Files

Abstract

We give an algorithm to enumerate all primitive abundant numbers (PAN) with a fixed Ω, the number of prime factors counted with their multiplicity. We explicitly find all PAN up to Ω=6, count all PAN and square-free PAN up to Ω =7 and count all odd PAN and odd square-free PAN up to Ω =8. We find primitive weird numbers (PWN) with up to 16 prime factors, the largest of which is a number with 14712 digits. We find hundreds of PWN with exactly one square odd prime factor: as far as we know, only five were known before. We find all PWN with at least one odd prime factor with multiplicity greater than one and Ω =7 and prove that there are none with Ω <7. Regarding PWN with a cubic (or higher power) odd prime factor, we prove that there are none with Ω ≤7. We find several PWN with 2 square odd prime factors, and one with 3 square odd prime factors. These are the first such examples. We finally observe that these results are in favor of the existence of PWN with arbitrarily many prime factors.

Details

Actions

Preview