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Abstract 

Background 

Radial 2D MRI scans of the hip are routinely used for the diagnosis of the cam-
type of femoroacetabular impingement (FAI) and of avascular necrosis (AVN) of 
the femoral head, both considered causes of hip joint osteoarthritis in young and 
active patients. A method for automated and accurate segmentation of the proximal 
femur from radial MRI scans could be very useful in both clinical routine and bio-
mechanical studies. However, to our knowledge, no such method has been pub-
lished before. 

Purpose 

The aims of this study are the development of a system for the segmentation of 
the proximal femur from radial MRI scans and the reconstruction of its 3D model 
that can be used for diagnosis and planning of hip-preserving surgery. 

Methods  

The proposed system relies on: (a) a random forest classifier and (b) the regis-
tration of a 3D template mesh of the femur to the radial slices based on a physically-
based deformable model. The input to the system are the radial slices and the man-
ually-specified positions of three landmarks. Our dataset consists of the radial MRI 
scans of 25 patients symptomatic of FAI or AVN and accompanying manual seg-
mentation of the femur, treated as the ground truth. 

Results  

The achieved segmentation of the proximal femur has an average Dice similarity 
coefficient (DSC) of 96.37 ± 1.55 %, an average symmetric mean absolute distance 
(SMAD) of 0.94 ± 0.39 mm and an average Hausdorff distance of 2.37 ± 1.14 mm. 
In the femoral head sub-region, the average SMAD is 0.64 ± 0.18 mm and the av-
erage Hausdorff distance is 1.41 ± 0.56 mm. 

Conclusions 

We validated a semi-automated method for the segmentation of the proximal 
femur from radial MR scans. A 3D model of the proximal femur is also recon-
structed, which can be used for the planning of hip-preserving surgery. 

 
Keywords 

radial imaging of the hip; proximal femur; 3D reconstruction; segmentation; ran-
dom forest; deformable model  
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Introduction 
Femoroacetabular Impingement (FAI) and avascular necrosis of the femoral 

head (AVN) are known causes of osteoarthritis of the hip joint in young and active 
patients [1]. FAI has been described in [2] as a biomechanical entity that originates 
from anatomical abnormalities of the proximal femur and/or the acetabulum which 
manifests itself with decreased range of motion and pain [3-7]. FAI is the main 
cause of early-onset osteoarthritis in non-dysplastic hips [4]. In the cam-type of FAI, 
anatomical abnormalities are observed only on the femoral head without any pelvis 
involvement. On the other hand, in AVN the blood flow to the femoral head is in-
terrupted, which can progressively lead to the collapse of the hip. A lot of joint-
preserving forms of treatment have been developed in an attempt to slow or reverse 
its progression, as it usually affects young patients [1,8]. MRI has been recognized 
as an important assisting tool for the diagnosis and the assessment of FAI and AVN 
as, in addition to the non-ionizing nature of its radiation, MRI can capture the vas-
cular status of the femoral head [9-12]. Moreover, as MR scanners typically have 
the capability to directly scan planes of arbitrary orientation, it is possible to acquire 
images perpendicular to the curvature of the acetabulum, as visualized in Fig. 1. 
Such a scanning protocol is often referred to as radial imaging of the hip. The appeal 
of using radial scans over 3D MRI for image-assisted diagnosis is the reduced scan-
ning time, as a typical radial scan of the hip consists of much fewer slices. Indeed, 
acquisition of 3D MR images is typically not part of the clinical routine, as MR 
scanning time tends to be a resource high in demand. Additionally, radial imaging, 
using a gadolinium-enhanced scanning protocol [13-16], is considered the gold 
standard for diagnosis of FAI and AVN [1,17,18].  

In addition to the value of MRI in diagnosis, MR-based 3D models of the femur 
have recently been shown to be as accurate as CT-based ones [19,20]. Such 3D 
models form an essential part of the planning of hip-preserving surgeries and they 
are also valuable in conducting motion analysis studies. In particular, surgical cor-
rection of cam-FAI or AVN is challenging and requires exact pre-operative plan-
ning [5-8]. The reconstruction of such a 3D model requires the segmentation of the 
femoral area in every slice, a task which, if performed manually, is very tedious. In 
the case of MR radial scans, the effort required is much lower. Still, the segmenta-
tion result is susceptible to inter-observer variability. Moreover, radial scans can 
suffer from a crosstalk artifact at the intersection of all the images and it can be 
unclear how to segment the proximal femur at the affected locations. 

For these reasons, an automated and accurate method for the segmentation of the 
proximal femur in radial scans of the hip has the potential to increase the value of 
this type of sequence in both clinical routine and biomechanical studies. In this 
work, we present a novel method for this task. The proposed method registers a 3D 
template mesh of the femur to the radial slices based on a physically-based deform-
able model. The registration process utilizes the pixel-wise predictions of a classi-
fier. An evaluation study is conducted on a dataset of 25 radial scans of symptomatic 
patients. 
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Related Work 

There are a few published methods on the problem of the automatic segmentation 
of the proximal femur from 3D MR images. In [21], the authors applied both multi-
atlases and active shape models (ASMs) for the segmentation of the proximal femur 
and the hip bone. In [22-25], different methods based on deformable models were 
proposed: In [22], a robust multi-resolution statistical shape model (SSM) method 
for the segmentation of bones in small field-of-view (FOV) was presented and re-
sults for the case of the femur and of the hip bone were reported. In [23], a general 
segmentation method for both muscles and bones was presented and an evaluation 
for femur segmentation was conducted.  In [24], user-specified landmarks were also 
utilized for the segmentation of the proximal femur. In [25], weighted shape prior 
were introduced to the deformable model. Whereas the previous methods are all 
model-based, in [26] the authors presented a purely classification-based approach, 
by proposing a 3D deep learning network architecture based on u-net for this clas-
sification task.  

All the methods mentioned above assume that 3D MR data are available. To the 
best of our knowledge, no segmentation method for the segmentation of the proxi-
mal femur has been proposed that relies solely on radial scans. Turning our attention 
to different organs, we can find literature on the segmentation of heart from similar 
radial images, for example [27,28]. As summarized in [27], these methods tend to 
have an interpolation part and a segmentation part. Sometimes, the slices are seg-
mented independently from one another and the 3D surface is interpolated by the 
2D contours. Alternatively, often a 3D volume is firstly interpolated from the 2D 
slices and then some segmentation method, usually model-based, is applied on the 
3D volume.  

The geometric feature that we are using in the classification stage is similar to 
those of the auto-context framework [29], especially to the distance-based features 
introduced in [30]. The main difference in these works is that they employ at least 
one prior regression or classification layer in order to locate certain landmarks or 
objects. In the present work, we attempt to directly take advantage of prior 
knowledge concerning the orientation of the images without a prior localization 
step.  
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Method 
The input to the pipeline is a set of radial MR images of the hip. Their field of 

view includes the hip joint and the upper extremity of the femur. In the following 
sections, we will be referring to such an MR sequence as a radial scan or simply a 
scan. For the individual planes of a radial scan, we will use the term images. 

Unlike typical MR scans, the images of a radial scan are not parallel to each 
other. Instead, they lay on oblique planes, acquired in a radial (rotating) fashion 
along the axis of the femoral neck. Their acquisition protocol is described in detail 
in [13], which specifies 14 images per scan. Following this protocol, the images are 
gadolinium-enhanced. The geometric arrangement is visualized in Fig. 1, which 
presents an example radial scan from different 3D viewpoints.  

The proposed pipeline consists of: (a) a pre-processing step, where the input im-
ages are aligned; (b) a classification step with a random forest classifier that esti-
mates the probability of every pixel to belong to femur; (c) a deformable model 
registration stage which fits a 3D template mesh to the input images and the gener-
ated probability maps. A summarizing diagram is presented in Fig. 2. Each compo-
nent is described in the following sections. 

Preprocessing 

At the preprocessing stage, two operations are carried out: (a) the intensities of 
the images are normalized by histogram matching to a reference image and (b) the 
images are rotated so that the common axis is vertical on every aligned image.  

The intensity normalization is performed because the range of the intensities of 
an image can be different for different radial scans, which might affect the perfor-
mance of the intensity-based features that are used by the random forest classifier. 
The matching is performed using a standard algorithm for histogram matching for 
MR images [31]. 

In order to reduce the variability of the appearance of the femur in the images 
and to assist the classification stage that follows, the images are rotated so that the 
common axis is always vertical. This is accomplished in the following manner: 
Firstly, the common axis is retrieved by computing the intersection of any two im-
ages in the scan. Then, the orientation of the common axis with respect to every 
image is calculated. The desired rotation angle is the opposite of the angle of the 
computed orientation. The result of this alignment procedure is shown in Fig. 3. 

The locations of three anatomical landmarks are also specified manually by the 
user, to be used for the initialization of the deformable model registration procedure 
of the last stage.  

Random forest classifier 

The automated segmentation is based on a binary, pixel-wise classifier which 
makes a probabilistic estimate for every pixel of an aligned image on whether it 
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belongs to the femur area or not. These two classes of pixels will be referred to as 
foreground and background in the following sections.  

A random forest is utilized for the binary classification. In addition to standard, 
intensity-based features, a geometric feature is used that attempts to introduce spa-
tial context information to the classification process. For the description of these 
features that follows, it is assumed that an image 𝐼𝐼: Ω ⊂ ℝ2 → ℝ is given, with the 
domain Ω corresponding to the pixel coordinates of the image. Since the classifier 
treats the images of a scan independently from each other, we ignore the fact that 
the pixels correspond in fact to 3D points in the world coordinate system and, for 
this sub-section, we treat the images as 2D objects.  

Intensity-based features 

A standard type of intensity-based features are utilized, the same way as in 
[32,33,44-46,49]. These features are based on the mean intensity value over dis-
played boxes. In more detail, if 𝒙𝒙 ∈ Ω is a reference point, the following features 
are considered: 

𝑓𝑓(𝒙𝒙;𝐵𝐵1,𝐵𝐵2,𝒐𝒐1,𝒐𝒐2, 𝑠𝑠) =
∑ 𝐼𝐼(𝒙𝒙 + 𝒐𝒐1 + 𝒚𝒚)𝒚𝒚∈𝐵𝐵1

|𝐵𝐵1| − 𝑠𝑠
∑ 𝐼𝐼(𝒙𝒙 + 𝒐𝒐2 + 𝑦𝑦)𝒚𝒚∈𝐵𝐵2

|𝐵𝐵2|  

Where 𝑠𝑠 ∈ {0,1}, 𝒐𝒐1,𝒐𝒐2 are 2D offsets, 𝑩𝑩1,𝑩𝑩2 are 2D rectangular boxes and 
|𝐵𝐵1|, |𝐵𝐵2| are their areas. 

As in the previously mentioned publications, a pool of these features is sampled 
randomly from a predefined range of values for 𝑩𝑩1,𝑩𝑩2,𝒐𝒐1,𝒐𝒐2 at the beginning of 
the random forest training. The interested reader is referred to [46] for a detailed 
description of this family of features and how they are integrated in the random 
forest classification framework. 

A geometric feature 

In order to improve the performance, we take advantage of prior knowledge con-
cerning the geometric arrangement of the images in a scan. As described earlier, the 
images of a radial scan of the proximal femur intersect on one axis in the 3D world 
coordinates space which passes close to the femoral head center and the femoral 
neck center. This prior knowledge is incorporating in the classifier through a feature 
which is simply the distance of the reference point to the common axis. This can be 
expressed as:  

𝑔𝑔(𝒙𝒙; 𝒔𝒔) = ‖(𝒙𝒙 − 𝒔𝒔0) − ((𝒙𝒙 − 𝒔𝒔0)𝑻𝑻 ∙ 𝒔𝒔�)𝒔𝒔�‖2 

Where 𝒔𝒔0 is a point of the common axis and 𝒔𝒔� is the direction vector of the com-
mon axis. This is more intuitively illustrated in Fig. 3(e). As it can be seen on this 
figure, this distance is calculated on the aligned image, so the unit vector 𝒔𝒔� is simply 
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equal to [0, 1]𝑇𝑇 and the computation above simplifies to just the subtraction of the 
y coordinate of 𝒔𝒔 from the y coordinate of 𝒙𝒙. 

Deformable model fitting 

In the last stage, a 3D template mesh of the femur is registered to the radial im-
ages based on a physically-based deformable model. The implemented deformable 
model framework is partially based on our previous work of physically-based sim-
plex meshes [22,34]. In this framework, mesh vertices are considered as lumped 
mass particles whose motion is driven by forces and which follows Newtonian dy-
namics. By carefully crafting the forces, the deformable model will reach an equi-
librium position corresponding to the structure to segment. 

The state of a particle 𝑖𝑖 at time 𝑡𝑡 is described by its position 𝑃𝑃𝑖𝑖(𝑡𝑡) and velocity 
𝑃𝑃𝑖𝑖′(𝑡𝑡). Following Newton’s law of motion, the particle acceleration 𝑃𝑃𝑖𝑖′′(𝑡𝑡) is related 
to the inverse of the particle mass, expressed by its inertia matrix 𝐿𝐿𝑖𝑖, and the sum of 
forces 𝐹𝐹𝑖𝑖  exerted: 𝑃𝑃𝑖𝑖′′(𝑡𝑡) = 𝐿𝐿𝑖𝑖𝐹𝐹𝑖𝑖(𝑡𝑡). The particle motion is thus described by a dif-
ferential equation system which can be linearized and solved according to an inte-
gration scheme. We chose the Implicit Euler scheme as described in [35]: 

 
𝑃𝑃(𝑡𝑡 + 𝑑𝑑𝑑𝑑) = 𝑃𝑃(𝑡𝑡) + 𝑃𝑃′(𝑡𝑡 + 𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑 
𝑃𝑃′(𝑡𝑡 + 𝑑𝑑𝑑𝑑) = 𝑃𝑃′(𝑡𝑡) + 𝐿𝐿𝑇𝑇𝐻𝐻−1𝑌𝑌 

𝐻𝐻 = 𝐿𝐿𝑇𝑇 − 𝐿𝐿
𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃′

𝐿𝐿𝑇𝑇𝑑𝑑𝑡𝑡 − 𝐿𝐿
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝐿𝐿𝑇𝑇𝑑𝑑𝑑𝑑2 

𝑌𝑌 = 𝐿𝐿𝐿𝐿(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐿𝐿
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑃𝑃′(𝑡𝑡)𝑑𝑑𝑑𝑑2 
 

This scheme remains very stable when using large integration time steps and can 
be efficiently implemented by using the conjugate gradient algorithm and by ex-
ploiting the sparsity of the system matrix 𝐻𝐻. A simulation step consists of: (a) com-
puting forces and their derivatives and (b) updating the next particle state by solving 
the differential equation system. For a vertex at position 𝑃𝑃𝑖𝑖 , a force 𝑓𝑓𝑖𝑖  is commonly 
modelled as the force of a Hookean spring which will attract the vertex towards a 
target vertex position 𝑅𝑅𝑖𝑖: 
 

𝑓𝑓𝑖𝑖 =∝𝑖𝑖 (𝑅𝑅𝑖𝑖 − 𝑃𝑃𝑖𝑖) 
 
where ∝𝑖𝑖 is the weighting force coefficient. 
A key difference with respect to our previous framework [22,34] is that we do 

not rely anymore on simplex meshes. We use instead standard triangular meshes 
due to the maturity and availability of many geometrical modelling techniques for 
this category of meshes. As a result, we devised new approaches in the framework, 
as detailed in the following paragraphs. 
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Internal forces 

Internal forces regulate mesh deformation by enforcing smoothness and shape 
similarity. Shape similarity is enforced by local and global shape forces. Smooth-
ness and local shape forces focuses on a local geometric description of a vertex with 
respects to its neighbors, while strong shape forces are based on statistical shape 
models [36] and affect the mesh globally. 

 
Smoothing and local shape forces 

Contrary to triangular meshes, simplex meshes are characterized by constant ver-
tex connectivity, simplifying the computation of various local geometrical proper-
ties that were used in our previous framework. 

Instead of relying on the dual transformation between simplex and triangular 
meshes, we choose in the present work to model the vertex local geometry with the 
Mean-Value Encoding (MVE) of [37]. In MVE, for each vertex at position 𝑃𝑃𝑖𝑖  a local 
plane 𝛱𝛱𝑖𝑖(𝑛𝑛𝑖𝑖,𝑑𝑑𝑖𝑖) is built based on the 𝑚𝑚𝑖𝑖  neighbor vertex positions 𝑄𝑄𝑗𝑗 , 𝑗𝑗 ∈  𝑁𝑁𝑖𝑖. The 
plane normal 𝑛𝑛𝑖𝑖  is computed as an area-weighted sum of the neighbor vertex nor-
mals, where the area 𝑎𝑎𝑖𝑖  of a vertex 𝑖𝑖 is computed from the areas 𝐴𝐴𝑖𝑖𝑖𝑖 of the triangles 
sharing the vertex: 𝑎𝑎𝑖𝑖 = ∑𝐴𝐴𝑖𝑖𝑖𝑖/3 . The plane position 𝑑𝑑𝑖𝑖 is expressed as an average 
distance from the origin: 

𝑑𝑑𝑖𝑖 = −
1
𝑚𝑚𝑖𝑖

� 𝑛𝑛𝑖𝑖 • 𝑄𝑄𝑗𝑗
𝑗𝑗∈ 𝑁𝑁𝑖𝑖

 

Each vertex position is expressed in terms of tangential and normal components 
with respect to the local plane, by a series of MVE parameters. These parameters 
provide an efficient encoding of local geometry at each vertex, robust to degenerate 
situations such as nearly collinear neighbor vertices.  

MVE parameters can be precomputed for the mesh at 𝑡𝑡 = 0, providing a “snap-
shot” of the mesh shape. Then, during mesh deformation, for each vertex position 
𝑃𝑃𝑖𝑖  a decoding process computes the position 𝑅𝑅𝑖𝑖 that would be expected based on the 
MVE encoding. The local shape force uses this position 𝑅𝑅𝑖𝑖 as the target position to 
enforce local shape geometry.  

The MVE local geometry can also be used to design a smoothing force prevent-
ing excessive local deformations such as spokes. The target point 𝑅𝑅𝑖𝑖 for vertex 𝑖𝑖 of 
the smoothing force is: 

𝑅𝑅𝑖𝑖 = � 𝑎𝑎𝑗𝑗
𝑗𝑗∈ 𝑁𝑁𝑖𝑖

(𝑄𝑄𝑗𝑗 + ℎ𝑗𝑗)/ � 𝑎𝑎𝑗𝑗
𝑗𝑗∈ 𝑁𝑁𝑖𝑖

 

where ℎ𝑗𝑗 denotes the height of the vertex 𝑗𝑗 in its local geometry, i.e. the normal 
component of position 𝑃𝑃𝑗𝑗 with respect to its local plane 𝛱𝛱𝑗𝑗. This smoothing is similar 
to Laplacian smoothing which uses the vertex barycenter but it additionally reduces 
the shrinking effect of the Laplacian smoothing by including the weighted height.  
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Global shape force 
In [22], we presented the use of statistical shape models (SSM), expressed as 

point distribution models [36], to create the global shape force. The idea is to com-
pute a shape 𝑆𝑆 based on the SSM which is the closest in least squares sense to the 
current mesh 𝑀𝑀. This is based on an iterative procedure described in [36] which 
estimates the best alignment transform and shape parameters of the SSM yielding 
the closest shape 𝑆𝑆. The vertices of 𝑆𝑆 are eventually used as the target vertices 𝑅𝑅𝑖𝑖 
for the global shape forces. 

External forces 

External image forces use image cues to guide the deformation of the mesh and 
are specifically designed based on the modality and nature of the images. In this 
work, we use both pixel intensities of the MR images and the values of the proba-
bility maps of the random forest classifier. Without any loss of generality, we will 
refer to any of them as image with intensities 𝐼𝐼. 

Given the 3D plane of a radial image, we select the mesh vertices 𝑃𝑃𝑖𝑖∗ whose pro-
jection on the plane 𝐿𝐿𝑖𝑖∗ are within the image bounds and whose distance to the plane 
are below a very small threshold 𝑙𝑙 (Fig. 5(a)). Then, the normals of the vertices 𝑃𝑃𝑖𝑖∗ 
are projected on the plane as 2D vectors 𝑛𝑛𝑖𝑖∗. In the plane, we sample 2𝑊𝑊 + 1 values 
every 𝑠𝑠 mm along the normal direction 𝑛𝑛𝑖𝑖∗ in an interval centered on 𝐿𝐿𝑖𝑖∗. The sam-
pling position 𝑢𝑢 where the intensity gradient 𝛻𝛻𝐼𝐼(𝑢𝑢) has (i) the greatest magnitude 
but also (ii) the closest direction to the projected normal 𝑛𝑛𝑖𝑖∗, is chosen for the force 
target point 𝑅𝑅𝑖𝑖 (Fig. 5(b)): 
 

𝑅𝑅𝑖𝑖 = argmax 𝜀𝜀 ∗ 𝛻𝛻𝐼𝐼(𝑢𝑢)• 𝑛𝑛𝑖𝑖∗ 
 

where 𝜀𝜀 equals +1 or -1 depending on whether the normals need inversion (in the 
case of probability maps, outward mesh normals and image gradients will have op-
posite directions). This force will only affect a subset of mesh vertices 𝑃𝑃𝑖𝑖∗ due to the 
small spatial coverage of the radial images. The remaining vertices are ignored dur-
ing the alignment procedure and the least square minimization of the global shape 
force computation [22]. 

Regularization 

Internal forces play an important role in preventing incorrect mesh deformations 
due to image forces affected by image noise or neighbor anatomical structures. 
However, additional regularization strategies are generally required to bring robust-
ness and tackle possible numerical issues. 

First, we adopt the same multi-resolution strategy depicted in [22], where several 
resolutions of the mesh are successively used during the mesh deformation. We also 
use a coarse-to-fine SSM scheme, by progressively increasing the SSM “locality” 
[34] during the process. The locality is related to the alignment type of the SSM and 
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it is an intuitive notion: a rigid SSM captures global shape changes while an affine 
or a similarity SSM will better express local variations.  

Second, we used a damping force 𝑓𝑓𝑖𝑖 = −∝𝑖𝑖 𝑃𝑃𝑖𝑖′ to prevent possible instabilities 
of the integration scheme. This may occur during the approximation of the force 
derivatives or when particle interactions are ignored. Approximate derivative may 
be chosen to preserve the system symmetry required by the conjugate gradient 
method or to simplify computations. For instance, the global shape force computa-
tion for a vertex 𝑖𝑖 will actually depend on all particle positions at the previous time 
step. However, we intentionally (wrongly) assume that the resulting 𝑅𝑅𝑖𝑖 will not de-
pend on the particle positions. In practice, neither instabilities nor odd behaviors 
were noticed with the chosen approximations.  
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Experimental Design and Results 

Dataset 

Our dataset consists of 25 MR gadolinium-enhanced radial scans of 25 patients 
symptomatic of FAI or AVN. They were acquired in the period 2010 – 2016 in the 
Sonnenhofspital, Bern, Switzerland following a radial sequencing acquisition pro-
tocol of the hip joint [13]. The age of the patients is 16 – 47 years with a mean age 
of 29.0 years, 11 are male and 14 are female. In 12 patients it is the left hip that is 
scanned and in 13 cases it is the right hip. The 3D geometry of an example radial 
scan is visualized in Fig. 1. The intra-slice spacing is in 0.28 – 0.29 mm range, the 
size of the images is either 448x448 (19 cases) or 512x512 (6 cases) and there are 
14 images in every scan. Radial scans of this type are routinely acquired in the 
aforementioned hospital. A reference, manual segmentation of every image of the 
radial scans is also provided.  

Study design 

A 5-fold cross-validation study is performed on the dataset of the 25 radial scans 
with every fold consisting of five scans. Therefore, each scan is utilized exactly 
once as part of a test set. The reference image of the intensity normalization pre-
processing step is set to be the image of the training set with the median mean in-
tensity. For the initialization of the deformable model registration stage, the follow-
ing three landmarks were used: (a) the femoral head center, (b) the femoral neck 
center and (c) the tip of the minor trochanter. These were specified manually for 
each case using the “Fiducials” module of the Slicer 3D open-source software [41].  

Hyper-parameters 

Random forest 
Given the relatively small size of our dataset, the most preferable way to tune the 

hyper-parameters of the random-forest would be independently for every cross-val-
idation iteration through a nested cross-validation scheme. However, due to the long 
training times (more than half a day for one iteration), we opted to set the hyper-
parameters in advance to fixed values, based on related literature and prior 
knowledge on the task at hand. Specifically, when random forests are utilized as 
classifiers for image segmentation problems (as in [42-46]), the maximum depth of 
the trees is usually in the 𝑇𝑇 ∈ [20,40] range and their number in the 𝑁𝑁 ∈ [20,120] 
range. These parameters affect the generability of the trained classifier: For a fixed 
depth, more trees reduce the variance of the model (but lead to higher training and 
testing times) and, for a fixed number of trees, the depth influences the bias-variance 
trade-off. These effects of 𝑇𝑇,𝑁𝑁 can be explained theoretically [50] and they have 
been observed in practice [46-48]. We conservatively set the maximum depth to 
𝑇𝑇 = 20 to prevent overfitting and the number of trees to 𝑁𝑁 = 50. The box-size of 
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the intensity-based features is between 0.3 mm, which is slightly larger than the 
pixel spacing in the dataset, and up to 7.5 mm, as we expect that no area in the 
foreground larger than 7.5x7.5 mm2 has uniform intensity. Following the practice 
of our prior work [49], we set the maximum range of the intensity features to double 
the maximum length of the boxes, i.e. to 15 mm. 

A posteriori, we varied the tree depth as 𝑇𝑇 ∈ {15,20,25,30}, keeping the number 
of trees to 𝑁𝑁 = 50. We found out that for T=25 for the classifier-based method, the 
mean scan DSC increased by 0.07 % and the mean SMAD decreased by 0.02 %, 
suggesting that there is some room for better tuning of our method, probably though 
only marginal. Since we did not follow a nested cross-validation strategy, we are 
reporting here the results obtained with the preset parameter values. 

Deformable model 
The hyper-parameters of the deformable model registration stage were chosen 

based on an empirical analysis performed on three randomly chosen cases. The pro-
cedure was based on a semi-automatic interactive segmentation, during which a 
skilled operator could increase or decrease the influence of forces as well as increas-
ing the resolution of the mesh when needed. Some initial parameters of the segmen-
tation, such as weight forces or image force coverage, were derived from our previ-
ous experience in MRI segmentation of the hip [22]. From this previous work, we 
could already identify some best strategies to apply, such as the choice of the SSM 
alignment with respect to the mesh resolution. All operator actions were recorded 
in a script which could be reapplied later on in an automatic fashion on the test 
cases. If some high errors were detected, the operator would re-run the interactive 
segmentation and adapt her/his choices until a satisfactory segmentation was ob-
served for the three cases. As a measure against over-fitting with respect to these 
cases, the script was cleaned out to keep the parameters as constant as possible, 
since the operator varied some of them unnecessarily over time. The parameters 
whose variation was found to have a significant impact on the results were the 
global shape force weight and image force coverage; only these two were allowed 
to evolve over time. 

Using the strategy described above, the deformable model used 4 mesh resolu-
tions, ranging from 700 to 50K points. The mass of a vertex was set as the total 
surface of the mesh divided by the number of vertices. Mesh resolution 3 (the coars-
est) used a rigidly aligned SSM, while resolution 2 and 1 used an SSM with affine 
alignment. The highest resolution 0 did not use any global shape force. The 
weighting force coefficients ∝𝑖𝑖 of the smoothing and local shape forces were re-
spectively set to 0.2 and 0.3. The global shape force weight progressively decreased 
from 0.8 to 0.1 during the simulation as follows: for 51% of the total iterations count 
the weight was set to 0.8, then to . 0.4 for 8%, 0.3 for 13%, 0.1 for 20% and 0 (the 
force being not used for the highest mesh resolution) during the remaining 8%. The 
statistical shape models were built from training femur shapes produced by seg-
menting a collection of 200 hip CT images. The image force weight was kept con-
stant at 0.05 for the MR image and 0.45 for the probability map, but the image force 
coverage decreases over time from 9 (W=4) samples to 5 (W=2) samples spaced by 
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𝑠𝑠=1.2 mm. The distance threshold l of the image force was set to 0.001 mm. Finally, 
damping weight was set to 0.5 and the time step was 1.0. 

Evaluation metrics 

The accompanying manual segmentation of the proximal femur is treated as the 
ground truth in our study. We compare the generated segmentation with this refer-
ence segmentation with respect to area overlap and border distance. 

The area overlap is quantified with the Dice similarity coefficient (DSC) and two 
types of DSC measurements are performed: (a) the DSC is computed independently 
for every 2D images and (b) all the images of a scan are treated as a single set and 
their DSC is computed with respect to the set of the image segmentations.  

The two borders are compared using the symmetric mean absolute distance 
(SMAD) measure and the Hausdorff distance measure. The segmentation of every 
radial scan is treated as a single set, thus all the images of a scan are taken into 
consideration. We also repeat these measurements specifically for the femoral head 
area by isolating the region from the hip joint to the femoral head center using a 3D 
mask.  

The achieved scores on these metrics are presented on Table 1. In Fig. 6, the 
images of the radial scan with the median scan DSC value (96.65 %) are listed, 
overlaid with the reference segmentation and the output of our method. Subfigures 
(e) and (f) of Fig. 1 illustrate an example registered 3D model of a testing case, 
along with two of its radial images. 

When the three cases that were utilized for the configuration of the deformable 
model stage are omitted from the evaluation, the mean SMAD gets slightly better 
(0.62 mm .instead of 0.64), the scan DSC gets slightly worse (96.34 instead of 96.40 
%) and the mean values of the remaining 4 evaluation metrics stay the same, sug-
gesting that no significant bias was introduced by the inclusion of these three cases 
in the evaluation. 

Evaluation of specific components of the pipeline 

The study was repeated for two variants of the proposed method, using the same 
five folds, in order to quantify the effect of specific components of the pipeline. 

Firstly, we assess the effect of the deformable model registration stage on the 
segmentation performance by comparing the proposed pipeline with an alternative 
one that is based on the classifier without any registration of a 3D model. In order 
to make the comparison fair, we improve the result of the alternative method with 
standard post-processing operations: Firstly, a Conditional Random Field (CRF) 
[38] with a simple Potts model is applied, whose unary potentials are the probabil-
istic prediction of the random forest. The CRF inference is performed using the 
DGM C++ library [51]. Then, any holes on the resulting segmentation are filled and 
its largest connected component is the final output. The performance of this classi-
fier-based method is summarized on Table 2. 
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Secondly, the importance of the geometric feature is assessed by measuring the 
segmentation performance when this feature is not utilized. The scores achieved are 
presented on Table 3. 

Statistical tests were conducted for each of the two variants in order to determine 
whether their performance differs significantly from the default pipeline, in the 
sense that is described in this paragraph. In particular, for each of the six evaluation 
metrics, a two-sided Wilcoxon signed-rank test was performed, hereinafter referred 
to as the WSR test. Let 𝑚𝑚𝑖𝑖 , 𝑣𝑣𝑖𝑖 , 𝑖𝑖 ∈ {1,⋯ ,𝑁𝑁} be the measurements of two methods 
𝑀𝑀,𝑉𝑉, as obtained on a set of 𝑁𝑁 samples. Let also 𝐷𝐷𝑀𝑀 ,𝐷𝐷𝑉𝑉 denote the distributions 
that 𝑚𝑚𝑖𝑖 , 𝑣𝑣𝑖𝑖 respectively are sampled from. The WSR test examines the differences 
𝑥𝑥𝑖𝑖 = 𝑚𝑚𝑖𝑖 − 𝑣𝑣𝑖𝑖, whose distribution is denoted with 𝐷𝐷𝑋𝑋. The test makes the following 
assumptions: that the 𝑁𝑁 samples are chosen randomly, that the values of the metric 
can be treated as continuous (so that expressions like 𝑚𝑚𝑖𝑖 − 𝑣𝑣𝑖𝑖 are meaningful) and 
that 𝐷𝐷𝑋𝑋 is approximately symmetric around its median value 𝜃𝜃𝑋𝑋. Its null hypothesis 
is the following [52-54]: 

Null hypothesis of the WSR test: 𝜃𝜃𝑋𝑋 = 0. 
The WSR test was chosen over the paired samples t-test, whose null hypothesis 

is that the mean value of  𝐷𝐷𝑋𝑋 is zero, because the distributions of the values were 
found be to non-Gaussian. As a counteraction to the well-known Multiple compar-
isons problem, after the conduction of the six tests, the Holm–Bonferroni correction 
method was applied. The significance level for all the statistical tests was set to 
0.05. The resulting (corrected) p-values are reported in the rightmost columns of 
Table 2 and Table 3.   
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Discussion and conclusion 

Performance of the proposed pipeline 

We performed a validation study on the radial MR scans of 25 patients sympto-
matic of FAI or AVN. The proposed pipeline yields satisfactory results in terms of 
both area overlap and border distance to the reference segmentation. As summarized 
on Table 1, the mean DSC of the segmentation is 96.37 %, the mean SMAD is 0.94 
mm and the mean Hausdorff distance is 2.37 mm. There is generally no significant 
difference between computing the DSC of the whole scan and computing the mean 
DSC of its images, as the femur occupies more or less the same area in all the im-
ages. 

On Fig. 6 it can be qualitatively observed that the largest difference with the 
manual segmentation of a typical case (the one with the median DSC) occurs near 
the trochanters, whereas there is less difference near the joint space. This agrees 
with the results of Table 1, as the average SMAD and the average Hausdorff dis-
tance is much lower when calculated only on the femoral head (0.64 mm and 1.41 
mm respectively, compared to 0.94 mm and 2.37 mm). We think that this is im-
portant for certain applications, since frequently the most critical part of the proxi-
mal femur is the one close to the hip joint. It also demonstrates the ability of the 
proposed method to follow the border of the proximal femur in the regions affected 
by cross-talk artifact of the radial scans, which can be challenging during manual 
segmentation. 

Some representative images from six scans are shown on Fig. 7, each exempli-
fying typical pathological findings and/or challenges for the automated segmenta-
tion (three cases where the femoral heads have a highly non-spherical shape and 
three cases with cam lesions). The border of the automated segmentation is also 
shown. The pipeline copes with these variations in most cases satisfactory, but mis-
takes do happen. In Fig. 7, it can be observed that the method did not manage to 
follow the border of a non-spherical femoral head in a sub-region of one case and 
that a small cam-type lesion was segmented-out in another image. 

In terms of runtime performance, the proposed pipeline is relatively fast: On a 
system with a standard Intel i7 CPU dual-core at 2.7GHz, the random forest classi-
fication takes about 2.5 seconds per slice, therefore 35 seconds for the 14 images of 
a scan. The subsequent deformable model registration takes approximatively 40 
seconds. The pre-processing stage completes in around 10 seconds, thus the pipeline 
needs around 1.5 minute in total to segment the 14 images of a scan and to recon-
struct the 3D model of the proximal femur. 

Effect of the geometric feature 

When only intensity-based features are used, the probability maps frequently 
have high values for areas which are far away from the femur and the border be-
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tween background and foreground is not always sharp. These problems are illus-
trated on Fig. 4(b). After the inclusion of the geometric feature, the situation is much 
improved (Fig. 4(c)). The effect in performance is quantified in Table 3, which 
presents the performance of a pipeline that uses only intensity-based features in the 
classification process: The average, standard deviation, median, minimum and max-
imum values of all the evaluation metrics get worse, with the average scan DSC 
decreasing from 96.37 % to 95.80 %; the average SMAD increasing from 0.94 mm 
to 1.08 mm and the average Hausdorff distance increasing from 2.37 mm to 2.59 
mm. 

This variant was compared with the default pipeline using a WSR test for each 
evaluation metric, followed by a correction of the p-values with the Holm–Bonfer-
roni method. Within the confidence level of 95 %, the difference with the default 
pipeline with respect to the Hausdorff distance metric was found to not be statisti-
cally significant. The difference with respect to each of the remaining five metrics 
was found to be statistically significant within the confidence level of 95 %. 

Importance of deformable model registration stage 

We also compared the proposed system with a purely classifier-based approach. 
We found that the latter yields slightly worse mean values of all the six evaluation 
metrics (Table 2): The average scan DSC decreases from 96.37 % to 95.69 %; the 
average SMAD increases from 0.94 mm to 1.12 mm and the average Hausdorff 
distance increases from 2.37 mm to 2.75 mm. The performance of the classifier-
based variant was compared with that of the default pipeline using a WSR test for 
each evaluation metric, followed by a correction of the p-values with the Holm–
Bonferroni method. Within the confidence level of 95 %, the difference with the 
default pipeline with respect to each metric was found to be statistically significant. 

In Fig. 8, the difference in performance between the two variants can be assessed 
visually. This figure presents box-and-whisker plots for the two variants for all the 
six evaluation metrics. A first observation that we can make from these plots is that 
there are strong outliers for all the metrics, indicating that their distributions cannot 
be considered Gaussian. Secondly, the boxes of the plots illustrate the fact that both 
the median values of the metrics and their distance from the lower quartile (Q1) to 
the higher quartile (Q3), i.e. their interquartile ranges (IQR), are generally better 
with the deformable model (the only exception is the IQR for the Hausdorff dis-
tance, which does not change significantly). Visually, it seems that the difference 
between the two variants is least significant with respect to the Hausdorff distance 
in the femur head area and most significant with respect to the SMAD in the femur 
head area. Both observations agree with the minimum and maximum computed p-
values that are reported in Table 2. 

We observed that the biggest performance gains with the deformable model reg-
istration frequently occur on the scans which are the most challenging to the classi-
fier. For example, the classifier-based method performed worst in the cases with Ids 
4, 9 and 12, with average scan DSCs of 90.95 %, 89.58 % and 93.53 % and average 
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SMADs of 2.21 mm, 3.04 and 1.60 respectively. The hip joint of case 4 has image 
findings consistent with Perthes disease and the cases 9 and 12 correspond to the 
youngest patients of our dataset (16 years old). Within the variance observed in our 
dataset, all these three proximal femurs have non-typical appearance. In these cases, 
the proposed pipeline achieves scan DSCs 90.90 %, 95.34 % and 95.44 % and av-
erage SMADs 2.20 mm, 1.39 mm and 1.12 mm for case 4, 9 and 12 respectively. 
Our interpretation of these results is that, in some scans, the proximal femur has an 
appearance that has not been encountered during training and, hence, the classifier 
has difficulty in capturing its borders accurately. When this happens, the registration 
of the 3D mesh can help by taking advantage of its explicit modeling of the global 
shape of the femur. 

We can summarize that the advantage of the purely classifier-based approach is 
that it performs only slightly worse than the complete pipeline while it remains fully 
automated, as it does not need to be initialized using manually-specified landmarks. 
The full pipeline proceeds with the registration of a deformable model of the prox-
imal femur, which we found to improve the segmentation performance. While it is 
true that this improvement in performance is small, the resulting registered model 
of the proximal femur has important implications for clinical applications. Indeed, 
the output of a classifier is only a binary segmentation mask, whereas the registered 
model provides rich contextual interpretation of the segmentation result. The latter 
can be used for the direct localization of anatomical landmarks and for further plan-
ning of surgical planning procedures. For example, it permits the direct computation 
of clinically-relevant morphometric features, such as the head and neck diameters, 
the sphericity of the head, the length of the proximal femur and the intertrochanteric 
distance. 

Conclusion 

We present a pipeline for the segmentation of the proximal femur from radial 
scans of the hip and the reconstruction of its 3D model. We performed a 5-fold cross 
validation on a dataset of 25 radial scans of patients symptomatic of FAI or AVN. 
With respect to a manual, reference segmentation of the proximal femur, the result-
ing segmentation has an average DSC of 96.37 %, an average mean SMAD of 0.94 
mm and an average Hausdorff distance of 2.37 mm. In the femoral head sub-region, 
the average SMAD is 0.64 mm and the average Hausdorff distance is 1.41 mm. 

In our view, the main limitation of the presented study is the lack of a comparison 
with the segmentation achieved from 3D MRI scans. Such an extension of our study 
is significant, as it will permit the detailed evaluation of the fitted 3D model and the 
examination of how the segmentation accuracy is affected by the lack of the dense 
intensity information of the 3D MRI. Unfortunately, we did not have accompanying 
3D CT or MRI scans for the cases of our dataset, so such a study was not possible. 
In the future, we plan to collect additional 3D images, permitting us to further in-
vestigate the potential of a method based solely on radial scans to provide a reliable 
3D model of the proximal femur. 
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As part of future work, we also intend to replace the manual picking of the three 
landmarks for the initialization of the deformable model registration stage with an 
automated method, thus rendering the whole pipeline fully automated. For this pur-
pose, we could employ a random forest regression localization approach, akin to 
our previous work [39]. Another possible extension important from a clinical stand-
point is the concurrent segmentation of the acetabulum: the critical attribute of FAI 
is a decreased range of motion, therefore the modeling of the whole hip joint is a 
necessary component of a complete system what aims to facilitate the management 
of the condition. As the acetabulum socket is within the field-of-view of the radial 
scans, we expect that the classification stage can be directly extended for this task 
by simply adding a third class corresponding to the acetabulum. The registration of 
a 3D model of the acetabulum could be performed with the currently employed 
method, with the necessary inclusion of a collision-detection step that considers 
both parts of the hip joint. 

In conclusion, surgical correction of cam-FAI or AVN is challenging and re-
quires exact preoperative planning. The 3D model of the proximal femur as recon-
structed by the proposed method can be utilized for this planning, as it does not 
require any modification to the MR protocol for these frequent hip diseases. We 
intend to use this method for diagnosis and planning of surgical correction of cam-
FAI or AVN because, unlike 3D MRI, radial MR scans can be included in a routine 
MRI of the hip. 
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Fig. 1. Visualization of the 3D geometry of a radial scan along with the registered 3D model, 

shown from different 3D viewpoints. In (a)-(d), the same image is highlighted with a green over-
lay. For clarity of visualization, only two, three and seven of the total 14 images of the radial scan 
are shown in (a), (b) and (c) respectively. In (d), it is can be observed that all the images share a 
common axis and that their angular displacements around their common axis are uniformly dis-
tributed around the circle. Finally, in (e) and (f), the two images of (a) are shown along with the 
registered 3D model, as generated by the proposed method. Subfigures (e) and (f) were created 
using the 3D Slicer software [41]. 
  

(a) (b) 

(c) (d) 

(f) (e) 
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Fig. 2. Summary of the pipeline. (a) The images of a radial scan are preprocessed and they are 
aligned according the common axis of the scan; (b) The random forest classifier makes a prediction 
for every pixel of the images on whether in corresponds to femur. The generated probability maps 
are rotated back to the original orientations; (c) a 3D template mesh of the femur is registered to 
the radial images using the generated probability maps to drive the registration process and the 
positions of the three landmarks to initialize it. 
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Fig. 3. Alignment of the images with respect to the common axis and the geometric. From (a) 

to (c): An example input image; the same image, with the ground truth segmentation of the femur 
highlighted with a blue overlay; the appearance of the image, when it is aligned with respect to the 
common axis (the image has been rescaled on this figure to make the figure clearer). The cross-
talk artifact, occurring on the common axis of all the images and typical for MR radial scans, can 
be easily observed. (d): The image of subfigure (a), with the common axis pinpointed with a blue 
line. (e) The aligned image of subfigure (c), with the common axis pinpointed with a blue line. 
The unit vector 𝒔𝒔� is the direction vector of the common axis. Since the image is aligned, 𝒔𝒔� is parallel 
to the vertical axis. The length of the yellow dotted line is the value of the geometric feature 𝑔𝑔, 
computed at the point 𝒙𝒙. 
  

(b) (a) (c) 

(e) (d) 
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Fig. 4. Probability maps with and without using the geometric feature. (a) three testing im-

ages; (b) The probability maps generated by a classifier that used only the intensity-based features; 
(c) The probability maps generated by a classifier that used both the intensity-based and the geo-
metric feature. The probability maps were visualized using the ITK-Snap software [40]. 
  

(b) (c) (a) 
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Fig. 5. Search of target point 𝑅𝑅𝑖𝑖 for the image force. (a) Mesh vertices close enough to the image 
plane and whose projection 𝐿𝐿𝑖𝑖∗ is within image bounds are selected (yellow ●). (b) For each vertex 
projection 𝐿𝐿𝑖𝑖∗ (●), values are sampled along the projected normal direction 𝑛𝑛𝑖𝑖∗ at regular steps 𝑠𝑠. 
The sampled position at which the image gradient ∇I is the largest and the best aligned with 𝑛𝑛𝑖𝑖∗ is 
chosen as the target point 𝑅𝑅𝑖𝑖 (▲). 
  

(a) (b) 
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Fig. 6. Segmentation result for the 14 images of the case with the median DSC (96.65 %) and 
illustration of its errors with respect to the manual, reference segmentation. Blue: true positive 
pixels; red: false negative pixels; green: false positsive pixels.  
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(a) (b) (c) 

(d) (e) (f) 
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Fig 7. Visualization of six representative radial images with pathological findings and/or present-
ing challenges for the segmentation, each corresponding to a different patient. (a) – (c): Non-
spherical shape of femur head; (d) – (f): lesions of cam-type FAI (femoral “bumps”). Below every 
image, the border of the segmentation achieved by the pipeline is also shown. In (c) and (e), the 
result of the pipeline has visible mistakes. In (c), the border of a sub-region of the femoral head is 
not captured correctly and in (e) a lesion is segmented out. 
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Fig 8. Box-and-whisker plots of the proposed pipeline and the its purely classifier-based variant 
for all the six evaluation metrics. The proposed pipeline corresponds to the blue boxes (gray back-
ground) and the purely classifier-based variant corresponds to the yellow boxes (white back-
ground). For clarity of visualization, the datapoints have been jittered horizontally. The boxes span 
from the lower quartile (Q1) to the higher quartile (Q3) and the band within them corresponds to 
the median value. Thus, the span of the boxes is equal to the IQR. The two whiskers lay on lowest 
datapoint still within 1.5 IQR of the lower quartile and on the highest datapoint still within 1.5 IQR 
of the upper quartile. 
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Table 1. Performance of the proposed pipeline. The DSC over whole scans (each one consisting 
of 14 images) and the DSC over individual images are both presented. The symmetric mean abso-
lute distance (SMAD) and the Hausdorff distance are computed for both the whole proximal femur 
and for the femoral head area only. 

 Mean  Std. Dev. Median Min. Max. 
DSC over scans (%) 96.37 1.55 96.65 90.90 97.47 
DCS over images (%) 96.40 1.45 96.68 89.86 97.40 
SMAD (mm) 0.94 0.39 0.84 0.69 2.20 
SMAD, only femoral 
head (mm) 

0.64 0.18 0.54 0.40 
 

1.06 
 

Hausdorff (mm) 2.37 1.13 2.14 1.43 4.35 
Hausdorff, only fem-
oral head (mm) 

1.41 0.56 1.28 0.81 3.83 
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Table 2. Performance of a purely classifier-based pipeline, without the registration of a 3D model. 
A Wilcoxon signed-rank test was performed for each of the six evaluation metrics in order to 
determine whether the differences with the full pipeline (Table 1) are statistically significant. After 
the conduction of the six tests the Holm–Bonferroni correction method was applied and the result-
ing (corrected) p-values are listed in the rightmost column. 

 Mean  Std. 
Dev. 

Median Min. Max. p-value 

DSC over 
scans (%) 

95.69 1.87 96.42 89.58 97.49 0.0100 

DSC over in-
dividual im-
ages (%) 

95.68 1.84 96.35 89.75 97.42 0.0046 
 

SMAD (mm) 1.12 0.51 0.99 0.68 3.04 0.0103 
SMAD, only 
femoral head 
(mm) 

0.86 0.54 0.67 0.46 3.13 0.0001 

Hausdorff 
(mm) 

2.75 1.24 2.44 1.71 7.16 0.0488 

Hausdorff, 
only femoral 
head (mm) 

1.64 0.85 1.43 0.64 4.79 0.0488 
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Table 3. Performance when the geometric feature is not used. As in Table 2, a Wilcoxon signed-
rank test was performed for each of the six evaluation metrics to determine whether the differences 
with the full pipeline (Table 1) are statistically significant. After the conduction of the six tests the 
Holm–Bonferroni correction method was applied and the resulting (corrected) p-values are listed 
in the rightmost column. 

 Mean  Std. 
Dev. 

Median Min. Max. p-value 

DSC over 
scans (%) 

95.80 2.32 96.40 85.04 97.39 0.0007 

DSC over in-
dividual im-
ages (%) 

95.78 2.36 96.35 85.29 97.33 0.0008 

SMAD (mm) 1.08 0.53 0.98 0.70 3.48 0.0013 
SMAD, only 
femoral head 
(mm) 

0.74 0.33 0.66 0.43 2.07 0.0125 

Hausdorff 
(mm) 

2.59 1.42 2.25 1.44 9.08 0.1122 

Hausdorff, 
only femoral 
head (mm) 

1.61 0.71 1.46 1.14 4.87 0.0170 
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