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Abstract: Breast density, a measure of dense fibroglandular tissue relative to non-dense fatty tissue,
is confirmed as an independent risk factor of breast cancer. Although there has been an increasing
interest in the quantitative assessment of breast density, no research has investigated the optimal
technical approach of breast MRI in this aspect. Therefore, we performed a systematic review and
meta-analysis to analyze the current studies on quantitative assessment of breast density using
MRI and to determine the most appropriate technical/operational protocol. Databases (PubMed,
EMBASE, ScienceDirect, and Web of Science) were searched systematically for eligible studies.
Single arm meta-analysis was conducted to determine quantitative values of MRI in breast density
assessments. Combined means with their 95% confidence interval (CI) were calculated using a
fixed-effect model. In addition, subgroup meta-analyses were performed with stratification by
breast density segmentation/measurement method. Furthermore, alternative groupings based on
statistical similarities were identified via a cluster analysis employing study means and standard
deviations in a Nearest Neighbor/Single Linkage. A total of 38 studies matched the inclusion criteria
for this systematic review. Twenty-one of these studies were judged to be eligible for meta-analysis.
The results indicated, generally, high levels of heterogeneity between study means within groups
and high levels of heterogeneity between study variances within groups. The studies in two main
clusters identified by the cluster analysis were also subjected to meta-analyses. The review confirmed
high levels of heterogeneity within the breast density studies, considered to be due mainly to the
applications of MR breast-imaging protocols and the use of breast density segmentation/measurement
methods. Further research should be performed to determine the most appropriate protocol and
method for quantifying breast density using MRI.
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1. Introduction

Breast density, a measure of dense fibroglandular tissue relative to non-dense fatty tissue, is an
independent risk factor for breast cancer [1–3]. Consistent with this risk relationship, women who
have dense breasts have a likelihood of developing breast cancer that is fourfold higher than those
with fatty breasts [4,5]. Most of the information regarding breast density has been acquired with
two-dimensional imaging, which is mammography. However, the evaluation of breast density based
on mammograms is limited due to the overlapping of tissues, variations in breast compression,
and inappropriate positioning that lead to artefacts (skin folder) and inclusion of insufficient breast
tissue [6,7]. These factors could affect mammography’s performance for precise, reliable measurements
of small changes in breast density over brief timespans [8,9].

Magnetic resonance imaging (MRI), an alternative imaging modality in breast imaging can
estimate the actual breast density value because it provides a three-dimensional volume assessment
of breast tissue, with excellent contrast resolution in the differentiation between fibroglandular and
fatty tissues [10–13]. Conventionally, breast density is assessed qualitatively using the American
College of Radiology (ACR) Breast Imaging-Reporting and Data System (BI-RADS) atlas, which is a
classification system commonly used for mammography, according to which density has four categories
based on the amount of fibroglandular tissue: “(1) almost entirely fat, (2) scattered fibroglandular
tissue, (3) heterogeneous fibroglandular dense and (4) extreme fibroglandular tissue” [14,15].
The interpretations of these four categories are also applied for MRI. Despite its long clinical success,
the BI-RADS scoring atlas is subjective and varies between readers, even within the same reader [16].
To overcome a subjective assessment of breast density and to reduce inter- and intra-reader variability,
different methods for quantitative breast density have been proposed, with a range of algorithms or
methods reported in the literature [17–22]. Each of these methods were shown to have advantages
and limitations through the use of semi-automatic thresholding and segmentation approaches for
quantitative assessment of breast density.

There is no doubt that MRI is one of the most useful modalities for breast imaging and that the
analysis of breast density in quantitative synthesis is a well-established approach. In spite of the fact
that extensive research has been carried out on breast density measurements, no consensus has been
reached about the optimal approach to quantify breast density using MRI. Therefore, the purpose
of this review is to analyze the current methods for the quantitative assessment of breast density
using MRI over the past decade of publications. Due to the expected heterogeneity of MRI scanning
protocols, both systematic review and meta-analysis were performed to analyze the available studies.

2. Materials and Methods

This systematic review and meta-analysis were performed according to the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria [23,24]. No ethics committee
approval was required.

2.1. Search Strategy and Eligibility Criteria

A systematic literature review was conducted of studies that analyzed breast density in a
quantitative pattern using MRI. Briefly, a search for studies published between 1 January 2009
and 31 December 2018 was conducted in different databases: PubMed (MEDLINE, U.S. National
Library of Medicine and National Institutes of Health, Bethesda, MD, USA), EMBASE (Elsevier,
Amsterdam, The Netherlands), ScienceDirect (Elsevier, Amsterdam, The Netherlands), and Web of
Science (Clarivate Analytics, Philadelphia, PA, USA) using the search terms detailed below.

Systematic search expressions were employed using MeSH (medical subject headings) in PubMed
and the thesaurus in EMBASE, ScienceDirect, and Web of Science. A search structure was based on
combining three main terms as follows: “breast density,” “quantitative analysis,” and “MRI.” The exact
search expressions were “Breast Density” (MeSH term) OR “fibroglandular tissue” (Text word) OR
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“breast densit*” (Text word) OR “FGT” (Text word) OR “FT” (Text word) OR “fibroglandular densit*”
(Text word) AND “Quantitative analysis” (Subject heading) AND “Magnetic Resonance Imaging”
(MeSH term) OR “nuclear magnetic resonance imaging” (Text word) OR “MRI” (Text word) OR
“magnetic resonance imaging” (Text word). The criteria for selecting the studies for eligibility were
based on their title, abstract, and subsequently the full text, this was performed independently by
two reviewers (R.S. and Z.S.). Studies addressing the quantitative analysis of breast density using
MRI were considered eligible for inclusion and also studies on human subjects since 2009 had to be
published in peer-reviewed journals and written in English. For study inclusion, the subjects must have
undergone breast MRI studies and the breast density measurement method is known. Eligible studies
were retrieved, and full manuscripts were read. No restricted conditions have been applied in terms of
study characteristics, the purpose of study, and the results. Publications were only included in the
analysis if the measurement of breast density had been performed in a quantitative manner regardless
of the MRI technique or breast density segmentation/measurement method.

2.2. Data Extraction

On completing the eligibility screening, the process of data extraction from the included
studies was carried out manually by the same two reviewers. Descriptive data were extracted
for all variables as follows: the first author’s surname; year of publication; journal of publication;
study type; total number of participants/patients; mean age; age range of participants/patients;
MRI technique (pulse sequence/breast-imaging protocol and static magnetic field strength); and
breast segmentation/measurement method. For each study analyzed, estimates of breast volume,
fibroglandular-tissue volume and percentage breast density were recorded using descriptive statistics,
arithmetic means and standard deviations, whenever appropriate. Due to the heterogeneous nature
of this analysis, some of the included studies produced their results in a median and interquartile
range (IQR). Accordingly, the researchers decided to stratify results and excluded them from the
meta-analysis only.

2.3. Data Synthesis

The combinations of MRI techniques and the applied breast segmentation/measurement methods
encountered in the studies were considered to be technologically heterogeneous. To address this issue
and acquire more reasonable estimates, the analyses were stratified by breast segmentation method
into three discrete groups (fuzzy c-mean clustering (FCM), FCM and nonparametric nonuniformity
normalization (N3), and signal intensity thresholding). In each sub meta-analysis, the number of
the included studies were selected on the basis of a degree of homogeneity of their breast density
segmentation/measurement results.

2.4. Statistical Analysis

The measurement of breast density as ascertained by MRI using semi- or fully-automated
segmentation method was assessed. The primary outcome was the percentage breast density (%BD).
Data input for each study within a group consisted of the study size (N), the ‘raw’ study mean (i.e.,
with no re-scaling or standardization), and the study standard deviation. The data was analyzed by the
“metamean” function in the “meta” package in the R system, Version 3.4.1 (http://www.r-project.org/).
This facilitates the meta-analysis of a single arm trial, as opposed to the traditional two arm trial with
a control group and a treatment group, equivalent to a one-way analysis of variance. A forest plot
was generated, displaying the individual study (%BD) means with 95% confidence interval (CI) limits,
inverse variance study weights, and the pooled mean and confidence limits. Heterogeneity of study
means was assessed using Cochran’s Q-test, and heterogeneity of study variances was assessed with
Bartlett’s test. A conclusion to pool studies requires both heterogeneity tests to be non-significant at
the 5% level.

http://www.r-project.org/
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As an alternative to grouping the studies on a technological basis, a cluster analysis was run
to investigate any similarities between studies with respect to two attributes, namely study mean
and study standard deviation. The International Business Machines Statistical Package for the Social
Sciences (IBM SPSS) Statistics software Version 25.0 was used for cluster analysis. The procedure
provides for a wide selection of combinations of distance measures and clustering methods, but for the
current application, the simplest of these was chosen, namely Euclidean distance and nearest neighbor
agglomeration. This algorithm calculates a proximity matrix of distances between all possible pairs of
studies and allocates the closest pair into a cluster, then examines the remaining clusters to identify
which is the next nearest or whether there is a pair that are closer to one another, and so on.

3. Results

3.1. Literature Search

Figure 1 presents an overview of the systematic search of the literature through different databases.
The complete search yielded 941 studies. After removing duplicates (n = 70), 871 were screened,
based on their titles, which resulted in 765 being excluded, followed by 27 of the remaining studies
being excluded on the basis of their abstracts. Of the remaining 79 studies, the full manuscript was
retrieved and reviewed. Forty-one studies did not meet the selection inclusion criteria: no adequate
breast density data (n = 20), qualitative analysis (n = 12), editorials (n = 4), conference abstracts (n = 3),
post-mortem study (n = 1), and phantom study (n = 1). Finally, 38 studies attained the inclusion
criteria [1–3,5,11,25–57] and were included in the analysis as shown in Table 1.
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3.2. Systematic Review

Table 1 demonstrates some of the main characteristics of the 38 included studies, while Figure 2
shows details of the study design and MRI system used in these studies. Several MRI sequences
were used to enable the precise differentiation between adipose and fibroglandular tissues; of these,
non-contrast-enhanced T1-weighted was widely used either with 2D spin echo or 3D gradient echo.
In fact, 16 studies (41.03%) used non-contrast-enhanced T1-weighted [1,2,26–29,31,33,35,44,45,48–51,53],
while in 12 studies (30.77%) non-contrast-enhanced images were integrated with contrast-enhanced
images [25,36–44,47,49]. In terms of breast density segmentation/measurement, the majority of the
studies (20 studies; 51.28%) used FCM clustering algorithm [1,2,11,25–29,31–42], while 7 studies (17.95%)
used FCM and N3 algorithm [45–51], 4 studies (10.26%) interactive thresholding algorithm [3,5,52,53],
4 studies (10.26%) in-house customized software [29,53–55], one study (2.56%) manual software [57];
however, two studies did not provide the information [43,44].

Among the thirty-eight studies included in the systematic review and meta-analysis, 21 studies
qualified for meta-analysis since they reported the percent breast density using an identical expression of
measurement and dispersion [1,3,11,25–32,36–38,45,48–50,53–55] (Table 2). However, for the remaining
17 studies, the percent breast density was reported in different format: in eight of these studies, it was
defined as a median and interquartile range (IQR) [2,39–44,47], and in the other nine, it was reported
either in different measurement unit or the subject’s sets were not independent, due to multiple
usage [5,33–35,46,51,52,56,57]. To perform the meta-analysis precisely, all the measured quantities
should be reported in an identical expression of measurement and dispersion, thus we decided to
exclude them from the meta-analysis.
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3.3. Subgroup Analyses

The final inclusion consisted of a total of twenty-one studies in the meta-analyses; the forest plots
and pooled results are shown in Figure 3.
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Figure 3. Forest plot of the study means, and 95% confidence limits of the breast density among 21
included studies in the subgroup meta-analyses. (A) Fixed effect meta-analysis of the fuzzy c-mean
clustering (FCM) group of studies of % breast density. (B) Fixed effect meta-analysis of the FCM group
of studies of % dense breast volume. (C) Fixed effect meta-analysis of the FCM and N3 group of studies
of % breast density. (D) Fixed effect meta-analysis of the semi-automated threshold group of studies of
% breast density. (E) Fixed effect meta-analysis of the semi-automated threshold group of studies of %
breast density.

3.3.1. Fuzzy C-mean Clustering (FCM)

The FCM subgroup consisted of 13 studies, of which, 10 studies reported breast density as a
percentage breast density (% BD) [1,11,25–32], whereas 3 studies as a percentage of the dense breast
volume (% DBV) [36–38]. On one hand, 10 studies with inclusion of 634 patients were included,
as Figure 3A shows, there is a wide range of mean values as well as standard deviation (SDs) from those
studies, which indicated enormous heterogeneity among study means (Cochran’s Q test: X2 = 86.93,
P < 0.0001). Indeed, there is a substantial heterogeneity among study variances (Bartlett’s test:
X2 = 110.59, P < 0.0001). On the other hand, three studies with inclusion of 528 patients were analyzed.
Figure 3B shows there is a high level of homogeneity among study means (Cochran’s Q test: X2 = 0.13,
P = 0.94), and a high level of homogeneity among study variances (Bartlett’s test: X2 = 0.12, P = 0.94),
which would be expected as those studies used an identical combination of MR technique and breast
density segmentation/measurement approach.

3.3.2. FCM and Nonparametric Nonuniformity Normalization (N3)

The FCM and N3 subgroup included 4 studies with inclusion of 126 patients [45,48–50], as Figure 3C
shows, there is a wide range of mean values as well as SDs from those studies, which indicated
tremendous heterogeneity among study means (Cochran’s Q test: X2 = 99.94, P < 0.0001). Indeed,
there is a substantial heterogeneity among study variances (Bartlett’s test: X2 = 45.41, P < 0.0001),
which would be expected as those studies used different MR breast-imaging protocols.
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Table 1. Characteristics of the included studies in the systematic review and meta-analysis.

Author, Year
of

Publication

Study
Design

Study
Participants

Age Range,
Average (Years)
or Mean ± SD

MR Scanner
Manufacturer, Field

Strength (Tesla)
MRI Sequence Orientation, Slice

No. TR/TE (ms) FOV
(cm)

Slice
Thickness

(mm)

Matrix
Size

Flip
Angle (◦ )

Breast Coil Segmentation
Method

Chang, 2011
[25] Retro. 38 28–82, 48 Philips, 3.0

Fat-suppressed 3D
SPAIR Axial, 160 6.20/1.26 3.01–38.0 1.0 480 × 480 12 NA

FCM

Non-fat-suppressed
2D TSE Axial, 84 800/8.6 31.0–38.0 2.0 480 × 480 90 NA

Nie, 2010
[26] NA 230 50 ± 11.0 Philips, 1.5 Non-fat-suppressed

3D SGRE (T1W) Axial, 32 8.1/4.0 31.0–38.0 4.0 256 × 256 20 NA FCM

Pertuz, 2016
[27] Retro. 68 24–82, 52 Siemens, 1.5 Non-fat-suppressed

(T1W) NA NA NA 2.4–3.5 512 × 512 NA NA FCM

Moon, 2018
[28] Retro. 98 51.81 ± 11.08 GE, 1.5 Non-fat-suppressed

(T1W) Axial 6.2/2.1 20.0 1.0 512 × 217 NA NA FCM

Chen, 2010
[29] Retro. 35 45 ± 7 Philips, 1.5 Non-fat-suppressed

3D SGRE (T1W) Axial, 32 8.1/4.0 38.0 3.0–4.0 256 × 128 20 Dedicated 4-channel
phased array FCM

Chen, 2016
[31] Retro. 23 40.5 ± 8.2 Philips, 3.0 Non-fat-suppressed

2D TSE (T1W) Axial, 90 654/9.0 33.0 2.0 328 × 384 NA NA FCM

Moon, 2011
[32] Retro. 40 50.9 ± 9.4 GE, 1.5

Fat-suppressed 3D
GRE (T1W)
(VIBRANT)

Sagittal, 144–192 6.1/2.5 19.0 1.5 512 × 512 NA NA FCM

Klifa, 2010
[11] Retro. 35 28–59, 43 GE, 1.5 Fat-suppressed 3D

Fast GRE (T1W) Axial, 60 8.0/4.2 NA 2.0 NA 20 Dedicated bilateral
phased array FCM

Chen, 2011
[1] Retro. 16 33–51, 43 GE, 1.5 Non-fat-suppressed

3D (T1W) Axial, 56 7.4/3.3 30 2.0 512 × 512 NA Dedicated 8-channel
bilateral FCM

Nie, 2010
[33] Retro. 50 NA Philips, 1.5 Non-fat-suppressed

3D GRE (T1W) Axial, 32 8.1/4.0 38.0 4.0 256 × 128 20 NA FCM

Kim, 2014
[34] Retro. 80 27–68, 44 GE, 1.5

Fat-suppressed 2D
FSE (T2W) Sagittal 5500-7150/82 20.0 1.5 256 × 160 NA Dedicated 8-channel

bilateral FCM

Fat-suppressed 3D
Fast SGRE (T2W) Sagittal 6.2/2.5 20.0 1.5 256 × 160 10 Dedicated 8-channel

bilateral

Nie, 2010
[35] Retro. 321 54 ± 12 Philips, 1.5 Non-fat-suppressed

3D SGRE (T1W) Axial, 32 8.1/4.0 32.0–38.0 4.0 256 × 128 20 Dedicated 4-channel
phased-array FCM

Wang, 2013
[2] Retro. 99 47.2 ± 12.1 GE, 1.5/3.0 Non-fat-suppressed

(T1W) Axial NA NA 2.0 NA NA Dedicated bilateral
phased-array FCM

Bertrand,
2015 [36] Pros. 182 25–29 NA, 1.5/3.0

Non-fat- and
fat-suppressed 3D
Fast GRE (T1W)

Axial and Coronal NA 32.0–40.0 NA NA NA Dedicated RF coil FCM

Bertrand,
2016 [37] Pros. 172 25–29 NA, 1.5/3.0

Non-fat- and
fat-suppressed 3D
Fast GRE (T1W)

NA NA 32.0–40.0 NA NA NA Dedicated RF coil FCM

Dorgan, 2012
[38] Retro. 174 25–29 NA, 1.5/3.0

Non-fat- and
fat-suppressed 3D
Fast GRE (T1W)

Axial and Coronal NA 32.0–40.0 NA NA NA Dedicated RF coil FCM

Gabriel, 2013
[39] NA 182 25–29 NA, 1.5/3.0

Non-fat- and
fat-suppressed 3D
Fast GRE (T1W)

Axial and Coronal NA 32.0–40.0 NA NA NA Dedicated RF coil FCM
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Table 1. Cont.

Jung, 2015
[40] Pros. 180 25–29 NA, 1.5/3.0

Non-fat- and
fat-suppressed 3D
Fast GRE (T1W)

Axial and Coronal NA 32.0–40.0 NA NA NA Dedicated RF coil FCM

Jung, 2016
[41] Pros. 177 25–29 NA, 1.5/3.0

Non-fat- and
fat-suppressed 3D
Fast GRE (T1W)

Axial and Coronal NA 32.0–40.0 NA NA NA Dedicated RF coil FCM

Dorgan, 2013
[42] C.S. 176 27.0–27.3, 27.2 NA, 1.5/3.0

Non-fat- and
fat-suppressed 3D
Fast GRE (T1W)

Axial and Coronal NA 32.0–40.0 NA NA NA Dedicated RF coil FCM

Jung, 2015
[43] Pros. 177 25–29 NA, 1.5/3.0

Non-fat- and
fat-suppressed 3D
Fast GRE (T1W)

Axial and Coronal NA NA NA NA NA Dedicated RF coil NA

Jones, 2015
[44] C.S. 172 25–29 NA, 1.5/3.0

Non-fat- and
fat-suppressed 3D
Fast GRE (T1W)

Axial and Coronal NA NA NA NA NA Dedicated RF coil NA

Chen, 2012
[45] Pros. 34 20–64, 35

GE, 1.5 Non-fat-suppressed
2D FSE (T1W) Axial 607/9.0 38.0 2.0 256 × 192 NA Dedicated 8-channel

bilateral

FCM and N3
GE, 3.0 Non-fat-suppressed

2D FSE (T1W) Axial 650/9.0 38.0 2.0 256 × 192 NA Dedicated 8-channel
bilateral

Philips, 3.0 Non-fat-suppressed
2D FSE (T1W) Axial 650/9.0 33.0 2.0 328 × 384 NA Dedicated 16-channel

bilateral

Siemens, 1.5 Non-fat-suppressed
2D FSE (T1W) Axial 650/9.8 33.0 2.0 330 × 384 20 Dedicated 4-channel

bilateral

Chen, 2015
[46] NA 32 22–53, 41 Siemens, 1.5 Non-fat-suppressed

2D FSE (T1W) Axial 650/9.8 33.0 2.0
256 × 256
and 512
× 512

NA Dedicated 4-channel
bilateral FCM and N3

Chen, 2013
[47] NA 44 28–82, 47 Philips, 3.0

Non-fat-suppressed
2D TSE (T1W) Axial 800/8.6 31.0–38.0 2.0 480 × 480 90 Dedicated 4-channel

bilateral
FCM and N3Fat-suppressed 3D

GRE (T1W) Axial 6.2/1.26 31.0–36.0 2.0 480 × 480 12 Dedicated 4-channel
bilateral

Chan, 2011
[48] NA 30

Pre: (N = 24)

Siemens, 1.5 Non-fat-suppressed
3D GRE (T1W) Axial 11/4.7 35.0 2.0 256 × 256 20 4-channel dual-mode FCM and N3

23–48, 29
Post: (N = 6)

51–61, 57

Choi, 2017
[49] Retro. 38 32–79, 45 Philips, 3.0

Non-fat-suppressed
SE (T1W) Axial 620/10 20.0–34.0 3.0 332 × 332 NA Dedicated 7-channel

bilateral
FCM and N3

STIR and SE-EPI (DW) Axial 3265/54 35.0 4.0 288 × 288 90 Dedicated 7-channel
bilateral

Chen, 2013
[50] NA 24 23–48, 29 Siemens, 1.5 Non-fat-suppressed

3D Fast GRE (T1W) Axial 11/4.7 35.0 2.0 256 × 256 20 4-channel dual-mode FCM and N3

Clendenen,
2013 [51] NA 9 24–31 Siemens, 3.0

Non-fat-suppressed
3D VIBE (T1W) Axial 4.19/1.62

26.9 ×
20.2 ×
28.8

0.6 × 0.6 × 1 448 × 336
× 288 12 Dedicated 7-channel

bilateral

FCM and N33-Point Dixon
Non-fat-suppressed
3D FLASH (T1W)

Axial 7.6/3.37, 4.17.
4.96 NA 0.88 × 0.88 ×

1.5 NA 10 Dedicated 7-channel
bilateral
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Table 1. Cont.

McDonald,
2014 [52] Retro. 103 47 ± 11 Philips, 3.0 EPI-Parallel Imaging

(DWI) NA 5336/61 36.0 5.0 240 × 240 NA Dedicated 16 channel
bilateral

Semi-automated
Interactive
Threshold

Tagliafico,
2013 [5] Pros. 48 35–67, 41 GE, 3.0

3D Fast SGRE and
Fat-suppressed 3D

GRE (T1W)
(VIBRANT)

NA 6.2/3.0 NA NA 350 × 350 10 Dedicated 8-channel
bilateral

Semi-automated
Interactive
Threshold

IDEAL NA 4380/130.872 NA NA 360 × 360 90 Dedicated 8-channel
bilateral

Tagliafico,
2014 [3] NA 48 35–67, 41 GE, 3.0

TSE (T1W) NA 600/9.0 NA 4.0 350 × 350 90 Dedicated 8-channel
bilateral

Semi-automated
Interactive
Threshold

TSE (T2W) NA 5200/103 NA 4.0 350 × 350 90 Dedicated 8-channel
bilateral

Fat-suppressed 3D
GRE (T1W)
(VIBRANT)

NA 6.2/3.0 NA 1.2 350 × 350 10 Dedicated 8-channel
bilateral

IDEAL NA 4380/130 NA 1.2 360 × 360 90 Dedicated 8-channel
bilateral

Chen, 2013
[53] NA 24 23–48, 29.4 Siemens, 1.5 Non-fat-suppressed

3D GRE (T1W) Axial 11/4.7 35.0 2.0 256 × 256 20 NA
Semi-automated

Interactive
Threshold

Ha, 2016 [30] Retro. 60 54.2 GE, 1.5/3.0 Fat-suppressed Fast
SGRE (T1W) Axial 17/2.4 18.0-22.0 2.0 256 × 192 35 8-channel breast array Semi-automated

(In-house software)

Ledger, 2016
[54] Retro. 10 23–50, 31 Siemens, 1.5

HR/LR 3D GRE
(PDW) Axial 7.34/4.77, 2.39 NA NA NA 4 Sentinelle variable coil

geometry

Semi-automated
(In-house software)

HR/LR3D GRE (T1W) Axial 7.34/4.77, 2.39 NA NA NA 25 Sentinelle variable coil
geometry

LR 2D SE (T1W) Axial 500/12 NA 7.0 NA NA Sentinelle variable coil
geometry

Wengert,
2015 [55] Pros. 43 21–71, 38 Siemens, 3.0 Dixon Axial, 192 NA/6.0, 2.45,

2.67 NA NA 352 × 352 6 Dedicated 4-channel
bilateral

Fully-automated
(AUQV)

O’Flynn,
2014 [56] Retro. 33

(N = 17):

Siemens, 1.5 Fat-suppressed SS-EPI
(DWI) Axial 6300/83 34.0 5.0 NA NA Dedicated 4-channel

bilateral

Dedicated IDL
based software for
ADC calculation

33–49, 43
(N = 16):
27–49, 40

Kim, 2016
[57] Pros. 57 32–74, 50.8 Siemens, 3.0

Fat-suppressed TSE
(T2W) Sagittal 7623/91 22 × 22 3.0 320 × 246 NA Dedicated 4-breast array

Manually
Fat-suppressed SS-EPI

(DWI) Axial 5200/74 340 × 179 5.0 80 × 190 NA Dedicated 4-breast array

Fat-suppressed 3D
FLASH (T1W) Sagittal 4.5/1.6 22 × 22 2.0 352 × 292 20 Dedicated 4-breast array

Abbreviations: Retro.: retrospective; Pros.: prospective; C.S.: cross-sectional; Pre.: pre-menopausal; Post.: post-menopausal; T1W: T1-weighted; T2W: T2-weighted; SPAIR: spectral
attenuated inversion recovery; TSE: turbo spin-echo; SGRE: spoiled gradient-echo; VIBRANT: volume image breast assessment; GRE: gradient-echo; FSE: fast spin-echo; STIR: short-TI
inversion recovery; DWI: diffusion-weighted imaging; VIBE: volumetric interpolated breath-hold examination; FLASH: fast low angle shot; IDEAL: iterative decomposition of water and
fat with echo asymmetry and least squares estimation; HR: high-resolution; LR: low-resolution; PDW: proton density-weighted; SS-EPI: single shot- echo-planar imaging; FCM: fuzzy
c-mean clustering algorithm; N3: non-parametric non-uniformity normalization; AUQV: automated user-independent quantitative volumetric.
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Table 2. Sample size, Mean, and SD of breast volume, fibroglandular volume, and percent of breast
density of the (21) included studies in the subgroup meta-analyses.

Author, Year Breast Volume, BV (cm3) Fibroglandular Volume, FV (cm3) Breast Density, BD (%)

Mean SD Mean SD N Mean SD

Chang, 2011 [25] 681 359 100 58 38 17.50 9.50

Nie, 2010 [26] - - 104 62 141 15.30 8.10

- - 112 73 89 16.70 10.10

Perutz, 2016 [27] 2210 1125 297 128 68 16.60 11.20

Moon, 2018 [28] 537.59 287.74 - - 89 20.30 8.60

Chen, 2010 [29] - - - - 35 16.6 0 9.30

Ha, 2016 [30] - - - - 60 15.30 10.07

Chen, 2016 [31] 537.59 287.74 - - 23 24.71 15.16

Moon, 2011 [32] 544.90 207.41 - - 40 23.79 16.62

Klifa, 2010 [11] - - - - 35 28.0 18.00

Chen, 2011 [1] 358 174 79 66 16 22.10 2.60

Bertrand, 2015 [36] 413.5 364.3 104.2 70.6 182 27.60 20.50

Bertrand, 2016 [37] 418.7 369.3 104.7 70.3 172 27.40 20.00

Dorgan, 2012 [38] - - 104.67 71.28 174 28.15 20.39

Chen, 2012 [45] 528 263 117 82 34 24.10 12.40

Choi, 2017 [49] - - - - 38 14.80 14.40

Chan, 2011 [48] - - - - 6 8.70 3.40

- - - - 24 21.20 8.30

Chen, 2013 [50] - - - - 24 7.50 3.80

Tagliafico, 2014 [3] - - - - 48 55.00 23.20

Ledger, 2016 [54] 482.6 296.2 135.2 56.2 10 35.40 16.20

Chen, 2013 [53] - - 48.1 24.7 24 20.20 7.80

Wengert, 2015 [55] 1462.43 803.38 - - 43 26.05 19.47

3.3.3. Interactive Semi-Automated Threshold

Two studies [3,54] comprising of 58 patients were included in the analysis, which indicated a
considerable heterogeneity among study means (Cochran’s Q test: X2 = 10.26, P = 0.0014). In contrast,
there was no evidence of heterogeneity among study variances (Bartlett’s test: X2 = 1.61, P = 0.2072).

On the other hand, two studies with inclusion of 67 patients [53,55] were analyzed as shown in
Figure 3E, there was no evidence of heterogeneity among study means (Cochran’s Q test: X2 = 3.01,
P = 0.0825), which would be expected as those studies used the same MRI technique and breast density
measurement. However, there is a substantial heterogeneity among study variances (Bartlett’s test:
X2 = 18.84, P < 0.0001).

3.4. Cluster Analysis

The results obtained from the clustering analysis “Dendrogram using Single Linkage” are shown
in Figure 4. From this data, it can be seen that a hierarchical diagram showing various distances (0–25)
at which studies joined various groups. On that basis, six clusters were identified. A list of cluster
membership, study means, SDs, and coefficient of variations (CVs) (expressed as a percentage) is shown
in Table 3. A scatter plot of the study means versus SDs is shown in Figure 5, the legend in the scatter
plot indicates the number of studies in each cluster. Cluster markers with solid fill indicate clusters
with two or more studies, whereas open markers indicate singletons. Cluster 1 included nine studies
that analyzed breast density with a combination of contrast and non-contrast T1-weighted either with
2D spin echo or 3D gradient echo; however, Choi [49] used diffusion-weighted scanning technique.
From the data in Table 3 (Cluster 1), it is apparent that the CVs are varied in value, but in Choi’s
study [49] the CV is almost 100% because of the mean and SD are almost identical. In contrast, the CVs
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for Chan [48] and Chen [53] are much lower than the rest of the included studies, largely because of
the small SDs and the breast segmentation methods being used which are FCM and N3 and interactive
semi-automated threshold algorithms, respectively.
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Table 3. Study size (N), mean, SD, coefficient of variations (CV), and cluster membership of the
included studies.

Study Code Author, Year N Mean SD CV Cluster Membership

P1.01 Chang, 2011 [25] 38 17.50 9.50 54.29 1

P1.04 Nie, 2010 [26] 89 16.70 10.10 60.48 1

P1.05 Pertuz, 2016 [27] 68 16.60 11.20 67.47 1

P1.06 Moon, 2018 [28] 89 20.30 8.60 42.36 1

P1.07 Chen, 2010 [29] 35 16.60 9.30 56.02 1

P1.08 Ha, 2016 [30] 60 15.30 10.07 65.82 1

P4.13 Choi, 2017 [49] 38 14.80 14.40 97.30 1

P4.15 Chan, 2011 [48] 24 21.20 8.30 39.15 1

P6.03 Chen, 2013 [53] 24 20.20 7.80 38.61 1

P1.09 Chen, 2016 [31] 23 24.71 15.16 61.35 2

P1.10 Moon, 2011 [32] 40 23.79 16.62 69.86 2

P1.11 Klifa, 2010 [11] 35 28.00 18.00 64.29 2

P3.01 Bertrand,2015 [36] 182 27.60 20.50 74.28 2

P3.02 Bertrand, 2016 [37] 172 27.40 20.00 72.99 2

P3.03 Dorgan, 2012 [38] 174 28.15 20.39 72.43 2

P4.03 Chen, 2012 [45] 34 24.10 12.40 51.45 2

P6.05 Wengert, 2015 [55] 43 26.05 19.47 74.74 2

P1.12 Chen, 2011 [1] 16 22.10 2.60 11.76 3

P4.14 Chan, 2011 [48] 6 8.70 3.40 39.08 4

P4.16 Chen, 2013 [50] 24 7.50 3.80 50.67 4

P5.04 Tagliafico, 2014 [3] 48 55.00 23.20 42.18 5

P5.08 Ledger, 2016 [54] 10 33.40 16.20 45.76 6
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In contrast, cluster 2 consisted of 8 studies that assessed breast density with a combination of
contrast- and non-contrast-enhanced T1-weighted with 3D gradient echo, however, Chen [31] and
Chen [45] used non-contrast- and contrast-enhanced T1-weighted with 2D spin-echo, respectively.
Indeed, Chen [45] analyzed breast density using FCM and N3 algorithms. From the data in Figure 5
and Table 3 (Cluster 2), it is apparent that the CVs are almost within a closed range except for Chen [45]
where the CV is much lower than the remaining studies because of the small SD and the breast
segmentation method that previously mentioned. Also, Wengert [55] used Dixon method as a technical
protocol for breast-imaging, although they measured the breast density using in-house customized
software, the mean and SD are not different to the other included studies. The most striking result
to emerge from the data in Figure 5 and Table 3 (Cluster 3–6) is the Chen [1] study (i.e., Cluster 3),
although it used non-contrast-enhanced T1-weighted with 3D gradient echo and analyzed breast
density by FCM algorithm, the CV (11.67%) is much lower than the remaining studies, mainly because
of the small SD.J. Clin. Med. 2019, 8, x FOR PEER REVIEW 17 of 23 
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represents clusters with two or more studies, while open markers represent singleton study. Scatterplot
of study means versus SDs with study codes (A) and without study codes (B).
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Cluster 4 included two studies Chan [48] and Chen [50] that assessed breast density using FCM and
N3 algorithms and non-contrast-enhanced T1-weighted with 3D gradient echo. As can be seen from
the data in Figure 5 and Table 3 (Cluster 3–6) the study means and SDs are not different. In contrast to
this Cluster 5, the Tagliafico study [3] used 3D contrast-enhanced T1-weighted gradient echo sequence
and analyzed the breast density by semi-automated interactive threshold, in particular, (MedDensity).
As Figure 5 and Table 3 (Cluster 3–6) show, the study mean is much higher than the remaining studies,
largely because of the technical method used. Finally, cluster 6 consisted of Lodger [54], this is the only
study that used proton density weighted sequence. Detailed information of clustering membership,
study means, SDs, and CVs is shown in Table 3, Figures 4 and 5.

Switching from technology groupings of studies to groupings identified by the cluster analysis,
meta-analysis of cluster 1 revealed that the study means, and study variances are both heterogeneous
(Cochran’s test for heterogeneity of study means, X2 = 22.26, P = 0.0045, and Bartlett’s test for
heterogeneity of study variances, X2 = 21.47, P = 0.0060, see Figure 6A). When Choi [49] was excluded
(because of the very large CV), the cluster has improved somewhat, which would be expected as
this study used different protocols (i.e., diffusion-weighted imaging). It can be seen from the data in
Figure 6B that the study variances are no longer heterogeneous (X2 = 8.84, P = 0.2641), although the
study means remain heterogeneous (X2 = 19.54, P = 0.0066). In contrast, meta-analysis of cluster 2
indicated that the study means are not heterogeneous (X2 = 4.77, P = 0.6874), while the study variances
are mildly heterogeneous (X2 = 15.54, P = 0.0206, see Figure 7).
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4. Discussion

The present systematic review and meta-analysis was performed to analyze the current studies
on quantitative breast density using MRI and to determine the most appropriate technical/operational
protocol. Through reviewing 38 studies from the literature, despite many methods and protocols
available, no gold standard has been established with a wide range of heterogeneous methods or
protocols used in these studies. To the best of our knowledge, this is the first comprehensive systematic
review and meta-analysis of pooling the results of all breast density segmentation/measurement
methods using MRI data. The analysis indicated that the non-contrast-enhanced T1-weighted
acquisition was commonly utilized among all MR breast-imaging protocols. Another important
finding of this analysis was that the FCM is the most frequently used algorithm amongst the
breast density segmentation/measurement methods. Also, the results showed that a high level
of heterogeneity was mainly associated with the breast-imaging protocols and the breast density
segmentation/measurement methods.

Further attempts have been made by using clustering methods and meta-analysis to identify
groups of studies which are as homogeneous as possible within groups and as heterogeneous as
possible between groups. The included studies were grouped together into clusters based on their
nearest neighbor Euclidean distances. On that basis, clusters 1 and 2 were considered as the most
valuable results. Briefly, cluster 1 consisted of 9 studies [25–30,48,49,53], as shown from the data
in Table 3 and Figure 6A that the CVs are varied in value, but in Choi [49] the CV is almost 100%
because of the mean and SD are almost identical. This result may be explained by the fact that among
the 8 studies [11,31,32,36–38,45,55], the breast-imaging protocol was a combination of contrast- and
non-contrast-enhanced T1-weighted either with 2D spin echo or 3D gradient echo, while in Choi [49]
the MRI protocol used was diffusion-weighted imaging. Consequently, it is advisable to exclude it
from the meta-analysis to reduce the heterogeneity within cluster 1. Consistent with this hypothesis,
the results have improved in somewhat, even though the study variances are not heterogeneous
(P > 0.05), the study means are heterogeneous (P < 0.05) (Figure 6B). Although exclusion of Choi [49]
did not reduce the heterogeneity, these results should be interpreted with caution. The discrepancy
could be largely attributed to that although the MR breast-imaging protocols are not dissimilar (i.e.,
contrast- and non-contrast-enhanced T1-weighted), the breast segmentation/measurement methods are
vice versa (i.e., FCM, FCM and N3, and in-house customized software). In contrast, cluster 2 included
8 studies, in 3 of these studies the breast density was reported as a (%DBV), while the remaining
as a (% BD). Among these studies, the contrast- and non-contrast-enhanced T1-weighted was often
used. From the data in Table 3 and Figure 7, it is apparent that the study means are not dissimilar
(P > 0.05), although the study variances are heterogeneous (P < 0.05). Among the 21 studies included
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in the cluster analysis, although the fixed effect meta-analysis of cluster 2 has improved slightly,
the heterogeneity within group still exist. There are two likely causes for this heterogeneity: the applied
MR breast-imaging protocol and the used breast density segmentation/measurement methods.

Although the study has successfully confirmed the variation in the breast density
segmentation/measurement methods using MRI data, the findings are subject to several limitations.
First, the heterogeneity of study aims, the study design utilized, and the technical/operational methods
applied, for instance, the MR breast-imaging protocol, MR scanner manufacturer, and the static
magnetic field strength present challenges for performing the meta-analysis. Second, the breast density
segmentation/measurement algorithm used is another limitation. Although we classified the included
studies into discrete subgroups (i.e., FCM, FCM and N3, and interactive semi-automated threshold),
and applied stratified analyses, the heterogeneity remains. Third, the definition of the breast density
was inconsistent because some studies reported it as a percentage of dense breast volume, while the
others as a percentage of breast density. Fourth, among the 38 studies included in this analysis, only 21
studies were eligible for meta-analysis due to the statistical requirements for the input values that
should be in identical expression of measurement and dispersion. In addition, some of the included
studies used the same set of the subject multiple times for different purpose and feature. Even though
we decided to rectify the issue by selecting one of the results of data at random, or by any meaningful
clinical criterion, the heterogeneity continues to exist. Notwithstanding these limitations, the study
further supports the idea of developing a standard MRI protocol for the quantitative assessment of
breast density.

Future research can be suggested according to findings of this review. A recent study has reported
the feasibility of creating a realistic 3D printed breast phantom for quality control purpose [58].
Thus, we consider 3D printing technique can be used to develop a patient-specific 3D printed breast
phantom with different amounts of breast composition to quantify the volume of FGT. Further, the 3D
printed model can be used to examine several MR breast-imaging protocols not only to measure the
breast density but also to assess the impact of implementing various image quality parameters (i.e.,
FOV, matrix size and slice thickness) on the segmentation/measurement of breast density. Finally,
the accuracy of different breast density/FGT segmentation methods can be determined.

5. Conclusions

This systematic review and meta-analysis confirms and substantiates the variation among the
breast density segmentation/measurement methods using MRI. Furthermore, subgroup meta-analyses
and further clustering methods indicated that a significant heterogeneity within and between groups
exist. The analysis confirmed that the non-contrast-enhanced T1-weighted acquisition was commonly
utilized among all MR breast-imaging protocols and the FCM is the most frequently used algorithm
amongst the breast density segmentation/measurement methods. Future work will need to determine
the most appropriate protocol and method for quantifying breast density using MRI.
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