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Abstract. We present a multi-physics model for the approximation of the coupled system
formed by the temperature-dependent Navier-Stokes equations with free surfaces. The main
application is the industrial process of shallow laser surface melting (SLSM), for laser polishing
of metal surfaces. We consider incompressible flow equations with solidification, and we model
the laser source through physically-consistent boundary conditions. We incorporate Marangoni
effects in the surface tension model to drive internal motion in the liquid metal. The numerical
method relies on an operator splitting strategy and a two-grid approach. A proof of concept of
the numerical model is achieved through a static laser melting process.

1 INTRODUCTION

Laser polishing is a widespread process in various industries [2, 14, 15], consisting in re-
melting the surface of a metal in order to reduce surface roughness when re-solidifying. Its
effectiveness relies on the strong dependency between the fluid flow properties of the metal (or
alloy), and the heat effect [1]. The underlying multi-physics model for such a system is com-
posed by the temperature-dependent Navier-Stokes equations, coupled with the heat equation
for solidification processes, and with a free surfaces model for the simulation of the surface of
the re-melting metal. Although no substrate is incorporated into the mixture here, the goal of
this study is to simulate the internal motion of the melting pool, and accurately model the free
surfaces that arise in laser polishing processes. In particular, we model the complex relation-
ship between internal currents in the liquid metal, the temperature and the free surface evolution
through Marangoni effects [5, 13]. The objective of this work is thus to highlight the internal
fluid motion induced by Marangoni effects in laser surface melting processes.
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We consider incompressible flow equations with solidification, by using a Navier-Stokes
model with an additional Carman-Kozeny term [9]. We add thermal effects with an enthalpy-
based convection-diffusion heat equation, and we model the laser source by applying a heat flux
boundary condition on the free surface. We incorporate Marangoni effects in the surface tension
model to drive internal motion in the liquid metal. The numerical method relies on an operator
splitting strategy and a two-grid approach, which has been tested in other situations (without
solidification effects) in [3, 4, 6]. The operator splitting allows to decouple the various physical
phenomena, in particular advection and diffusion processes. The two-grid approach allows to
have an accurate description of the free surfaces.

A proof of concept of the numerical approach is achieved through an example of static laser
melting, to show how laser polishing processes can induce convective currents in the melting
regions, through Marangoni effects, and affect surface roughness.

2 MODELING

Let us consider a bounded domain A C R3, and let f,,4 > O be a given final time. For
any time ¢ € (0,2,4y), let Q; C A be the domain occupied by the metal (solidified or not) and
[} := 9, \dA be the free surface between the metal and the ambient air, namely the boundary
of the metal domain that is not in contact with the boundary of the whole cavity. The air
is considered as vacuum. Typically, we consider the laser polishing of a metal plate €, as

illustrated in Figure 1 in two space dimensions.
Laser source

A

9=0

Q=1 I

Je=l /!

yv-\'
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Figure 1: Laser melting of a metal plate (2D sketch). The cavity A contains metal and air. At each time 7 €
(0, fyax ), the metal domain Q, (solid and liquid) is separated from the ambient air by the metal-air interface I',. A
vertical laser source is applied in the middle of the domain and melts the central region of the metal. A vorticity
flow develops in the liquid region. The metal domain is described by its volume fraction of metal ¢, while the
temperature 7 determines the liquid and solid regions.
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Let Q be the space-time domain containing the metal:
0 ={(x,1) € AX(0,tar) : X E Q,0 <1 < lyax}-

The velocity field v : Q — R? and the pressure field p : Q — R are assumed to satisfy incom-
pressible, time-dependent Navier-Stokes equations in Q. The Navier-Stokes equations include
an additional Darcy-like reaction term to model the solidification process, penalizing the ve-
locity in the solid region. The enthalpy H : Q — R is assumed to satisfy the classical enthalpy
formulation of the heat conservation equation, which can be derived by simplifying the gen-
eral energy conservation equation with Fourier’s law (see [9] for details). The complete set of
equations in Q thus reads:

p?;;"‘P(V'V)V_zv'(HD(V))+(X(T)V+Vp:pg, 2.1)
v-v=0, 2.2)
ngw-m—v- (kVB(H)) = 0. (2.3)

Here D(v) = 1/2(Vv+ Vv’) is the symmetric deformation tensor, p, u and k are respectively
the density, the viscosity and the thermal conductivity of the metal, and pg is the gravity force.
The function T = B(H) describes the relationship between the enthalpy H and the temperature
T, and is determined by the phase transition and properties of the material.

In order to model the solidification process with a diffuse model (mushy zone), the velocity is
penalized with the Carman-Kozeny empirical law, which represents the coupling with a Darcy
flow in porous media [9]. The reaction coefficient in (2.1) is given by:

u(l = fu(T))?

(fe(T)+e)?’
where Ol is a constant to be calibrated and f; is the liquid fraction, which equals one in the liquid
region (above the temperature of fusion) and zero in the solid region. Note that ) <e << lisa
numerical parameter to avoid a division by zero.

Let @ : A X (0,fqc) — {0, 1} be the volume fraction of metal, which equals one if the metal

is present (solid or liquid) and zero if it is not (also known as the characteristic function of the
metal domain), and thus the space-time metal domain can be defined as:

o(T) =G (2.4)

0 ={(x,1) € AX (0,t,ar) : @(x,2) = 1}.

In order to describe the kinematics of the free surface, the volume fraction of metal ¢ must
satisfy (in a weak sense) the transport equation:

%(f+v-V(p:0 in A % (0, tmax), (2.5)
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The model is completed with initial and boundary conditions. The volume fraction of metal
¢(+,0) is given at initial time, which is equivalent to defining the initial metal region Qg =
{x € A:¢(x,0) = 1}. The initial enthalpy (or equivalently temperature), and velocity fields are
then prescribed in €. Boundary conditions for ¢ are applied, if necessary, on the inlet part
of 0Q, for (2.5). The Navier-Stokes equations (2.1)-(2.2) are completed with slip or no-slip
boundary conditions imposed on the boundary of the metal domain d€2; that is in contact with
the boundary of the cavity dA.

Surface tension and Marangoni effects on the liquid metal-air interface are taken into account
via a force term on the free surface [13]. The ambient air is assumed to have no influence on
the metal, and is treated as vacuum. The boundary conditions on the metal-air interface are thus
given by:

—pI+2uD(v) = yknr, + VrYy, on T, =0Q\0A, (2.6)

where nr, is the external unit normal vector to I'; towards the vacuum, « is the curvature of
I';, and vy is the surface tension coefficient. In the sequel, we’ll assume that Y= y(7') only
depends on the temperature. In this case, the term Vr,y is defined as Vr,y =Y (T)VT - t; +
Y(T)VT -tp, where t;, i = 1,2, are two linearly independent vectors in the plane tangent to I,
and perpendicular to nr,. !

The boundary conditions for the heat equation (2.3) are as follows: the laser source is mod-
eled via a given heat flux on the boundary I'; of the metal domain, while adiabatic boundary
conditions are applied on the rest of the boundary.

The coupled multiphysics problem thus consists in finding the time evolution of the position
of the volume fraction of metal @ in the cavity A, together with the enthalpy H, the velocity v
and the pressure p in the metal domain only.

3 NUMERICAL METHODS

The numerical method is inspired from [3, 4, 6], where it has been validated in various
situations. It is adapted here to the coupled multi-physics problem arising when considering
temperature-related effects. It relies on operator splitting and a two-grid method: the splitting
algorithm decouples advection and diffusion phenomena, while the two-grid algorithm allows
to increase the accuracy of the approximation of the free surface by considering finer grids for
the approximation of advection problems.

3.1 Time splitting algorithm

Let N € N, and T = t,,4¢/N a constant time step. A subdivision of the time interval [0, ]
is given by t* =nt,n =0,...,N. Assume that ¢" is an approximation of ¢ available at time ¢",
which defines the metal domain Q" = {x € A : ¢"(x) = 1}, and that v", p", T" H" are known

approximations of v, p,T,H respectively on Q" at time #*. Then the approximations ¢!,

"Note that if v is a function of x € R3, the operator Vr, is the surface gradient for the surface I, and is defined
by Vry:= Vy—nr (nr- Vy).
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Qrtl yntl pntl pntl gntl gt time "+ are computed by means of a splitting algorithm as
illustrated in Figure 2.

Time 1" (1) Advection step
(p".V".p".H" ™ (pn—H yi+1/2 gnt1/2
< <
Qn Qn+l
(2) Heat equation (3) Stokes problem
Hn+] 3 TIH-] vn+l ’ pn+l
—— ——

Figure 2: Operator splitting algorithm (from left to right, top to bottom). We solve successively (1) Three ad-
vection problems in order to obtain ¢!, v"+1/2 H"+1/2 and thus Q"t'. (2) The heat diffusion equation (without

convection) to determine H"*! (and thus 7"*!). (3) A generalized Stokes problem in order to obtain v**! and
pn+l .

3.1.1 Advection equations

First, three advection problems are solved in order to obtain the new volume fraction of metal
¢"t! (and thus the new metal domain Q"1), the predicted velocity v"t1/2 and the predicted
enthalpy H""1/2 In order to do so, the advection operators in (2.1), (2.3) and (2.5) are solved
in A between 1" and 1"t

aa(tp—kv'V(p:O, a;tl—kv'VH:O, ?;—F(V-V)V:O, 3.1)
with initial conditions provided by ¢”, H" and v" respectively. This system of hyperbolic equa-
tions is linearized and solved with a forward characteristics method [6], which reads:

O (x+1'(x) = ¢"(x), H"'2x+1'(x)=H"x), vV2x+v'(x))=v"(x),

for all x € A. The new metal domain is then defined as Q"' = {x € A: ¢"*!(x) = 1}.
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3.1.2 Heat equation

Then the heat equation (without convection term) allows to determine the corrected enthalpy
H"*! in the new metal domain Q"*! by solving:

oH

=~ V- (kVB(H)) =0, (3.2)
with initial conditions provided by H n+1/2 We use an implicit Euler scheme with appropriate
boundary conditions, together with the implicit enthalpy-temperature relation 7"+ = B(H"+1)
for the determination of the new temperature 7!, This time-discretized system of equations

is solved with the so called Chernoff numerical scheme [10].

3.1.3 Stokes equations

Finally, a generalized Stokes problem is solved in order to obtain the corrected velocity v*!

and pressure p"*! in the new metal domain Q"*!, by solving:

0
pS —2V- (uD(V)) +a(T"*)v+Vp = pe, (3.3)
V.v=0. 34

An implicit Euler scheme is used for the time discretization of this Stokes system in Qntl
together with the natural force condition on the metal-air interface:

—pl+2uD(v) = YT xnpuet + Ve (T"),  on T (3.5)

3.2 Space Discretization

In order to solve this multi-physics problem, a two-grid method is used, following [3, 4, 6].
As illustrated in Figure 3 (in two dimensions of space), a regular grid of small structured cells
(with typical cell size h..;5) 1s used to solve the advection problems (3.1), while the solutions
of the heat problem (3.2) and of the Stokes problem (3.3)-(3.5) are obtained via a finite element
approximation on a coarser unstructured tetrahedral finite element mesh (with typical mesh size
hye).

! The initial goal of introducing a two-grid method is to increase the accuracy of the approxi-
mation of the free surface (by decreasing the numerical diffusion of the approximation @"*! in
(3.1)), while keeping reasonable the computational cost of solving parabolic problems (incl. the
Stokes problem) implicitly. Following [6], we typically advocate i, ~ 3h.,;s for a reasonable
trade-off between accuracy and computational efficiency.

More precisely, (3.1) is solved with a forward characteristics method on the grid of small
cells, together with a SLIC interface reconstruction algorithm for the approximation of ¢"+! [7],
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Figure 3: Two-grid method (2D sketch). The advection problems are solved on a structured grid of small cubic
cells of typical size h..y;s (left), and the diffusion problems are solved on an unstructured finite element mesh of
typical size Ay, (right).

and post-processing heuristics to avoid artificial compression. Although the forward character-
istics method does not have to satisfy a CFL condition theoretically, the time step T is chosen in
order to control the CFL number (to be typically between 1 and 5).

Stabilized finite elements, based on continuous piecewise linear finite elements, are used to
approximate the Stokes problem (3.3)-(3.5), while classical continuous piecewise linear finite
elements are used for the approximation of the heat equation (3.2).

4 NUMERICAL RESULTS

In order to illustrate the efficiency of our method, we present one numerical experiment
that consists of a single static laser source melting a piece of metal. This experiment was
also treated in [12], and first reported in [8]. We consider the Bohler S705 steel, whose physical
properties are listed in Table 1. The variation of active elements, typically sulphur concentration
in the material, affects the surface tension gradient with respect to the temperature, and as a
consequence the direction and strength of the Marangoni convective flow and eventually the
melting pool shape.

In addition to the physical properties in Table 1, the enthalpy-temperature relation 7 = B(H)
is constructed from p, Cp,, C,, Ty and L, as in [10]. The surface tension coefficient is con-
structed as y(T') = 1.943 4+ (T)T [N/m], where the surface tension derivative ¥ (T') is given in
Figure 4 for two sulphur contents (see [11] for more details). The numerical results presented
here are obtained with the curve corresponding to 150 ppm.

The static laser source is considered as a beam of radius R = 1.4 [mm] with a power of
P = 5200 [W]. The absorptivity of the surface to the laser is 1 = 0.13 [-]. We simulate the
process during ;. = 1 [s].

We setup a pseudo-2D geometry as illustrated in Figure 5. The computational domain is
A = D1 UD;y U D3, with the initial metal domain Qy = Dy U D,. The bounding box of the
whole domain is (0,14) x (0,0.05) x (0,7.25) [mm]. The finite-element mesh in regions D,
and Djs is very fine to capture fluid motions in the melting pool, while D is coarser. This allows
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Properties Values Units
Density (p) 8100 [kg/m’]
Temperature of fusion (7y) 1620 K]
Dynamic viscosity (u) 0.006 | [kg/(m.s)]
Thermal conductivity of solid (k) 22.9 [J/(m.s.K)]
Thermal conductivity of liquid (k;) 22.9 [J/(m.s.K)]
Enhancement factor for viscosity and 7.0 [-]
liquid thermal conductivity

Specific heat of solid (C),) 627 [J/(kg.K)]
Specific heat of liquid (Cy,) 723.14 [J/(kg.K)]
Latent heat of fusion (L) 2.508e+5 [J/kg]

Table 1: Material properties for Bohler S705 steel.

Figure 4: Surface tension derivative ¥ (7') as a function of temperature.

to decrease the computational time while keeping a good precision in the liquid metal. The
discretization parameters are T=5- 107 [s], hfe=15- 1072 [mm], and Azeys = 1.5- 1072 [mm].

The laser source is modeled by a heat flux boundary condition (where heat loss is neglected).
We assume that the flux distribution depends only on the distance r to the central point, and has
the following profile:

o

on

on Ft7
0 r>R

where C = (.2 is a constant to account for the pseudo-2D approximation, 1 is the metal absorp-
tivity, P is the laser power and R is the laser beam radius. Adiabatic boundary conditions are
imposed on the rest of the boundary. The initial condition for the heat problem is the ambient
temperature (no liquid region), and f; = 0 in Q.
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Figure 5: Static laser melting (2D sketch). Computational domains (left), finite element mesh (middle) and struc-
tured grid of small cells (right).

For the Stokes problem, we consider the gravity forces with g aligned with e,. The coeffi-
cients in the Carman-Kozeny term are given by & = 100 and € = 10~. We apply slip boundary
conditions in the xz-plane (pseudo-2D), no slip boundary conditions on dA and the natural force
conditions on the free surface I';. The initial condition for the velocity is the zero velocity.

The laser source induces a heating effect that creates a liquid metal zone in the center of the
metal domain. Marangoni effects generate a horizontal force at the liquid metal interface and
set the fluid in motion. The internal currents induce a deformation of the free surface between
the liquid metal and the ambient air.

Figure 6 illustrates the solution after # = 1 [s], namely the liquid fraction, the velocity field,
the temperature and the shape of the free surface. Numerical experiments show a strong cou-
pling between the thermal aspects and the deformation of the free surface.

S CONCLUSIONS AND PERSPECTIVES

A set of equations has been presented to model melting metal with a free surface as it ap-
pears in laser surface melting processes. It allows to couple incompressible fluid flow equations
with the heat equation and a free surface. A numerical model combining an operator splitting
algorithm and a two-grid method has been used to test the model. Preliminary results have illus-
trated the coupling between the different physical phenomena (Marangoni effects, free surface
evolution, melting zone). In particular, results have emphasized the strong effect of the varying
temperature, due to laser processing, on the free surface and metal roughness.
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