We give an algorithm to enumerate all primitive abundant numbers (PAN) with a fixed Ω, the number of prime factors counted with their multiplicity. We explicitly find all PAN up to Ω=6, count all PAN and square-free PAN up to Ω =7 and count all odd PAN and odd square-free PAN up to Ω =8. We find primitive weird numbers (PWN) with up to 16 prime factors, the largest of which is a number with 14712 digits. We find hundreds of PWN with exactly one square odd prime factor: as far as we know, only five were known before. We find all PWN with at least one odd prime factor with multiplicity greater than one and Ω =7 and prove that there are none with Ω <7. Regarding PWN with a cubic (or higher power) odd prime factor, we prove that there are none with Ω ≤7. We find several PWN with 2 square odd prime factors, and one with 3 square odd prime factors. These are the first such examples. We finally observe that these results are in favor of the existence of PWN with arbitrarily many prime factors.