfy the constraint for both situations of 

demand adjustment. 

Lemma 4. There exists a unique λj with j= 1, 2 such that ℎ(𝜆𝑗) = 0. 

Therefore, a proposed one-dimensional search algorithm would determines λj
∗ that satisfies h(λj

∗) = 0. We 

designate different values of λj with different superscript such as λj
0, λj

1, λj
2, … . λj

m where m is index and m= 

0,1,2, ...The algorithm has the following steps: 

Step1. Set λj
0 = 0 and obtain the decision variables W1c

∗  and Q1c
∗ . If the solution satisfies the constraint 

h(λj
0) ≥ 0, the current solution is optimal. Otherwise, it is infeasible and go to step 2. 

Step2. As h(λj
0) < 0, set positive value of λj viz. λj

1 to a large value such that h(λj
1) > 0. Find the λj

2 which 

is the arithmetic mean of λj
0and λj

1  viz. λj
2 =

λj
0
+λj

1

2
. If h (λj

2) ≈ 0, then stop the iterations. Otherwise, 

proceed as follows: 
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Select either of λj
0or λj

1 such that it will have opposite sign to h (λj
2) and find the mean with λj

2 to obtain λj
3 

[viz.λj
3 =

λj
0+λj

2

2
 or λj

3 =
λj
1+λj

2

2
]. Continue the process till it gets h (λj

m) = 0 for m ≥ 3. λj
m is the optimal 

one.  

Step3. Use λj
∗ to find W1c

∗  and whenever W1c
∗ > 1, it is set to 1. Subsequently, determine Q1c

∗  and  E(π1c
L )∗ 

using Proposition 2 or Proposition 3. 

5. Multi-item DF NVP  

5.1 Basic Model  

In this section, we present multi-item problem in the presence of a budget constraint while purchasing style 

goods where a retailer needs to allocate budget among competing items. We denote these items with a index 

i = 1,2, ..N and the parameters employed earlier are used with this index.  The total budget available is 

denoted by G. In this context, problem is to determine order quantities that maximize the expected profit 

against the worst possible distribution of the demand without exceeding the budget constraint. 

We obtain expression for the lower bound of expected profit for the ith item from (2) as follows 

E(π0i
L ) = (Pi − Vi) μ0i − BiQi −

(Ai+Bi)

2
(√σ0i

2 + Zi
2 − Zi)   

Where  Ai = (Pi − Ci + Si), Bi = (Ci − Vi), (Ai + Bi) = (Pi − Vi + Si) and  Zi = Qi − μ0i 

The problem can be formulated as follows 

Max E(πm
L )  = Max∑ (Pi − Vi) μ0i − BiQi −

(Ai+Bi)

2
(√σ1i

2 + Zi
2 − Zi)

N

i=1

     

Subject to: ∑ [CiQi ≤ G]
N
i=1                                                                                                                       (P3)         

To obtain constrained order size, the Lagrange function formulated with multiplier λm (≥ 0)  as follows  

L = ∑ (Pi − Vi)μ0i
N
i=1 − BiQi − (

Ai+Bi

2
) (√σ0i

2 + Zi
2 − Zi) − λm[∑ CiQi − G

N
i=1 ]  

By using  
∂L 

∂Qi
 = 0 for all i, we get optimal constrained order size  

Q0i
∗ = μ0i + σ0i [

(Ai−λmCi)−(Bi+λmCi)

√(Ai−λmCi)(Bi+λmCi)
]                                                                                                     (20) 

The smallest non-negative λm that satisfies (P3) can be found using line search algorithm or MS Excel. 

The expected profit from the ith item is  

E(π0i
L )

∗
= (Pi − Ci)μ0i −

σ0i

2
[
Bi(Ai−λmCi)+Ai(Bi+λmCi)

√(Ai−λmCi)×(Bi+λmCi)
]                                                                          (21) 

The method used to obtain above expressions are similar to those of (P4) and given in Appendix E. 

Therefore, total optimal constrained expected profit from all the items  

E(π0
L)
∗
  =∑ E(π0i

L )
∗N

i=1
                                                                                                                         (22) 

5.2 Model with revised demand  
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The model considers demand revised for contextual information for an ith item with revised mean μ1i =

μ0i (1 +W1i ∆ri) and standard deviation σ1i = σ0i (1 +W1i δri). The expected profit from the ith item is 

given below. With many items, there would be items with positive, negative or zero demand adjustments 

and hence this model covers all these possibilities.  A lower bound of objective function from the ith item 

obtained from (8) is 

 E(OF1i
L ) = (θPi − Vi) μ1i − BiQi −

(Ai+Bi)

2
(√σ1i

2 + Z1i
2 − Z1i) − CHiμ0i|∆ri|W1i

γi                                (23) 

where Z1i = (Qi−μ1i)            

The multi-item problem is formulated as follows 

Maximize E(OF1
L) = ∑ (θPi − Vi)μ1i

N
i=1 − BiQi −

(Ai+Bi)

2
(√σ1i

2 + Z1i
2 − Z1i) − CHiμ0i|∆ri|W1i

γi  

Subject to: ∑ CiQi ≤ G
n
i=1                                                                                                                                       (P4) 

The Lagrange function for (P4) is  

L = ∑ (θPi − Vi)μ1i
N
i=1 − BiQi −

(Ai+Bi)

2
(√σ1i

2 + Z1i
2 − Z1i) − CHiμ0i|∆ri|W1i

γi − λm[∑ CiQi − G
N
i=1 ]     

The Lemma 4 is similar to Lemma 3 and hence avoided. The Proposition 4 is offered in light of Lemma 4. 

Proposition 4. For given Pi Ci, Si, CHi, Vi, 𝛾𝑖 and  λm; the optimal weight factor, the optimal order size and 

the lower bound of the expected profit for the constrained distribution free NVP using demand revised for 

contextual information are given as 

(i) Optimal constrained weight factor for the ith item 

𝑊1𝑖
∗ =

{
 
 
 

 
 
 [

θPi−Ci (1+λm)

CHi γi
]

1
γi−1                                                                      𝐹𝑜𝑟  𝐶𝑉𝐶

 {
[θPi− Ci(1+ λm)]μ0i  − σ0i   √(Ai−λmCi)(Bi+λmCi)

CHiμ0i γi
}

1

γi−1

             𝐹𝑜𝑟 𝐶𝐶𝑉𝐶

 {
[θPi− Ci(1+ λm)]μ0i ∆ri − σ0i δri  √(Ai−λmCi)(Bi+λmCi)

CHiμ0i|∆ri| γi
}

1

γi−1

          𝐹𝑜𝑟 𝐺𝐶

                                   (24)                                                                                                         

(ii) Optimal constrained order size for the ith item 

Q1i
∗ = μ1i +

σ1𝑖

2
[
(Ai−λmCi)−(Bi+λmCi)

√(Ai−λmCi)(Bi+λmCi)
]                                                                       (25) 

(iii) Optimal constrained lower bound of the expected profit for ith item   

      E(π1i
L )

∗
= (Pi − Ci)μ1i −

σ1i

2
[
Bi(Ai−λmCi)+Ai(Bi+λmCi)

√(Ai−λmCi)×(Bi+λmCi)
]- CHiμ0i|∆ri|W1i

γi                                (26)   

Lower bound of total expected profit 

          E(π1
L)∗ = ∑ E(π1i

L )
∗N

i=1
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6 Numerical example 

The results of the proposed models are illustrated with numerical examples. The economic parameters are: 

P = $35, C = $20, V = $12 and S = $5. The base demand D0 is assumed to have mean (μ0) 1000 and 

standard deviation (σ0) 200. Optimal order size (Q0
∗ ) and lower bound of expected profit  [E(π0

L)∗] for the 

base demand case are determined using (3) and (4) and are 1095 and $12470 respectively. 

6.1 Results with positive demand adjustment 

An illustrative potential impact assessment of contextual information using a factor based method is 

presented in Table 1.  

Table 1. Impact assessment of contextual information  

Contextual factors  Event Impact provided by experts 

Quantum jump  Δ1 Addition of new retail outlet 100 

Trend change Δ2 Increase in product price due to increased input cost  -150 

Transient   Δ3 Marketing and advertisement campaign 300 

Transferred impact  Δ4 Not applicable -- 

Demand adjustment ∆= ∑ ∆j
4
1  +250 

It gives a demand adjustment (∆) of +250 and relative demand adjustment factor (∆r) of 0.25. The results 

for different CH (0, 10, 15); γ (1.4, 1.6, 1.8) and β=0.15 are presented in Table 2. It shows that the optimal 

order size and expected profit with revised demand are larger than those obtained with the base demand. 

Secondly, the order size constraint places a cap on order size, Qβ [= (1 + β)Q0
∗=1259] and whenever the 

unconstrained order quantity (Q1
∗ ) exceed the limit, it is pruned to Qβ by reducing the optimal weight factor. 

For example, unconstrained CVC with  CH =10, γ =1.6 provides Q1
∗=1319, E(π1

L)∗=$13797 and W1
∗=0.9 

whereas with the constraint are Q1c
∗ =1259, E(π1c

L )∗= $13691 and W1c
∗ = 0.76. 

Table 2. Results of positive demand adjustment  

  CVC CCVC 

  Without constraint Constrained (Order size) Without constraint Constrained (Order size) 

CH γ W1
∗ Q1

∗  E(π1
L)∗ λ1

∗
 W1c

∗  Q1c
∗  E(π1c

L )∗ W1
∗ Q1

∗  E(π1
L)∗ λ1

∗
 W1c

∗  Q1c
∗  E(π1c

L )∗ 

0 

1.4 1 1345 16220 5.37 1 1259 16001 1 1369 15587 5.5 1 1259 15302 

1.6 1 1345 16220 5.37 1 1259 16001 1 1369 15587 5.5 1 1259 15302 

1.8 1 1345 16220 5.37 1 1259 16001 1 1369 15587 5.5 1 1259 15302 

10 

 

1.4 1 1345 13720 2.15 0.81 1259 13606 0.75 1300 13137 0.63 0.65 1259 13125 

1.6 0.9 1319 13733 1.43 0.76 1259 13691 0.66 1276 13242 0.34 0.63 1259 13239 

1.8 0.8 1294 13797 1.00 0.73 1259 13780 0.63 1268 13346 0.34 0.62 1259 13345 

15 
1.4 0.43 1203 12932 0 0.43 1202 12932 0.27 1169 12712 0 0.27 1169 12712 

1.6 0.46 1209 13113 0 0.46 1209 13113 0.34 1187 12863 0 0.34 1187 12863 

 1.8 0.48 1215 13270 0 0.48 1215 13270 0.38 1199 12998 0 0.38 1199 12998 

 

Thirdly, CH influences the order size and expected profit mainly through the weigh factor. The CH less than 

a certain value, termed as the threshold demand adjustment cost per unit (say, CHT), results in W > 1 which 

is subsequently set to 1.The CHT is $9.4 for unconstrained CVC with γ =1.6. Thus, the optimal order size 

remains unchanged despite increase in CH for CH ≤ CHT as W=1; nonetheless the expected profit decreases 



 

17 

 

due to increased demand adjustment cost. However, an increase in CH beyond CHT results in a decrease in 

both the order size and expected profit by lowering the weight factor. For instance, increasing CH from 10 

to 20 with γ=1.6 for unconstrained CVC has reduced the order size from 1371 to 1217(11.23%) and 

expected profit from $13113 to $12248 (6.5%) by lowering the weight factor from 0.9 to 0.28. This 

behaviour is shown in Fig.2. Fourthly, CCVC embodies more demand variability than the CVC for W∗ =

1 and hence has larger order size, but smaller expected profit than the CVC. On other hand CVC has both 

larger order size and expected profit than the CCVC for W∗ ≠ 1.   

 

 

Fig.2. Behaviour of  Q∗ and EL(π)∗with respect to CH 

5.2 Results with negative demand adjustment (∆ < 0) 

A case of negative demand adjustment with ∆= −250 (i. e. ∆r= −0.25) is studied retaining the same set 

parameters. Additionally, α and η are assumed as 0.95 and the results are presented in Table 3.  

It shows that negative demand adjustment results in reduced optimal order size and expected profit as 

compared to those for the base demand. The maximal order size without constraint is 923 for CVC with 

CH=15 and γ=1.8 whereas maximal expected profit is $9352 for unconstrained CCVC with CH=0. The 

reduced revised demand forecast has lowered both the order size and expected profit as compared to those 

obtained in the base demand case viz.Q0
∗=1095 and E(π0

L)∗=$12470. The impact of negative demand 

adjustment is greatest at optimal weight factor 1. Secondly, it may be noted that the imposition of constraint 

has reduced the expected profit despite raising the optimal order size. Thirdly, CCVC has lower demand 

variability than the CVC for W∗=1 and provides for greater expected profit with smaller order size than the 

CVC. However, in the case of  W∗ < 1, the weight factor is greater for  CCVC (hence lower μ1and σ1) 

than in CVC, which results in a smaller order size and lower expected profit in CCVC than in CVC. 

 

Table 3. Results for constrained and unconstrained optimization for negative demand adjustment 

  CVC CCVC 

  Without constraint Constrained (Service level) Without constraint Constrained (Service level) 

CH γ W1
∗ Q1

∗  E(π1
L)∗ λ2

∗
 W1c

∗  Q1c
∗  E(π1c

L )∗ W1
∗ Q1

∗  E(π1
L)∗ λ2

∗
 W1c

∗  Q1c
∗  E(π1c

L )∗ 

0 1.4 1 845 8720 5.32 1 1025 8140 1 821 9352 5.13 1.00 947 8968 
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1.6 1 845 8720 5.32 1 1025 8140 1 821 9352 5.13 1.00 947 8968 

1.8 1 845 8720 5.32 1 1025 8140 1 821 9352 5.13 1.00 947 8968 

10 

 

1.4 1 845 6220 5.32 1 1025 5640 1 821 6852 5.13 1.00 947 6468 

1.6 1 845 6220 5.32 1 1025 5640 1 821 6852 5.13 1.00 947 6468 

1.8 1 845 6220 5.32 1 1025 5640 1 821 6852 5.13 1.00 947 6468 

15 
1.4 0.89 874 5989 5.30 0.86 1059 5670 1 821 5602 5.13 1.00 947 5218 

1.6 0.74 910 7397 5.27 0.73 1091 6976 0.90 849 6496 5.13 0.93 967 5798 

 1.8 0.69 923 7984 5.27 0.68 1102 7521 0.80 877 7488 5.13 0.82 1003 6879 
 

5.3 Effect of order size constraint  

The impact of  β  is studied for CVC, ∆r=0.25, CH =10, γ = 1.6 and presented in Fig.3. It can be seen that 

both Q1c
∗  and E(π1c

L )∗ increases with β up to its limiting value ( β𝑙) which is 0.21 in this case. The constraint 

is binding and both Q1c
∗  and E(π1c

L )∗ increases with β for β ≤  β𝑙. However, at β =  β𝑙, order size and 

expected profit value converges to those obtainable in the unconstrained case viz., Q1
∗=1319 and E(π1

L)∗ =

$13733.The behaviour of Qc
∗  and E(π1c

L )∗ with respect to β is shown in Fig.3. 

 

  Fig.3. Impact β on Qc
∗  and EL(πc)

∗ 

5.4 Effect of service level  

The effect of α for ∆r= - 0.25, CH=15, γ = 1.6  and CVC is studied and shown in Fig.4. The constraint 

becomes binding above a certain value of α, termed as limiting value of target service level (αl) and 

 αl =0.79 in this case.  The constraint is binding in the interval αl < 𝛼 <1 and Q1c
∗  increases monotonically 

with respect to α in this interval. However, E(π1c
L )∗ first increases respect to 𝛼 till the latter reaches an 

optimal value, 𝛼∗ and thereafter decreases. The optimal value of the service level α∗ is 0.84 and can be 

interpreted that given the economic parameters, service level of 84% provides the optimal expected profit 

of $7526.  
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  Fig.4. Impact of the service level constraint parameter α on Q1c
∗  and E(π1c

L )∗ 

5.5 Problem illustrating General Case  

The GC is illustrated using above example data: P = $35, C = $20, V = $12, S = $5, CH=15, γ = 1.6 , 

μ0 =1000 and σ0 =200. Three demand adjustment combinations of ∆ and δ are presented as three cases 

along with results (Using Eq.24-26 ) in Table 4. The case C1 has positive adjustment of mean with reduced 

SD  and provides for the largest profit  the largest order size. The C3 case is just opposite that of C1, reduced 

mean with enlarged SD that gives the order size and the smallest expected profit. The middle C2 case has 

unchanged mean but enlarged SD provides for moderate results.   

Table 4. Data and results for general case of demand adjustments 

Case ∆ ∆r δ δr W1
∗ μ

1
 σ1 Q1

∗  E(π1
L)∗ 

C1 250 0.25 -100 -0.5 0.74 1185 126 1245 16189 

C2 0 0 100 0.5 1.00 1000 300 1143 11212 

C3 -150 -0.15 50 0.25 0.497 925 225 1032 11036 

5.6 Example illustrating Multi-item DF NVP 

5.6.1 Basic model 

The basic multi-item model is illustrated using three products and relevant economic and demand data is 

given in Table 5. The budget allocated for buying these three products is $25000. The results computed 

with and without constraint are given in the same Table. The total purchase cost and optimal expected profit 

without constraint are $30774 and $22352.The imposition of constraint to comply budget $25000 has 

reduced both the optimal order sizes and the expected profits, thereby reducing the total expected profit to 

$20497.  

Table 5. Data and results for results for multi-item DF NVP 

 Economic parameters Base 

demand 

Without constraint 

( λm = 0) 

With constraint 

 ( λ𝑚
∗  =0.53) 
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Item (i) Pi Ci Vi Si μ0i σ0i Q0i
∗  PCi π0i

∗  Q1i
∗  PC1i π1i

∗  

P1 37 20 12 5 250 80 292 5844 3189 230 4600 2415 

P2 75 30 10 7 100 40 120 3600 3210 101 3030 3069 

P3 100 45 20 10 400 150 474 21330 15953 386 17370 15013 

Total        30774 22352  25000 20497 

 

5.6.2 Model with revised demand  

The example 5.6.1 is extended with consideration of additional data (∆i, δi, CHi , and  γ
i
) to illustrate multi-

item model with revised demand. In view of surge in demand seen from the positive demand adjustments 

of mean, the budget is increased from $25000 to $28000. The additional data and results for CVC, CCVC 

and GC are presented in Table 5. The CVC provides for the greatest expected profit because of its constant 

demand variability despite increased mean of demand as compared to CCVC.  

Table 5. Data and results for results for multi-item DF NVP with revised demand 

 Additional  data CVC (λ𝑚
∗ = 0.66) CCVC (λ𝑚

∗ = 0.49)  GC (λ𝑚
∗ = 0.56) 

Item 

(i) 
∆i ∆𝑟𝑖 CHi γi W1i

∗  Q1i
∗  π1i

∗  W1i
∗  Q1i

∗  π1i
∗  δi δri W1i

∗  Q1i
∗  π1i

∗  

P1 60 0.24 4 1.4 0.51 244 3108 0.20 246 3042 -20 -0.25 1 293 4001 

P2 30 0.30 12 1.6 1.0 126 3972 0.74 124 3546 15 0.37 0.35 110 3261 

P3 100 0.25 20 1.8 0.64 430 17030 0.37 430 16182 30 0.20 0.38 419 16050 

Total       24110   22770     23312 

 

6. Case study: Retailing of NX Calendar 

A real-life case study is presented to illustrate the approach; it includes the following steps: 

 Refine initial demand using expert. 

 Identify factors/ events influencing the demand along with their potential impacts. 

 Aggregate the impacts and revise the demand forecast. 

 Determine the order size based on revised demand using the models developed.  

The case pertains to retailing a branded and popular calendar, named as NX by a newspaper vendor, Thane 

Newspaper Agency (TNA), India. NX calendar (date pad cum almanac) is available in 35 variants (sizes 

and languages) with annual sales of 20 million units. Its wall hanging regular size calendar (274 x 418mm) 

in Marathi (regional) language predominates with 80% of the global sales and constitutes the focal item of 

the case study. The six stalls of TNA not only sell newspaper and magazines, but also make deliveries to 

the doorsteps of their subscribers (about 4500) in the surrounding area. Occasionally, they sell seasonal 

items such as calendars leveraging on its customer reach. These stalls act as a nodal agency to perform 

many other functions like delivery of advertisement pamphlets, collection of newspapers, etc.  



 

21 

 

The NX has a concentrated selling period of one month from mid-December. A large volume of the six 

stands together enables TNA direct procurement of NX from its manufacturer i.e. Printer and Publisher 

(PP). The minimum order quantity (MOQ) is 2000 and the additional copies can be obtained in a lot of 100, 

called as a bundle. The early order booking by the first week of August has benefit of lower unit price, 

however, order modification is allowed as late as 1st November with a penalty. An emergency supplies from 

a distributor cost it far higher. The selling starts with order receipt in the second half of November and 

continue until mid- January.  

 Problem and current method of demand forecasting and ordering 

Table 4 gives the demand for the past six years. It may be noted that demand and sale are different in case 

of shortage and an adjustment for lost sales is needed. The lost sale is hardly visible and countable; it is 

often a subjective estimate. For example, the sale and lost sale estimate for the year 2015 are 3600 and 250 

respectively and hence the demand is 3850. Secondly, there is a growing trend in demand at a compound 

rate of 10.4% from 2140 (2011) to 3500 (2016) as shown in Fig.5. The demand in the year 2011 is rather 

lower due to free distribution of calendars by hopeful election candidates to Thane Municipal Corporation 

(TMC) election in February 2012. A large increase in the subsequent year 2012 is attributed to (i) regaining 

the demand (ii) discontinuation of a practice of selling calendar at nominal price by a leading Marathi 

newspaper (viz. Maharashtra Times). 

Table 4. NX aggregate demand over years 

Year 2011 2012 2013 2014 2015 2016 

Sale 2140 2600 2920 3200 3600 3440 

Q 2500 2600 3200 3200 3600 3700 

Excess 360 (16.8%) - 280 (8.75) - - 260 (7.6%) 

Shortage 

(estimated) 

- 150 (5.8%) - 200 (7.8%) 250 (8.33%) - 

Demand 2140 2750 2920 3400 3850 3440 
 

 

Fig.5.Growing trend in the calendar demand 

The forecasting method in the company is mainly based on rule of thumb, experience and intuition. The 

forecast is determined in consultation with the Stall Managers and considering sales of the previous year 

only. The forecast proposed by the company for the year 2016 was 3650 units considering the sale of 3600 

in the previous year, growth and dip in demand on account for free distribution of calendars in the TMC 
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election year (February 2017). The units ordered were 3700. The difference between the forecast and 

ordering reaches up to 17% as shown in Table 4. The error may be attributed to the following reasons: 

 The current method of forecasting is mainly based on experience and intuition. Further, there is no 

systematic consideration of some important factors and events.  

 The order size is approximated to the demand forecast and is not determined separately.  

The Proposed solution  

The method outlined in our paper is employed to obtain demand adjustment and order size. The working 

professional with TNA and manufacturer of NX were consulted in identifying factors/events along with 

their potential impacts for the year 2016. Table 5 lists the factors and their potential demand impact and 

provide explanation to some events. A professional from NX pointed out that capacity expansion and 

subsequent aggressive marketing efforts by its competitor (Janlakshmi Printers) may eventually reduce the 

demand of NX. Secondly, a few leading Marathi newspapers offer calendar as a compliment at a nominal 

price. However, two newspapers (Sakal and Deshonnati) have discontinued this practice that would fetch 

additional demand of 150 to NX. Thirdly, demand is growing as a result of increasing population density 

and increased penetration. Customers are buying more than one calendar per household/shop for locational 

convenience and/or buy a specialty calendar, which explains the 7% growth. Fourthly, since there would 

be local body (TMC) election in February 2017, the free distribution of calendars by hopeful candidates is 

expected to reduce the demand by 500 units. The sum of potential impacts, i.e. demand adjustment (∆) is -

300. The demand forecast by TNA for the year 2016 is 3650 and accordingly 3700 units ordered. Thus, 

μ0=3700, Δ=-300 and ∆r = - 0.081. 

Table 5. Event based factors and their potential impact 

Factor category Event Potential impact 

Quantum jump 

factor  

Discontinuing practice of offering calendar at nominal price by a 

leading Marathi newspaper  

150 

Increase in price of competing brands, Lokmat Kaldarshika, offered 

by a Marathi newspaper Lokmat to Rs.28 

-50 

Capacity expansion and aggressive marketing by competing PP -100 

Trend change factor  Annual growth of 7% is attributed to  increasing population density 

and growing tendency of buying more than one calendar  

200 

Transient  factor Distribution of calendars by politicians in an election year. This 

impact correction is needed in the election year of TMC and the year 

after. 

-500 

 Demand adjustment (Δ) -300 

 

Economic parameters  

The list price of the calendar is Rs.28 but 25% of the calendars are sold at a discount rate of Rs.25 in initial 

and trailing selling periods; thus weighted price is Rs.27.25. The unit purchase cost is Rs.15, the penalty 

for modifying the order size is Rs.3 per unit and therefore CH = 3. The optimal weight factor (W∗) is 1 for 

given parameters. Selling calendars as waste paper would fetch Rs.2 per unit. The shortage penalty (S) for 

non-satisfied demand beyond the lost profit is assumed to be zero because of its wide availability. Thus, 

the model parameters are stated as: P=27.25, C=15, S=0, V=2, CH= 3, ∆ = -300, μ0=3700, σ0=350, 

μ1=3400, ∆r = - 0.081, γ =1.5, W∗ =1, A (= P-C+S) =12.25, B (=C-V) =13. 

Results and discussion  
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As the distribution underlying the demand is unknown, various cases are considered, however, results for 

σ0=350 are presented in Table 6. A case of riskless ordering (σ0=0) provides upper-bound of expected 

profit π∗=41650. With W∗=1, σ0=350 for CVC and σ1=322 for CCVC. The distribution free CVC has 

Q∗=3390 and E(π1
L)∗ =36333. The results for CCVC: Q∗=3390 and E(π1

L)∗ =36691; this profit is more than 

the CVC because of the lower cost of uncertainty associated with lower standard deviation σ1=322. 

Secondly, the order sizes are smaller than the mean because the critical ratio (k) is less than 0.5 (viz. 0.49). 

Thirdly, the demand following a normal distribution provides for Q∗=3387 and E(π1)
∗=38339 and 

following uniform distribution [a=2800, b=4000 from σ1 =
(a−b)

√12
] yield Q∗=3382 and E(π1)

∗=36965.The 

normal and uniform demand distributions offer better results than the distribution free case.  

Table 6. Order size and expected profit under different demand distribution 

 Case  σ0 

 

σ1 

 

Q (P-C) μ1 Adjustment 

cost 

Cost of  

uncertainty 

Total cost 

 

Profit 

1 Riskless 0 0 3400 41650 900 0 900 40750 

2 CVC  350 350 3390 41650 900 4417 5317 36333 

3 CCVC 350 322 3390 41650 900 4059 4959 36691 

4 Normal distribution  350 - 3387 41650 900 3524 4424 37226 

5 Uniform distribution - - 3382 41650 900 3785 4685 36965 

Based on the calculation, we suggested the order size of 3400 (in multiples of 100), which is lower than the 

previous year demand. The important consideration was the dominant impact of free distribution of 

calendars in the year of election to local body (TMC), February 2017. However, TNA continued with annual 

growth optimism and stick to its initial order size of 3700 units. The reported sale in the year 2016 sale was 

3440, leaving an excess inventory of 260 units and earned profit Rs. 38240. The TNA would it would have 

earned a profit of Rs.40425 with order size of 3400, following our advice. Thus, the implementation of 

proposed method helps in improving the profit by 6.6%.  

7. Conclusion  

This paper presents models for preseason two-stage ordering. The model addresses potential impact of 

contextual information collected between two ordering instants through expert judgment and uses to revise 

the demand forecast. The inventory model under the distribution free NVP setting uses the revised demand 

to determine the optimal order quantity, the weight factor and the expected profit. The models consider the 

bidirectional changes in demand change, different cases of variance change and practical limitation. These 

models are extended to multi-item cases to improve practical utility.  

The results show that retailers could expect higher profits through a larger order size in the case of large 

demand.  In addition, retailers benefit from reduced optimal order size in the case of demand contraction, 

by minimizing the expected cost. Secondly, the enforcement of order size constraint in a demand of enlarged  

case has reduced both order size as well as expected profit; whereas imposition of service level constraint 

in a diminished demand case has reduced the expected profit despite raising the order quantity. Thirdly, 

CCVC embodies higher demand variability than CVC in a demand enlargement case that results in lower 

expected profit. On the contrary, in a demand contraction case, CCVC embodies lower demand variability 

than CVC and has more expected profit than the latter. Fourthly, the case study presented shows that the 

use of the factor-based method to determine the potential impact of contextual information [and the]demand 

forecast updating and determination of optimal order size is coherent with the proposed models and can 
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lead to profit improvement. However, the case of negative demand adjustment could lead to reduction in 

expected profit, but it worth considering from the retailer’s strategic point of view especially to reduce 

excess inventory. 

The research can be extended to consider a refinement of the factor-based method in obtaining potential 

impact of contextual information. Secondly, the retailer is considered as a standalone decision maker in 

isolation. However, it would be more appropriate to consider retailers as a part of a whole supply chain. 

Therefore, the work can be extended in perspective of supply contract, such as quantity flexibility that 

allows bidirectional changes of the order quantity. In this way demand risk sharing is achieved and the 

supply chain between the newsvendor and its supplier can be coordinated. 
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Appendix A: Proof of Proposition 1 

Common Case (applicable to CVC, CCVC and GC): 

The lower bound of the expected objective function is given by  

E(OFL) = (θP − V)μ
1
− (C − V) Q − (P − V + S)

√σi
2+(Q1−μ1)

2−(Q1−μ1)

2
− CHμ

0
|∆r|W

γ                     (1A) 

Substituting Z1 = Q1 − μ1,  A = (P − C + S)  and  B = (C − V) for convenience of presenting and equating the first 

derivative of (1A) w.r.t. Q to zero yields 

−B −
(A+B)

2
[

2.Z1

2 √σi
2+Z1

2
− 1] = 0  

It can be shown that 
∂2E(OFL)

∂2Q
< 0 and proving concavity of E(OFL) w.r.t. Q. Rearrangement of above equation gives 

√Z1
2 + σi

2 − Z1= 
σiB

√AB
                                                                                                                                             (2A) 

Q1
∗ = μ

1
+

σi

2
[
A−B

√A B
]                                                                                                                                       (3A) 

Substituting Q1
∗  in (1A), we get 

E(OFL) =  (θP − C)μ
1
− σ1√A B − CHμ

0
|∆r|W

γ                                                                                       (4A)                                                                    

For CVC: 

The first derivative of (4A) w.r.t. W: 

∂E(OFL)

∂W
=  (θP − C)μ0∆r − CHμ0|∆r|W

γ−1γ 

It can be shown that 
∂2E(OFL)

∂2W
< 0. Hence 

∂E(OFL)

∂W
 =0 would yield optimal weight factor as  

W1
∗ = [

(θP−C)∆r

CH|∆r|.γ
]

1

γ−1
                                                                                                                                      (5A) 

The substitution of W1
∗ and appropriate θ in (4A) yields optimal E(OFL).Thus, for ∆r≥ 0 , (θ = 1) optimal lower 

bound of expected profit is given by  

E(π1
L)∗ = (P − C)μ1 − σ0√AB − CHμ0|∆r|W1

∗γ                  (6A) 

For ∆r< 0 (θ = 0) the objective function represents the upper bound of the expected negative cost given by  

E(CO)∗ = −(Cμ
1
+ σ0√AB + CHμ

0
|∆r|W1

∗γ)                                                                                             (7A) 

The addition of expected revenue to 7A) gives an optimal lower bound of expected profit as: 

E(π1
L)∗ = (P−C)μ1 − σ0√AB − CHμ0|∆r|W1

∗γ                                                                                       (8A)                                   

For CCVC:  

Calculus is used to obtain optimal value of W. In CCVC, σi = σ1 is a function of W and hence  
dσi

dW
= σ0∆r. The 

second derivative of (4A) w.r.t. W can be shown to be negative and therefore optimal weight factor for CCVC is 

W1
∗ = [

(θP−C)µ0∆r−σ0.∆r.√AB

CH|∆r|.γ.µ0
]

1

γ−1
                                                                                                           (9A) 

Similar to CVC, lower bound of the expected profit is obtained as  

E(π1
L)∗ = (P−C)μ1 − σ1√AB − CHμ0|∆r|W1

∗γ                                                                                  (10A) 

For GC:  
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The ∆r and δr used  μ
1
[= µ

0
(1 +  W∆r)]  and σ1 = [σ0 (1 +Wδr)] can be different in both sign and magnitude. The 

W1
∗  is obtained by using relation  

dE(OFL)

dW
=0 where 

dσ1

dW
= σ0δr and 

dµ1

dW
= σ0∆r. The second derivative of (4A) w.r.t. 

W can be shown to be negative and therefore W1
∗ for GC is 

W1
∗ = [

(θP−C)µ0∆r−σ0.δr.√AB

CH|∆r|.γ.µ0
]

1

γ−1
                                                                                                                      (11A) 

Similar to CVC, the lower bound of the expected profit is obtained as  

E(π1
L)∗ = (P−C)μ1 − σ1√AB − CHμ0|∆r|W1

∗γ                                                                           

 

Hence, the result of (3A), (5A), (6A), (9A), (10A) and (11A) completes the proof of Proposition 1. 

 

Appendix B: Proof of Lemmas 

Lemma1 

Proof.  W1
∗ from (5A) and (9A) is 

𝑊1
∗ =

{
  
 

  
 [

(𝜃𝑃−𝐶)∆𝑟

𝐶𝐻|∆𝑟|𝛾
]

1

𝛾−1
                             𝐹𝑜𝑟  𝐶𝑉𝐶

[
(𝜃𝑃−𝐶)µ0∆𝑟−𝜎0 ∆𝑟√𝐴 𝐵

𝐶𝐻µ0|∆𝑟|𝛾
]

1

𝛾−1
       𝐹𝑜𝑟 𝐶𝐶𝑉𝐶

[
(θP−C)µ0∆r−σ0.δr.√AB

CH|∆r|.γ.µ0
]

1

γ−1
           𝐹𝑜𝑟 𝐺𝐶

                                                                                           (1B) 

The weight factor cannot be more than 1, the net value of terms within the bracket of (1B) must be less than or equal 

1 as 
1

γ−1
> 1 viz. 

 
(θP−C)∆r

CH|∆r| γ
≤ 1,  

(θP−C)µ0∆r−σ0.∆r.√(P−C+S)(C−V)

CH|∆r|.γ.µ0
≤ 1, and 

(θP−C)µ0∆r−σ0.δr.√AB

CH|∆r|.γ.µ0
 ≤ 1 

It provides for the lower limit of  CH 

(i) CH ≥
(θP−C)∆r

|∆r| γ
                         for CVC 

(ii) CH ≥
(P−C−λ1)µ0−σ0√(A−λ1)(B+λ1)

µ0γ
    for CCVC                    

(iii)  CH ≥ 
(θP−C)µ0∆r−σ0.δr.√AB

CH|∆r|.γ.µ0
              for GC                                                                                (2B)  

The CH less than specified in (2B) would make W1
∗ more than 1 which is unacceptable. Thus, for the given P, C, S, V 

and γ, lower bound of CH that would ensure W1
∗ ≤ 1 is given in (2B). This completes the proof of Lemma1. 

Lemma 2 and 3: 

The logic applicable to Lemma 2 and 3 is very similar to the used in Lemma 1 and therefore proof of lemma 2 and 3 

is not provided. 

Lemma 4 

The h(λj) is a continuous and strictly increasing function in λj. The P1 or P2 becomes an unconstrained optimization 

problem at λj = 0 and h(λj) < 0 violates either of the constraints. The λj must be positive and therefore there exist 

two distinct values λj
1, λj

2 > 0 such that h(λj
1)h(λj

2) < 0.This implies that there exist a unique λj such that h(λj) = 0. 

Appendix C: Proof of Proposition 2 

Derivations for a common case: 

The Lagrange function (11) for P2 with Z1c = Q1c − μ1 

L = (P − V)μ1 − (C − V)Q1c – (P − V + S)
√σi

2+Z1c
2−Z1c

2
− CHμ0|∆r|W1c

γ
− λ1[Q1c − (1 + β)Q0]           (1C) 

Setting the first derivative of (1C) w.r.t. Q1c to zero provides for constrained optimal order quantity  
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−(C − V + λ1)–
(P−V+S)

2
[

 Z1c

√σi
2+ Z1c

2
− 1] = 0    

Let denote B1 = (C − V + λ1) and  T = (P − V + S) = (A + B) and rearranging gives  

 Z1c

 σi
=

(T−2 B1)

2√B1(T−B1)
                                                                                                                                             (2C) 

The term (T − 2 B1) is equal to (A − λ1) − (B + λ1) and B1(T − B1) is equal to (A − λ1)(B + λ1) and hence the 

optimal order quantity for CVC case is 

Q1c
∗ = μ

1
+

 σi

2
[
(A−λ1)− (B+λ1)

√(A−λ1)(B+λ1)
]                                                                                                                       (3C) 

The rearrangement of (2C) gives√σi
2 + Z1c

2 − Z1c = 
σiB1

√B1(T−B1)
. Its substitution along with Q1c

∗  into (1C) yields                                                                                                               

L =(P − V)μ1 − (C − V + λ1)Q1c
∗ –

(P−V+S)

2

σiB1

√B1(T−B1)
− CHμ0|∆r|W1c

γ
+ λ1(1 + β)Q0                                            (4C)           

Different treatment is required to CCVC and CVC to find W1c
∗  and E(π1c

L ) as standard deviation is a function of W1c 

in former, but not in latter. 

For CVC: 

For CVC, μ1 = µ
0
(1 + W1c ∆r) and σ1 = σ0 that provides 

dµ1

dW1c
= μ0∆r  and   

dσ1

dW1c
 = 0. The differentiation of (4C) 

w.r.t W1c and setting it to zero gives optimal weight factor as 

W1c
∗ = [

(P−C−λ1)

CHγ
]

1

γ−1
                                                                                                                                                  (5C) 

A closed form expression for the optimal lower bound of expected profit is obtained by substituting the values of  

Q1,√σi
2 + Z1c

2 − Z1c and  W1c
∗  in (1C)  and is given below 

E(πc
L) = (P − C)μ

1
−

σi

2 √B1(T−B1)
[B(T − 2 B1) + TB1] − CHμ

0
|∆r|(W1c

∗ )γ  

The term B(T − 2 B1) + TB1 in the above expression is equal to B(A − λ1) +  A(B + λ1) and  B1(T − B1) is equal to 

(A − λ1)(B + λ1). Therefore, E(π1c
L )∗ is 

E(π1c
L )∗ = (P − C)μ1 −

 σ0

2
[
B(A−λ1)+ A(B+λ1)

√(A−λ1) (B+λ1)
] − CHμ0|∆r|(W1c

∗ )γ                                                       (6C)                 

The derivation for CCVC and GC is quite similar to CVC and hence avoided. Thus, the results of (3C), (5C) and (6C) 

complete the derivations of (12). 

Appendix D: Proof of Proposition 3 

Common Case: 

Lagrange function for P2  

L = (C − V)Q1c + Vμ1 + (P − V + S)
√σi

2+Z1c
2−Z1c

2
− CHμ0|∆r|W1c

γ
− λ2[Q−∝ (μ1 + σiZn)]          (1D) 

Setting the first derivative of (1D) w.r.t. Q1c to zero provides 

(C − V) +
(P−V+S)

2
[

2Z1c

2√σi
2+Z1c

2
− 1 ] − λ2 = 0  

Let B2 = (C − V − λ2) and substituting (P − V + S) = A+B and solving provides  

Z1c = 
σi

2
.

(T−2B2)

√B2(T−2B2)
                                                                                                                   (2D) 

Given the (T − 2B2) = [(A + λ2) − (B − λ2)], B2(T − 2B2)= (A + λ2)(B − λ2) and Z1c = Q1c − μ1, the Q1c
∗ is 

given as  

Q1c
∗ = μ1 +

σi

2
. [
(A+λ2)−(B−λ2)

√(A+λ2)(B−λ2)
]                                                                                                                    (3D) 

We get √σi
2 + Z1c

2 − Z1 = 
B2σ1

√B2(T−B2)
 from (2D) and its substitution in (1D) provides 
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L = [ C + λ2(∝ −1)]μ1 + σi√B2(T − B2) + CHμ0|∆r|W1c
γ
+ λ2 ∝ σiZn                                            (4 D) 

Different treatment is required for CVC and CCVC because of different standard deviations. 

Derivations for CCVC: 

Setting first   derivative of (1D) w.r.t. W1c  to zero and using 
dσ1

dW1c 
= σ0∆r provides 

W1c
∗ = [−

[ C+λ2(∝−1)]µ0∆r+(√(A+λ2)(B−λ2)+ λ2∝ Zn)σ0∆r

CHµ0|∆r|.γ
]

1

γ−1
;  

with ∆r< 0, W1c
∗  is given by  

W1c
∗ = [

[ C−λ2(1−α)]µ0+σ0(√(A+λ2)(B−λ2)+ λ2∝Zn)

CHµ0.γ
]

1

γ−1
                  (5D) 

Substituting the values of  Q1c
∗  and W1c

∗  in (1D) and writing with abbreviations gives optimal upper bound of expected 

cost as 

E(coU) = Cμ1 + 
σ1

2√B2(T−B2)
[B(T − 2B2) + TB2] + CHμ0|∆r|W1c

∗ γ  

As earlier, substituting [B(T − 2B2) + TB2] = B(A + λ2) + A(B − λ2) and B2(T − B2)=(A + λ2)(B − λ2) gives 

upper bound of the cost 

E(coU) = Cμ1 + 
σ1

2
[
B(A+λ2)+A(B−λ2) 

√(A+λ2)(B−λ2)
] + CHμ0|∆r|W1c

∗ γ                                                                (6D)                                  

The lower bound of the expected profit is obtained by subtracting E(coU) from the expected revenue (Pμ1) and is  

E(π1c
L ) = (P − C)μ1 −

σ1

2
[
B(A+λ2)+A(B−λ2) 

√(A+λ2)(B−λ2)
] − CHμ0|∆r|W1c

∗ γ                                                         (7D) 

The derivation for CVC is simpler and similar to CCVC with 
dσ1

dW1c 
= 0. Similar method can be used in deriving 

expressions in the case of GC with 
dσ1

dW1c 
= σ0δr. The detail proofs are not provided in these two cases to avoid 

repetition. Thus, the results of (3D), (5D) and (7D) complete the proof of Proposition 3. 

Appendix E: Proof of Proposition 4 

Derivations for a common case: 

The Lagrange function () for P3 with Z1i = Qi − μ1i 

L = (θPi − Vi)μ1i − BiQ1i −
(Ai+Bi)

2
(√σ1i

2 + Z1i
2 − Z1i) − CHiμ0i|∆ri|W1i

γi − λm[∑ CiQ1i − G
N
i=1 ]                       (1E) 

Setting 
∂L

∂Qi
= 0 for all i, provides 

∂L

∂Qi
= − Bi − (

Ai+Bi

2
) × [

Zi
dzi
dQi

2√σi
2+Zi

2
− 1] − λmCi = 0     [∴

∂Zi

∂Qi
= 1]  

 Let B1i = (Bi + λmCi) and Ti = Ai + Bi, the above expression can be  

Z1i =
σ1i(Ti−2 B1i)

2√ B1i(Ti−B1i)
                                                                                                                                                   (2E) 

But (Ti − 2 B1i) = (Ai − λmCi) − (Bi + λmCi) and B1i(Ti − B1i) = (Bi + λmCi)(Ai − λmCi), 

Q1i
∗ = μ1i + σ1i [

(Ai−λmCi)−(Bi+λmCi)

√(Ai−λmCi)(Bi+λmCi)
]                                                                                                                    (3E) 

The substitution of (2E) into (1E) result into  

L = (θPi − Ci)μi −
σi

2√(Ti−Bi1)Bi1
[(Ti − 2 B1i)B1i + Ti B1i] - CHiμ0i|∆ri|W1i

γi − λm[∑ CiQ1i − G
N
i=1 ]   

Three cases of CVC, CCVC and GC are dealt separately because of different standard deviation. 

For GC 
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Setting 
∂L

∂W1i
= 0 and using 

dσ1

dW1i 
= σ0δr provides for  

W1i
∗ = {

[θPi− Ci(1+ λm)]µ0i ∆ri − σ0i δri  √(Ai−λmCi)(Bi+λmCi)

CHiµ0i|∆ri| γi
}

1

γi−1

                                                 (4E) 

For  ∆ri≥ 0, θ = 1, the profit function with substitution of  Q1i
∗ = μ1i +

σ1i(Ti−2 B1i)

2√ B1i(Ti−B1i)
 is 

E(π1i
L )

∗
= (Pi − Ci)μi −

σi

2√(Ti−Bi1)Bi1
[(Ti − 2 B1i)B1i + Ti B1i] - CHiμ0i|∆ri|W1i

γi  

            = (Pi − Ci)μ1i −
σ1i

2
[
Bi(Ai−λmCi)+Ai(Bi+λmCi)

√(Ai−λmCi)×(Bi+λmCi)
]- CHiμ0i|∆ri|(W1i

γi)∗                                                      (5E) 

For  ∆ri< 0, θ = 0 and δri > 0, the profit function with substitution of  Q1i
∗ = μ1i +

σ1i(Ti−2 B1i)

2√ B1i(Ti−B1i)
 is 

E(CO1i
U )

∗
= Ciμi +

σi

2√(Ti−Bi1)Bi1
[(Ti − 2 B1i)B1i + Ti B1i] + CHiμ0i|∆ri|(W1i

γi)∗   

E(π1i
L )

∗
= Piμi −  E(CO1i

U )
∗
 

             = (Pi − Ci)μ1i −
σ1i

2
[
Bi(Ai−λmCi)+Ai(Bi+λmCi)

√(Ai−λmCi)×(Bi+λmCi)
]- CHiμ0i|∆ri|(W1i

γi)∗                                                      (6E) 

A similar approach can be followed in CVC with 
dσ1

dW1i 
= 0 and in CCVC with 

dσ1

dW1i 
= σ0∆r and expressions for W1i

∗  

and E(π1i
L )

∗
 can be obtained. Thus, the results of (3E) to (6E) complete the proof of Proposition 4.  

 

 

 


