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Summary

Microorganisms are the main engines of elemental
cycling in this planet and therefore have a profound
impact on both organic and mineral substrates. As
such, past and present human-made structures and
cultural heritage can be negatively affected by micro-
bial activity. Processes such as bioweathering (rocks
and minerals), biodeterioration (organic substrates)
or biocorrosion (metals) participate to the degrada-
tion or structural damage of construction and her-
itage materials. This structural damage can cause
major economic losses (e.g. replacement of cast-iron
pipes in water distribution networks), and in the case
of heritage materials, the entire loss of invaluable
objects or monuments. Even though one can regard
the influence of microbial activity on construction
and heritage materials as negative, remarkably, the
same metabolic pathways involved in degradation
can be exploited to increase the stability of these
materials.

Microorganisms are the main engines of elemental
cycling in this planet and therefore have a profound
impact on both organic and mineral substrates. As such,
past and present human-made structures and cultural
heritage can be negatively affected by microbial activity.
Processes such as bioweathering (rocks and minerals),
biodeterioration (organic substrates) or biocorrosion

(metals) participate to the degradation or structural dam-
age of construction and heritage materials (Gadd, 2017).
This structural damage can cause major economic
losses (e.g. replacement of cast-iron pipes in water dis-
tribution networks; Sarin et al., 2004); and in the case of
heritage materials, the entire loss of invaluable objects
or monuments (Ranalli et al., 2005; Gadd, 2017). Even
though one can regard the influence of microbial activity
on construction and heritage materials as negative,
remarkably, the same metabolic pathways involved in
degradation can be exploited to increase the stability of
these materials (Table 1). By prolonging the life cycle of
construction materials, microbial biotechnology can con-
tribute directly to make our cities more sustainable. In
addition, given the societal importance of cultural her-
itage, microbial biotechnology can help to preserve an
important component of human legacy.
Using microbial metabolisms for the safeguard of

human-made structures and cultural heritage offers both
opportunities and challenges. A major advantage is com-
patibility with the treated substrate. For example, while
the application of organic coatings to inorganic substrates
is a common practice in the conservation–restoration of
metal sculptures, these coatings create a physical barrier
that has a different behaviour than the metal core and will
eventually become inefficient. In the case of stonework,
the use of consolidants and water repellents is controver-
sial due to their non-reversibility and limited long-term
performance, and some reports suggest that the treat-
ment contributes to accelerated stone decay (De Muynck
et al., 2010). In contrast, formation of biogenic minerals
(biomineralization) that integrate into the natural corrosion
patina formed on the metal substrate generates a com-
patible passivating layer with extended efficiency (Volk-
land et al., 2001; Joseph et al., 2012a). When applied to
stonework, the process is dubbed biodeposition and
involves microbiologically induced calcite precipitation
(MICP; Adolphe et al., 1990; Rodriguez-Navarro et al.,
2003; De Muynck et al., 2010). Another important asset
of biotechnological approaches is the possibility to com-
bine those with chemical remediation methods. This has
been exemplified in the removal of surface deposits from
stonework using sulfate-reducing bacteria, and its combi-
nation with further treatment using biocides to eliminate
microorganisms contributing to biodeterioration (in this
case algae and fungi; Polo et al., 2010). However, other
examples show the risk of altering the dynamics of
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resident microbial communities by the use of biocides, as
it is the case of uncontrolled microbial growth in the
invaluable Lascaux cave paintings (Bastian et al., 2010).
In addition to remediatory treatments, many biotechno-

logical approaches are attractive because of their pre-
ventive nature. A good example of this is the
manufacturing of self-healing materials. Self-healing
materials have an enormous potential specially under
conditions requiring long-term reliability and with poor
accessibility to the infrastructure (Hager et al., 2010).
Different strategies have been investigated in substrates
such as metals, ceramics and polymers, and although
the precise nature of the treatment will vary, the principle
remains similar. Self-healing is in all cases based on the
generation of a mobile phase that closes the cracks in
the substrate (Hager et al., 2010). In terms of biotechnol-
ogy, the most advanced of those technologies involves
concrete structures. Several types of applications have
been proposed including biological mortar, crack remedi-
ation, bacterial concrete and self-healing concrete (De
Muynck et al., 2010; Jonkers et al., 2010; Jonkers,
2011; Seifan et al., 2016).
Using living microorganisms also creates challenges.

Probably one of the most tangible and hard to solve is
the negative perception of the general public towards
microbes. In all the examples given in Table 1, it is
noticeable that while a particular microbial metabolism
can be exploited in a positive way, it is also deleterious
for a different substrate. Science fairs oriented to the
public, live demonstrations and involving the final user in
the early phases of product development are probably
the most effective ways to counteract this. Regardless of
the microbial metabolic process under scrutiny, the most
commonly cited challenge resides in the cost of biologi-
cal treatments. For example, in the case of biodeposition
it has been estimated that due to the price of con-
stituents, this biological solution will never be competitive
on a purely economical basis. Only in the case of self-

healing building materials, a significant added value can
be expected from decreasing the needs for manual
inspection and repair (De Muynck et al., 2010). Time is
also a major concern tightly linked to the cost of the bio-
logical solutions. In this case, maintaining conditions per-
missive to microbial activity for several days to weeks
could bear a large fraction of the total cost in a biological
intervention. Providing suitable conditions or dealing with
intrinsic limitations of the material (e.g. extreme alkaline
pH such as in the case of concrete; De Muynck et al.,
2010) occupies a large fraction of the efforts to translate
technologies intro praxis. Safety is another concern as
undesirable microbial growth within human-made struc-
tures could offset the benefits of the solution. Also,
regulatory barriers can impair the spread of a given tech-
nology and the transfer of technologies between different
countries. Finally, issues in terms of upscaling of produc-
tion and delivery of the microorganisms onto the surface
for treatment are also barriers for the large-scale transfer
of technologies developed in the laboratory into the real
world. There are encouraging examples of innovative
solutions for some of these problems. For example, in
the case of technologies using MICP three alternative
venues have been explored, which include the identifica-
tion of active extracellular metabolites to be applied
directly on the substrate, the use of dead cells or cellular
fractions, or the enhancement of the activity of resident
microorganisms (Tiano et al., 1999; De Muynck et al.,
2010). These alternatives are feasible given that MICP
appears to be a general consequence of various micro-
bial metabolisms, suggesting a significant potential for
the stimulation of endogenous resident microbes (Jime-
nez-Lopez et al., 2007). Likewise, the use of enzymes
rather than living organisms has been suggested in bio-
cleaning methods (Ranalli et al., 2005; Bosch-Roig and
Ranalli, 2014; Bosch-Roig et al., 2016). In terms of deliv-
ery, the use of endospore-forming Firmicutes was com-
mon in the case of biocementation technologies, but has

Table 1. Microbial metabolisms and effect (negative or positive) on construction and cultural heritage materials.

Microbial metabolism Negative effect Positive effect

Sulfate reduction Biocorrosion of iron and iron alloys (Dinh
et al., 2004; Videla and Herrera, 2005)

Removal of black crust on stone artwork
(Cappitelli et al., 2006; Polo et al., 2010)

Iron reduction Biocorrosion of iron and iron alloys
(Schutz et al., 2015)

Production of stable corrosion products via
biogenic mineral precipitation (Cote et al., 2015;
Comensoli et al., 2017)

Oxalogenesis Mineral dissolution and rock weathering
(Gadd et al., 2014)

Biological patination of metals (Joseph et al.,
2012a,b, 2013)

Chemoorganotrophic respiration Degradation of natural or synthetic carbon
compounds

Carbonatogenesis in self-healing concrete
(Jonkers, 2011; Dhami et al., 2013)
Removal of organic matter from frescoes (Ranalli
et al., 2005; Bosch-Roig et al., 2016)

Redox reactions with metals Discoloration and deterioration of stained
glass. Alteration of pigments (Bastian
et al., 2010)

Biologically induced mineral formation (Cote
et al., 2015; Comensoli et al., 2017)
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been criticized in terms of the safety and the possi-
ble undesired reactivation of dormant cells on the sub-
strate (Rodriguez-Navarro et al., 2003). In the same
way, the combination of microorganisms with specific
delivery matrixes that provide conditions for the desired
metabolism has been evaluated in the case of treatment
of stonework and sulfate reduction (Cappitelli et al.,
2007) or for the delivery in self-healing materials (Ersan
et al., 2015).
In summary, a better understanding of the complex

link between microbial metabolism and biogeochemical
cycling has had surprising consequences in our current
take of microbial activity and its relationship to construc-
tion and heritage materials. A very active field of
research has spurred from the possibilities offered by
these technologies. One can expect that by dealing with
the challenges posed, these technologies will help to
capitalize in the untapped potential of nature most
accomplished chemists (microorganisms) for the synthe-
sis of inorganic components in an eco-friendly manner.
The latter is probably the most significant promise of this
biotechnological approach.
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